Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 57
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The project called “Polish Cardiosurgical Robot” has been developed by Foundation for Cardiac Surgery Development since year 2000. Within the project the telemanipulator to perform the endoscopic cardiosurgical operations has been designed, manufactured and examined. In the following paper the development of construction of arms for RobIn Heart 0, RobIn Heart 1, RobIn Heart 3 versions of the robot as well as the fixing system has been presented. In the preliminary phase of the project the requirements for mechanical construction were analyzed. Additional requirements enhancing functionality of the construction were also defined. Analyses of the planned development of the construction and ways of its possible applications were performed.

Go to article

Authors and Affiliations

L. Podsędkowski
Download PDF Download RIS Download Bibtex

Abstract

Neutralisation of the terrorist explosive devices is a risky task. Such tasks may be carried out by robots in order to protect human life. The article describes chosen design problems concerning the new neutralisation and assisting robot SMR-100 Expert. The robot was to be designed for the use in confined spaces, particularly inside the air-crafts, buses and rail cars. In order to achieve this ambitious plan, new advanced technological designing tools had to be applied. A number of interesting design issues were approached. The successful development of the prototype robot Expert in Poland resulted in the creation of the first intervention robot in the world able to perform all necessary anti-terrorist tasks inside the passenger planes.

Go to article

Authors and Affiliations

P. Szynkarczyk
Download PDF Download RIS Download Bibtex

Abstract

The paper presents construction and control system of the climbing robot Safari designed at the Poznan University of Technology for inspection of high building walls, executed in order to evaluate their technical condition. Because such tasks are uncomfortable and very dangerous for humans, this mobile machine gives a possibility to observe and examine the state of the surface on which it is moving. The robot is a construction developed for walking on flat but uneven vertical and horizontal surfaces. Its on-board equipment provides ability to remotely examine and record images reflecting the robot’s surroundings. At the beginning of the paper, several concepts of existing climbing robots (four-legged, six-legged, sliding platform) are outlined. Next, the mechanical system of the Safari robot is presented with special emphasis on its kinematic equations and description of movement stages. Then, the on-board manipulator as well as the sensor and control systems are described.

Go to article

Authors and Affiliations

P. Dutkiewicz
K. Kozłowski
W. Wróblewski
Download PDF Download RIS Download Bibtex

Abstract

Dr. Aleksandra Przegalinska explains why we find humanoid robots so creepy and considers whether watching machines play football is actually fun.

Go to article

Authors and Affiliations

Aleksandra Przegalińska
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the design of a versatile mechanism that can enable new directions in amphibious, all-terrain locomotion. The simple, passive, flapped-paddle can be integrated with several structures that are well-suited for locomotion in terrestrial applications. The flapped-paddle overcomes a serious limitation of the conventional flipper where the net lateral forces generated during oscillatory motion in aquatic environments averages out to zero. The flapped-paddle and its mounting, collectively, rests in natural positions in the aquatic environment so as to maximize hydrodynamic force utilization and consequently the propulsive efficiency. The simplicity of the design enabled us to develop a simulation model that concurs well with experimental results. The results reported in the paper are based on integrating the flapped-paddle with the curved leg of the RHex hexapod robot.
Go to article

Bibliography

  1.  A. Crespi, K. Karakasiliotis, A. Guignard, and A.J. Ijspeert, “Salamandra robotica II: an amphibious robot to study salamander-like swimming and walking gaits,” IEEE Trans. Rob., vol. 29, no. 2, pp. 308‒320, 2013.
  2.  M. Gad-El-Hak, “Coherent structures and flow control: genesis and prospect,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 67, no. 3, pp. 411‒444, 2019.
  3.  A.J. Ijspeert, A. Crespi, D. Ryczko, and J.M. Cabelguen, “From swimming to walking with a salamander robot driven by a spinal cord model,” Science, vol. 315, no. 5817, pp. 1416‒1420, 2007.
  4.  E. Natarajan, K.Y. Chia, A.A.M. Faudzi, W.H. Lim, Ch.K. Ang, and A. Jafaari, “Bio Inspired Salamander Robot with Pneu-Net Soft ac- tuators-Design and Walking Gait Analysis,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 69, no. 3, 2021, Article number: e137055, doi: 10.24425/ bpasts.2021.137055.
  5.  K. Karakasiliotis and A.J. Ijspeert, “Analysis of the terrestrial locomotion of a salamander robot,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis 2009, pp. 5015‒5020.
  6.  P. Liljebäck, Ø. Stavdahl, K.Y. Pettersen, and J.T. Gravdahl, “Mamba-A waterproof snake robot with tactile sensing,” in Proceedings of the 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago, IL, US, 2014, pp. 294‒301.
  7.  S. Hirose and H. Yamada, “Snake-like robots machine design of biologically inspired robots,” IEEE Rob. Autom. Mag., vol. 3, 2009.
  8.  J. Yu, R. Ding, Q. Yang, M. Tan, and J. Zhang, “Amphibious Pattern Design of a Robotic Fish with Wheel-propeller-fin Mechanisms,” J. Field Rob., vol. 30, no. 5, pp. 702‒716, 2013.
  9.  J. Yu, R. Ding, Q. Yang, M. Tan, W. Wang, and J. Zhang, “On a bio-inspired amphibious robot capable of multimodal motion,” IEEE/ ASME Trans. Mechatron., vol. 17, no. 5, pp. 847‒856, 2011.
  10.  T. Paschal, M.A. Bell, J. Sperry, S. Sieniewicz, R.J. Wood, and J.C. Weaver, “Design, fabrication, and characterization of an untethered amphibious sea urchin-inspired robot,” IEEE Rob. Autom. Lett., vol. 4, no. 4, pp. 3348‒3354, 2019.
  11.  V. Kaznov and M. Seeman, “Outdoor navigation with a spherical amphibious robot,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, Taiwan 2010, pp. 5113‒5118.
  12.  Y. Shen, Y. Sun, H. Pu and S. Ma, “Experimental verification of the oscillating paddling gait for an ePaddle-EGM amphibious locomotion mechanism,” IEEE Rob. Autom. Lett., vol. 2, no. 4, pp.  2322‒2327, 2017.
  13.  U. Saranli, M. Buehler, and D.E. Koditschek, “Design, modeling and preliminary control of a compliant hexapod robot,” in Proceedings of the 2000 IEEE International Conference on Robotics and Automation, San Francisco,CA, 2000, vol.3, pp. 2589‒2596.
  14.  U. Saranli, M. Buehler, and D.E. Koditschek, “RHex: A simple and highly mobile hexapod robot,” Int. J. Rob. Res., vol.  20, no. 7, pp. 616‒631, 2001.
  15.  G. Dudek et al., “Aqua: An amphibious autonomous robot,” Computer, vol. 40, no. 1, pp. 46‒53, 2007.
  16.  Ch. Georgiades, M. Nahon, and M. Buehler, “Simulation of an underwater hexapod robot,” Ocean Eng., vol. 36, no. 1, pp. 39‒47, 2009.
  17.  X. Liang et al., “The amphihex: A novel amphibious robot with transformable leg-flipper composite propulsion mechanism,” in Proceed- ings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura, Algarve, Portugal, 2012, pp. 3667‒3672.
  18.  S. Zhang, X. Liang, L. Xu, and M. Xu, “Initial development of a novel amphibious robot with transformable fin-leg composite propulsion mechanisms,” J. Bionic Eng., vol. 10, no. 4, pp.434‒445, 2013.
  19.  S. Zhang, Y. Zhou, M. Xu, X. Liang, J. Liu, and J. Yang, “AmphiHex-I: locomotory performance in amphibious environments with specially designed transformable flipper legs,” IEEE/ASME Trans. Mechatron., vol. 21, no. 3, p. 1720‒1731, 2015.
  20.  P. Burzyński, Poland, FLHex: A Flapped-Paddle Hexapod, (Aug. 01, 2021). [Online Video]. Available: https://www.youtube.com/ watch?v=Ux1AlOFUUco (Accessed: Aug. 2, 2021).
  21.  A. Simha, R. Gkliva, Ü. Kotta, and M. Kruusmaa, “A Flapped Paddle-Fin for Improving Underwater Propulsive Efficiency of Oscillatory Actuation,” IEEE Rob. Autom. Lett., vol. 5, no. 2, pp.  3176‒3181, 2020.
  22.  K.E. Crandell and B.W. Tobalske, “Kinematics and aerodynamics of avian upstrokes during slow flight,” J. Exp. Biol., vol. 218, no. 16, pp. 2518‒2527, 2015.
  23.  W. Yang and B. Song, “Experimental investigation of aerodynamics of feather-covered flapping wing,” Appl. Bionics Biomech., vol. 2017, 2017, Article ID: 3019640. doi: 10.1155/2017/3019640.
  24.  B.B. Dey, S. Manjanna, and Dudek G., “Ninja legs: Amphibious one degree of freedom robotic legs,” in Proceedings of the 2013 IEEE/ RSJ International Conference on Intelligent Robots and Systems, Tokio, Japan, 2013, pp. 5622‒5628.
  25.  S.B.A. Kashem, S. Jawed, A. Jubaer, and Q. Uvais, “Design and Implementation of a Quadruped Amphibious Robot Using Duck Feet,” Robotics, vol. 8, no. 3, p. 77, 2019, doi: 10.3390/robotics8030077.
  26.  B. Kwak and J. Bae, “Design of hair-like appendages and comparative analysis on their coordination toward steady and efficient swimming,” Bioinspir. Biomim., vol. 12, no. 3, p. 036014, 2017, doi: 10.1088/1748-3190/aa6c7a.
  27.  S.B. Behbahani and X. Tan, “Design and modeling of flexible passive rowing joint for robotic fish pectoral fins,” IEEE Trans. Rob., vol. 32, no. 5, pp. 1119‒1132, 2016.
  28.  Ch.J. Esposito, J.L. Tangorra, B.E. Flammang, and G.V. Lauder, “A robotic fish caudal fin: effects of stiffness and motor program on locomotor performance,” J. Exp. Biol., vol. 215, no. 1, pp. 56‒67, 2012.
  29.  G.V. Lauder, “Function of the caudal fin during locomotion in fishes: kinematics, flow visualization, and evolutionary patterns,” Am. Zool., vol. 40, no. 1, pp. 101‒122, 2000.
  30.  S.C. Licht, M. Wibawa, F.S. Hover, and M.S. Triantafyllou, “Towards amphibious robots: Asymmetric flapping foil motion underwater produces large thrust efficiently,” Technical Raport, Massachusetts Institute of Technology. Sea Grant College Program, 2009.
  31.  Ch. Meurer, A. Simha, Ü. Kotta, and M. Kruusmaa, “Nonlinear Orientation Controller for a Compliant Robotic Fish Based on Asymmetric Actuation,” in Proceedings of the International Conference on Robotics and Automation (ICRA), Montreal, Canada, 2019, pp. 4688‒4694.
  32.  G.V. Lauder and E.D. Tytell, “Hydrodynamics of undulatory propulsion,” Fish Physiol., vol. 23, pp. 425‒468, 2005.
  33.  M. Bozkurttas, J. Tangorra, G. Lauder, and R. Mittal, “Understanding the hydrodynamics of swimming: From fish fins to flexible pro- pulsors for autonomous underwater vehicles,” Adv. Sci. Technol., vol.58, pp. 193‒202, 2008.
  34.  N. Martin, Ch. Roh, S. Idrees, and M. Gharib, “To flap or not to flap: comparison between flapping and clapping propulsions,” J. Fluid Mech., vol.822, p. R5, 2017, doi: 10.1017/jfm.2017.252.
  35.  M. Sfakiotakis, D.M. Lane, and J.B.C. Davies, “Review of fish swimming modes for aquatic locomotion,” IEEE J. Oceanic Eng., vol. 24, no. 2, pp. 237‒252, 1999.
  36.  R. Gkliva, M. Sfakiotakis, and M. Kruusmaa, “Development and experimental assessment of a flexible robot fin,” in Proceedings of the 2018 IEEE International Conference on Soft Robotics (RoboSoft), Livorno, Italy, 2018, pp. 208‒213.
Go to article

Authors and Affiliations

Piotr Burzynski
1
Ashutosh Simha
2
Ülle Kotta
2
Ewa Pawluszewicz
1
Shivakumar Sastry
3

  1. Bialystok University of Technology, Department of Robotics and Mechatronics, ul. Wiejska 45C, 15-351 Bialystok, Poland
  2. School of Information Technologies, Department of Software Science, Tallinn University of Technology, 12618 Tallinn, Estonia
  3. University of Akron, Department of Electrical and Computer Engineering, Akron, Ohio 44325, USA
Download PDF Download RIS Download Bibtex

Abstract

The navigation of mobile robots is a key element of autonomous systems, which allows robots to move effectively and securely in changing environments with greater autonomy and precision. This study aims to provide researchers with a comprehensive guide for selecting the best path-planning methods for their particular projects. We evaluate some popular algorithms that are regularly used in mobile robot navigation, in order to demonstrate their specifications and determine where they are most effective. For example, one algorithm is used to model the problem as a standard graph, and another algorithm is found to be the most suitable for highly dynamic and highly dimensional environments, due to its robust path-planning capabilities and efficient route construction. We also filter high-performance algorithms in terms of computational complexity, accuracy, and robustness. In conclusion, this study provides valuable information on its individual strengths and weaknesses, helping robotics and engineers make informed decisions when selecting the most appropriate algorithm for their specific applications.
Go to article

Authors and Affiliations

Mehmet Kara
1
ORCID: ORCID

  1. AGH University of Science and Technology, Krakow, Poland
Download PDF Download RIS Download Bibtex

Abstract

Robotics specialists observe nature carefully and try to recreate the complex motions performed by people and animals with ease. Locomotion and the ability to manipulate flexible objects are especially challenging, but progress is being made.

Go to article

Authors and Affiliations

Krzysztof Walas
Download PDF Download RIS Download Bibtex

Abstract

Artificial intelligence technologies are moving forward by leaps and bounds, right before our very eyes. How well prepared are we to treat them not as tools or rivals, but as autonomous partners?
Go to article

Authors and Affiliations

Artur Modliński
1
Aleksandra Przegalińska
2

  1. University of Łódź
  2. Kozminski University in Warsaw
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the possibilities of teaching a robot controller to perform operations of autonomous segregation of objects differing in features that can be identified using a vision system.Objects can be arranged freely on the robot scene also covered with others. In the learning phase, a robot operator presents the segregation method by moving subsequent objects held in a human hand, e.g. a red object to container A, a green object to container B, etc. The robot system, after recognizing the idea of segregation that is being done using the vision system, continues this work in an autonomous way, until all identified objects will be removed from robotic scene. There are no restrictions on the dimensions, shapes and placement of containers collecting segregated objects. The developed algorithms were verified on a test bench equipped with two modern robots KUKA LBR iiwa 14 R820.

Go to article

Authors and Affiliations

Edward Jezierski
Piotr Łuczak
Paweł Smyczyński
Dariusz Zarychta
Download PDF Download RIS Download Bibtex

Abstract

The article presents the issue of calibration and verification of an original module, which is a part of the robotic turbojet engines elements processing station. The task of the module is to measure turbojet engine compressor blades geometric parameters. These type of devices are used in the automotive and the machine industry, but here we present their application in the aviation industry. The article presents the idea of the module, operation algorithm and communication structure with elements of a robot station. The module uses Keyence GT2-A32 contact sensors. The presented information has an application nature. Functioning of the module and the developed algorithm has been tested, the obtained results are satisfactory and ensure sufficient process accuracy. Other station elements include a robot with force control, elements connected to grinding such as electrospindles, and security systems.

Go to article

Bibliography

[1] A. Burghardt, K. Kurc, D. Szybicki, M. Muszyńska, and J. Nawrocki. Robot-operated quality control station based on the UTT method. Open Engineering, 7(1):37–42, 2017. doi: 10.1515/eng-2017-0008.
[2] A. Burghardt, K. Kurc, D. Szybicki, M. Muszyńska, and T. Szczęch. Robot-operated inspection of aircraft engine turbine rotor guide vane segment geometry. Tehnicki Vjesnik – Technical Gazette, 24(Suppl. 2):345–348, 2017. doi: 10.17559/TV-20160820141242.
[3] A. Burghardt, K. Kurc, D. Szybicki, M. Muszyńska, and J. Nawrocki. Software for the robotoperated inspection station for engine guide vanes taking into consideration the geometric variability of parts. Tehnicki Vjesnik – Technical Gazette, 24(Suppl. 2):349–353, 2017. doi: 10.17559/TV-20160820142224.
[4] A. Burghardt, D. Szybicki, K. Kurc, M. Muszyńska, and J. Mucha. Experimental study of Inconel 718 surface treatment by edge robotic deburring with force control. Strength of Materials, 49(4):594–604, 2017. doi: 10.1007/s11223-017-9903-3.
[5] A. Burghardt, K. Kurc, D. Szybicki, M. Muszyńska, and T. Szczęch. Monitoring the parameters of the robot-operated quality control process. Advances in Science and Technology Research Journal, 11(1):232–236, 2017. doi: 10.12913/22998624/68466.
[6] P. Gierlak and M. Szuster. Adaptive position/force control for robot manipulator in contact with a flexible environment. Robotics and Autonomous Systems, 95:80–101, 2017. doi: 10.1016/j.robot.2017.05.015.
[7] P. Gierlak, A. Burghardt, D. Szybicki, M. Szuster, and M. Muszyńska. On-line manipulator tool condition monitoring based on vibration analysis. Mechanical Systems and Signal Processing, 89:14–26, 2017. doi: 10.1016/j.ymssp.2016.08.002.
[8] Z. Hendzel, A. Burghardt, P. Gierlak, and M. Szuster. Conventional and fuzzy force control in robotised machining. Solid State Phenomena, 210:178–185, 2014. doi: 10.4028/www.scientific.net/SSP.210.178.
[9] O. Yilmaz, N. Gindy, and J. Gao. A repair and overhaul methodology for aeroengine components. Robotics and Computer-Integrated Manufacturing, 26(2):190–201, 2010. doi: 10.1016/j.rcim.2009.07.001.
[10] P. Zhao andY. Shi. Posture adaptive control of the flexible grinding head for blisk manufacturing. The International Journal of Advanced Manufacturing Technology, 70(9–12):1989–2001, 2014. doi: 10.1007/s00170-013-5438-3.
[11] P. Zhsao and Y.C. Shi. Composite adaptive control of belt polishing force for aeroengine blade. Chinese Journal of Mechanical Engineering, 26(5):988–996, 2013. doi: 10.3901/CJME.2013.05.988.
[12] X. Xu, D. Zhu, H. Zhang, S. Yan, and H. Ding. TCP-based calibration in robot-assisted belt grinding of aero-engine blades using scanner measurements. The International Journal of Advanced Manufacturing Technology, 90(1–4):635–647, 2017. doi: 10.1007/s00170-016-9331-8.
[13] W.L. Li., H. Xie, G. Zhang, S.J. Yan, and Z.P. Yin. Hand–eye calibration in visually-guided robot grinding. IEEE Transactions on Cybernetics, 46(11):2634–2642, 2016. doi: 10.1109/TCYB.2015.2483740.
[14] B. Sun and B. Li. Laser displacement sensor in the application of aero-engine blade measurement. IEEE Sensors Journal, 16(5):1377–1384, 2016. doi: doi.org/10.1109/TMECH.2016.2574813">10.1109/TMECH.2016.2574813.
[16] Y. Zhang, Z.T. Chen, and T. Ning. Efficient measurement of aero-engine blade considering uncertainties in adaptive machining. The International Journal of Advanced Manufacturing Technology, 86(1–4):387–396, 2016. doi: 10.1007/s00170-015-8155-2.
[17] L. Qi, Z. Gan, C. Yun, and Q. Tang. A novel method for Aero engine blade removed-material measurement based on the robotic 3D scanning system. In Proceedings of 2010 International Conference on Computer, Mechatronics, Control and Electronic Engineering, volume 4, pages 72–75, Changchun, China, 24–26 August, 2010. doi: 10.1109/CMCE.2010.5610214.
[18] J. Godzimirski. New technologies of aviation turbine engines. Transactions of the Institute of Aviation, 213:22–36, 2011 (in Polish).
[19] G. Budzik. Geometric Accuracy of Aircraft Engine Turbine Blades. Publishing House of Rzeszow University of Technology, 2013 (in Polish).
Go to article

Authors and Affiliations

Dariusz Szybicki
1
Andrzej Burghardt
1
Krzysztof Kurc
1
Paulina Pietruś
1

  1. Rzeszów University of Technology, Faculty of Mechanical Engineering and Aeronautics, Department of Applied Mechanics and Robotics, Rzeszów, Poland.
Download PDF Download RIS Download Bibtex

Abstract

The goal of the project is to investigate the influence of elastic mechanisms on technical, bipedal locomotion. In particular, the paper presents the parameter identification for a biologically inspired two-legged robot model. The simulation model consists of a rigid body model equipped with rubber straps. The arrangement of the rubber straps is based on the arrangement of certain muscle groups in a human being. The parameters of the elastic elements are identified applying numerical optimisation. Thus two optimisation algorithms are investigated and compared with respect to robustness and computing time. Moreover, different objective functions are defined and discussed. The behaviour of the resulting configuration of the system is explored in terms of biomechanics.

Go to article

Authors and Affiliations

Daniela Förg
Heinz Ulbrich
Download PDF Download RIS Download Bibtex

Abstract

This paper presents a model to generate a 3D model of a room, where room mapping is very necessary to find out the existing real conditions, where this modeling will be applied to the rescue robot. To solve this problem, researchers made a breakthrough by creating a 3D room mapping system. The mapping system and 3D model making carried out in this study are to utilize the camera Kinect and Rviz on the ROS. The camera takes a picture of the area around it, the imagery results are processed in the ROS system, the processing carried out includes several nodes and topics in the ROS which later the signal results are sent and displayed on the Rviz ROS. From the results of the tests that have been carried out, the designed system can create a 3D model from the Kinect camera capture by utilizing the Rviz function on the ROS. From this model later every corner of the room can be mapped and modeled in 3D.
Go to article

Authors and Affiliations

Syahri Muharom
1
Riza Agung Firmansyah
1
Yuliyanto Agung Prabowo
1

  1. Institut Teknologi Adhi Tama Surabaya, Indonesia
Download PDF Download RIS Download Bibtex

Abstract

This article concerns the use of an integrated RFID system with a mobile robot for the navigation and mapping of closed spaces. The architecture of a prototype mobile robot equipped with a set of RFID readers that performs the mapping functions is described. Laboratory tests of the robot have been carried out using a test stand equipped with a grid of appropriately programmed RFID transponders. A simulation model of the effectiveness of transponder reading by the robot has been prepared. The conclusions from measurements and tests are discussed, and methods for improving the solution are proposed.
Go to article

Authors and Affiliations

Bartosz Pawłowicz
1
ORCID: ORCID
Mariusz Skoczylas
1
ORCID: ORCID
Bartosz Trybus
2
ORCID: ORCID
Mateusz Salach
3
ORCID: ORCID
Marcin Hubacz
2
ORCID: ORCID
Damian Mazur
4
ORCID: ORCID

  1. Departmentof Electronic and Telecommunications Systems, Rzeszów University of Technology, WincentegoPola 2, 35-959 Rzeszow, Poland
  2. Department of Computer and ControlEngineering, Rzeszow University of Technology, Wincentego Pola 2, 35-959 Rzeszow, Poland
  3. Department of Complex Systems, Rzeszow Universityof Technology, Wincentego Pola 2, 35-959 Rzeszow, Poland
  4. Department of Electrical andComputer Engineering Fundamentals, Rzeszow University of Technology, Wincentego Pola 2, 35-959Rzeszow, Poland
Download PDF Download RIS Download Bibtex

Abstract

A companion robot is capable of performing a variety of activities and thus supporting the elderly and people withdisabilities. It should be able to overcome obstacles on its own, respond to what is happening around it in real-time, andcommunicate with its surroundings. It is particularly important to pay attention to these issues, as a companion robot is likely tobecome a participant in traffic. The aim of the research is to develop a mathematical model that takes into account the use of twonavigation solutions in the companion robot. Thanks to this, it will be possible to use the obtained mathematical relationships tocompare various types of navigation and make a rational choice, enabling the implementation of the assumed activities in aspecific external environment. What is new in this article is the analysis of several navigation methods and the presentation ofresearch carried out in real time using an actual robot.
Go to article

Authors and Affiliations

Karolina Krzykowska-Piotrowska
Emilia Grabka
Ewa Dudek
Adam Rosiński
ORCID: ORCID
Kamil Maciuk
Download PDF Download RIS Download Bibtex

Abstract

Compared with the robots, humans can learn to perform various contact tasks in unstructured environments by modulating arm impedance characteristics. In this article, we consider endowing this compliant ability to the industrial robots to effectively learn to perform repetitive force-sensitive tasks. Current learning impedance control methods usually suffer from inefficiency. This paper establishes an efficient variable impedance control method. To improve the learning efficiency, we employ the probabilistic Gaussian process model as the transition dynamics of the system for internal simulation, permitting long-term inference and planning in a Bayesian manner. Then, the optimal impedance regulation strategy is searched using a model-based reinforcement learning algorithm. The effectiveness and efficiency of the proposed method are verified through force control tasks using a 6-DoFs Reinovo industrial manipulator.

Go to article

Authors and Affiliations

C. Li
Z. Zhang
G. Xia
X. Xie
Q. Zhu
Download PDF Download RIS Download Bibtex

Abstract

This paper proposes an analysis of the effect of vertical position of the pivot point of the inverted pendulum during humanoid walking. We introduce a new feature of the inverted pendulum by taking a pivot point under the ground level allowing a natural trajectory for the center of pressure (CoP), like in human walking. The influence of the vertical position of the pivot point on energy consumption is analyzed here. The evaluation of a 3D Walking gait is based on the energy consumption. A sthenic criterion is used to depict this evaluation. A consequent reduction of joint torques is shown with a pivot point under the ground.

Go to article

Authors and Affiliations

Sahab Omran
Sophie Sakka
Yannick Aoustin
Download PDF Download RIS Download Bibtex

Abstract

The study presents the issue of kinematic discrepancy of hydrostatic drive systems of high mobility vehicles, and its impact on the presence of the unfavourable phenomenon of circulating power. Furthermore, it presents a theoretical discussion concerning the capacity of the compensation of kinematic discrepancy by a hydrostatic drive system on the basis of tests using static characteristics.

Go to article

Bibliography

[1] A. Valera-Medina, A. Giles, D. Pugh, S. Morris, M. Pohl, and A. Ortwein. Investigation of combustion of emulated biogas in a gas turbine test rig. Journal of Thermal Science, 27:331–340, 2018. doi: 10.1007/s11630-018-1024-1.
[2] K. Tanaka and I. Ushiyama. Thermodynamic performance analysis of gas turbine power plants with intercooler: 1st report, Theory of intercooling and performance of intercooling type gas turbine. Bulletin of JSME, 13(64):1210–1231, 1970. doi: 10.1299/jsme1958.13.1210.
[3] H.M. Kwon, T.S. Kim, J.L. Sohn, and D.W. Kang. Performance improvement of gas turbine combined cycle power plant by dual cooling of the inlet air and turbine coolant using an absorption chiller. Energy, 163:1050–1061, 2018. doi: 10.1016/j.energy.2018.08.191.
[4] A.T. Baheta and S.I.-U.-H. Gilani. The effect of ambient temperature on a gas turbine performance in part load operation. AIP Conference Proceedings, 1440:889–893, 2012. doi: 10.1063/1.4704300.
[5] F.R. Pance Arrieta and E.E. Silva Lora. Influence of ambient temperature on combined-cycle power-plant performance. Applied Energy, 80(3):261–272, 2005. doi: 10.1016/j.apenergy.2004.04.007.
[6] M. Ameri and P. Ahmadi. The study of ambient temperature effects on exergy losses of a heat recovery steam generator. In: Cen, K., Chi, Y., Wang, F. (eds) Challenges of Power Engineering and Environment. Springer, Berlin, Heidelberg, 2007. doi: 10.1007/978-3-540-76694-0_9.
[7] M.A.A. Alfellag: Parametric investigation of a modified gas turbine power plant. Thermal Science and Engineering Progress, 3:141–149, 2017. doi: 10.1016/j.tsep.2017.07.004.
[8] J.H. Horlock and W.A. Woods. Determination of the optimum performance of gas turbines. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 214:243–255, 2000. doi: 10.1243/0954406001522930.
[9] L. Battisti, R. Fedrizzi, and G. Cerri. Novel technology for gas turbine blade effusion cooling. In: Proceedings of the ASME Turbo Expo 2006: Power for Land, Sea, and Air. Volume 3: Heat Transfer, Parts A and B. pages 491–501. Barcelona, Spain. May 8–11, 2006. doi: 10.1115/GT2006-90516.
[10] F.J. Wang and J.S. Chiou. Integration of steam injection and inlet air cooling for a gas turbine generation system. Energy Conversion and Management, 45(1):15–26, 2004. doi: 10.1016/S0196-8904 (03)00125-0.
[11] Z. Wang. 1.23 Energy and air pollution. In I. Dincer (ed.): Comprehensive Energy Systems, pp. 909–949. Elsevier, 2018. doi: 10.1016/B978-0-12-809597-3.00127-9.
[12] Z. Khorshidi, N.H. Florin, M.T. Ho, and D.E. Wiley. Techno-economic evaluation of co-firing biomass gas with natural gas in existing NGCC plants with and without CO$_2$ capture. International Journal of Greenhouse Gas Control, 49:343–363, 2016. doi: 10.1016/j.ijggc.2016.03.007.
[13] K. Mohammadi, M. Saghafifar, and J.G. McGowan. Thermo-economic evaluation of modifications to a gas power plant with an air bottoming combined cycle. Energy Conversion and Management, 172:619–644, 2018. doi: 10.1016/j.enconman.2018.07.038.
[14] S. Mohtaram, J. Lin, W. Chen, and M.A. Nikbakht. Evaluating the effect of ammonia-water dilution pressure and its density on thermodynamic performance of combined cycles by the energy-exergy analysis approach. Mechanika, 23(2):18110, 2017. doi: 10.5755/j01.mech.23.2.18110.
[15] M. Maheshwari and O. Singh. Comparative evaluation of different combined cycle configurations having simple gas turbine, steam turbine and ammonia water turbine. Energy, 168:1217–1236, 2019. doi: 10.1016/j.energy.2018.12.008.
[16] A. Khaliq and S.C. Kaushik. Second-law based thermodynamic analysis of Brayton/Rankine combined power cycle with reheat. Applied Energy, 78(2):179–197, 2004. doi: 10.1016/j.apenergy.2003.08.002.
[17] M. Aliyu, A.B. AlQudaihi, S.A.M. Said, and M.A. Habib. Energy, exergy and parametric analysis of a combined cycle power plant. Thermal Science and Engineering Progress. 15:100450, 2020. doi: 10.1016/j.tsep.2019.100450.
[18] M.N. Khan, T.A. Alkanhal, J. Majdoubi, and I. Tlili. Performance enhancement of regenerative gas turbine: air bottoming combined cycle using bypass valve and heat exchanger—energy and exergy analysis. Journal of Thermal Analysis and Calorimetry. 144:821–834, 2021. doi: 10.1007/s10973-020-09550-w.
[19] F. Rueda Martínez, A. Rueda Martínez, A. Toleda Velazquez, P. Quinto Diez, G. Tolentino Eslava, and J. Abugaber Francis. Evaluation of the gas turbine inlet temperature with relation to the excess air. Energy and Power Engineering, 3(4):517–524, 2011. doi: 10.4236/epe.2011.34063.
[20] A.K. Mohapatra and R. Sanjay. Exergetic evaluation of gas-turbine based combined cycle system with vapor absorption inlet cooling. Applied Thermal Engineering, 136:431–443, 2018. doi: 10.1016/j.applthermaleng.2018.03.023.
[21] A.A. Alsairafi. Effects of ambient conditions on the thermodynamic performance of hybrid nuclear-combined cycle power plant. International Journal of Energy Research, 37(3):211–227, 2013. doi: 10.1002/er.1901.
[22] A.K. Tiwari, M.M. Hasan, and M. Islam. Effect of ambient temperature on the performance of a combined cycle power plant. Transactions of the Canadian Society for Mechanical Engineering, 37(4):1177–1188, 2013. doi: 10.1139/tcsme-2013-0099.
[23] T.K. Ibrahim, M.M. Rahman, and A.N. Abdalla. Gas turbine configuration for improving the performance of combined cycle power plant. Procedia Engineering, 15:4216–4223, 2011. doi: 10.1016/j.proeng.2011.08.791.
[24] M.N. Khan and I. Tlili. New advancement of high performance for a combined cycle power plant: Thermodynamic analysis. Case Studies in Thermal Engineering. 12:166–175, 2018. doi: 10.1016/j.csite.2018.04.001.
[25] S.Y. Ebaid and Q.Z. Al-hamdan. Thermodynamic analysis of different configurations of combined cycle power plants. Mechanical Engineering Research. 5(2):89–113, 2015. doi: 10.5539/mer.v5n2p89.
[26] R. Teflissi and A. Ataei. Effect of temperature and gas flow on the efficiency of an air bottoming cycle. Journal of Renewable and Sustainable Energy, 5(2):021409, 2013. doi: 10.1063/1.4798486.
[27] A.A. Bazmi, G. Zahedi, and H. Hashim. Design of decentralized biopower generation and distribution system for developing countries. Journal of Cleaner Production, 86:209–220, 2015. doi: 10.1016/j.jclepro.2014.08.084.
[28] A.I. Chatzimouratidis and P.A. Pilavachi. Decision support systems for power plants impact on the living standard. Energy Conversion and Management, 64:182–198, 2012. doi: 10.1016/j.enconman.2012.05.006.
[29] T.K. Ibrahim, F. Basrawi, O.I. Awad, A.N. Abdullah, G. Najafi, R. Mamat, and F.Y. Hagos. Thermal performance of gas turbine power plant based on exergy analysis. Applied Thermal Engineering, 115:977–985, 2017. doi: 10.1016/j.applthermaleng.2017.01.032.
[30] M. Ghazikhani, I. Khazaee, and E. Abdekhodaie. Exergy analysis of gas turbine with air bottoming cycle. Energy, 72:599–607, 2014. doi: 10.1016/j.energy.2014.05.085.
[31] M.N. Khan, I. Tlili, and W.A. Khan. thermodynamic optimization of new combined gas/steam power cycles with HRSG and heat exchanger. Arabian Journal for Science and Engineering, 42:4547–4558, 2017. doi: 10.1007/s13369-017-2549-4.
[32] N. Abdelhafidi, İ.H. Yılmaz, and N.E.I. Bachari. An innovative dynamic model for an integrated solar combined cycle power plant under off-design conditions. Energy Conversion and Management, 220:113066, 2020. doi: 10.1016/j.enconman.2020.113066.
[33] T.K. Ibrahim, M.K. Mohammed, O.I. Awad, M.M. Rahman, G. Najafi, F. Basrawi, A.N. Abd Alla, and R. Mamat. The optimum performance of the combined cycle power plant: A comprehensive review. Renewable and Sustainable Energy Reviews, 79:459–474, 2017. doi: 10.1016/j.rser.2017.05.060.
[34] M.N. Khan. Energy and exergy analyses of regenerative gas turbine air-bottoming combined cycle: optimum performance. Arabian Journal for Science and Engineering, 45:5895–5905, 2020. doi: 10.1007/s13369-020-04600-9.
[35] A.M. Alklaibi, M.N. Khan, and W.A. Khan. Thermodynamic analysis of gas turbine with air bottoming cycle. Energy, 107:603–611, 2016. doi: 10.1016/j.energy.2016.04.055.
[36] M. Ghazikhani, M. Passandideh-Fard, and M. Mousavi. Two new high-performance cycles for gas turbine with air bottoming. Energy, 36(1):294–304, 2011. doi: 10.1016/j.energy.2010.10.040.
[37] M.N. Khan and I. Tlili. Innovative thermodynamic parametric investigation of gas and steam bottoming cycles with heat exchanger and heat recovery steam generator: Energy and exergy analysis. Energy Reports, 4:497–506, 2018. doi: 10.1016/j.egyr.2018.07.007.
[38] M.N. Khan and I. Tlili. Performance enhancement of a combined cycle using heat exchanger bypass control: A thermodynamic investigation. Journal of Cleaner Production, 192:443–452, 2018. doi: 10.1016/j.jclepro.2018.04.272.
[39] M. Korobitsyn. Industrial applications of the air bottoming cycle. Energy Conversion and Management, 43(9-12):1311–1322, 2002. doi: 10.1016/S0196-8904(02)00017-1.
[40] T.K. Ibrahim and M.M. Rahman. optimum performance improvements of the combined cycle based on an intercooler–reheated gas turbine. Journal of Energy Resources Technology, 137(6):061601, 2015. doi: 10.1115/1.4030447.
Go to article

Authors and Affiliations

Stanisław Konopka
Marian Janusz Łopatka
Mirosław Przybysz

Download PDF Download RIS Download Bibtex

Abstract

The paper concerns development of original method of optimal control at energy performance index and its application to dynamic processes surveillance of some mechatronic systems. The latter concerns chatter vibration surveillance during highspeed slender milling of rigid details, as well as motion control of two-wheeled mobile platform. Results of on-line computer simulations and real performance on the target objects reflect a great efficiency of the processes surveillance.

Go to article

Authors and Affiliations

Krzysztof Kaliński
Marek Galewski
Michał Mazur
Download PDF Download RIS Download Bibtex

Abstract

In the article problems related to human labor and factors affecting the increasing use of

industrial robots are discussed. Since human factors affect the production processes stability,

robots are preferred to apply. The application of robots is characterized by higher performance

and reliability comparing to human labor. The problem is how to determine the real

difference in work efficiency between human operator and robot. The aim of the study is to

develop a method that allows clearly definition of productivity growth associated with the

replacement of human labor by industrial robots. Another aim of the paper is how to model

robotized and manual operated workstation in a computer simulation software. Analysis of

the productivity and reliability of the hydraulic press workstation operated by the human

operator or an industrial robot, are presented. Simulation models have been developed taking

into account the availability and reliability of the machine, operator and robot. We apply

OEE (Overall Equipment Effectiveness) indicator to present how availability and reliability

parameters influence over performance of the workstation, in the longer time. Simplified

financial analysis is presented considering different labor costs in EU countries.

Go to article

Authors and Affiliations

Grzegorz Gołda
Adrian Kampa
Iwona Paprocka
Download PDF Download RIS Download Bibtex

Abstract

In recent years, a significant development of technologies related to the control and communication of mobile robots, including Unmanned Aerial Vehicles, has been noticeable. Developing these technologies requires having the necessary hardware and software to enable prototyping and simulation of control algorithms in laboratory conditions. The article presents the Laboratory of Intelligent Mobile Robots equipped with the latest solutions. The laboratory equipment consists of four quadcopter drones (QDrone) and two wheeled robots (QBot), equipped with rich sensor sets, a ground control station with Matlab-Simulink software, OptiTRACK object tracking system, and the necessary infrastructure for communication and security. The paper presents the results of measurements from sensors of robots monitoring various quantities during work. The measurements concerned, among others, the quantities of robots registered by IMU sensors of the tested robots (i.e., accelerometers, magnetometers, gyroscopes and others).

Go to article

Authors and Affiliations

Sebastian Dudzik
Piotr Szeląg
Janusz Baran
Download PDF Download RIS Download Bibtex

Abstract

The paper introduces the distributed framework for determining the shortest path of robots in the logistic applications, i.e. the warehouse with a swarm of robots cooperating in the Real- Time mode. The proposed solution uses the optimization routine to avoid the downtime and collisions between robots. The presented approach uses the reference model based on Dijkstra, Floyd- Warshall and Bellman-Ford algorithms, which search the path in the weighted undirected graph. Their application in the onboard robot’s computer requires the analysis of the time efficiency. Results of comparative simulations for the implemented algorithms are presented. For their evaluation the data sets reflecting actual processes were used. Outcomes of experiments have shown that the tested algorithms are applicable for the logistic purposes, however their ability to operate in the Real-Time requires the detailed analysis.
Go to article

Bibliography

[1] Mobile Robot Platforms, Shuttle Automated Storage and Retrieval Systems, Industrial Robotic Manipulators, and Gantry Robots: Global Market Analysis and Forecasts, Informa PLC, https://www.tractica.com/research/warehousing-and-logistics-robots/
[2] J. Miklinska, “Trends in the logistic market and warehouses for logistics service providers-experiences from Poland,” Economic and Social Development: Book of Proceedings, 2020, 193-202.
[3] M. Khamphroo, N. Kwankeo, K. Kaemarungsi, K. Fukawa, “MicroPython-based educational mobile robot for computer coding learning,” 2017 8th International Conference of Information and Communication Technology for Embedded Systems (IC-ICTES), Chonburi, 2017.
[4] K. Dokic, B. Radisic, M. Cobović, “MicroPython or Arduino C for ESP32 - Efficiency for Neural Network Edge Devices,” Springier, 2020, pp.33-34, https://doi.org/10.1007/978-3-030-43364-2_4.
[5] N. Deo, “Graph theory with applications to engineering and computer science,” Englewood Cliffs, NJ: Prentice-Hall, 1974.
[6] G. Laporte, ”The traveling salesman problem: An overview of exact and approximate algorithms,” EJOR, 1992, Vol.59, pp. 231-247.
[7] Lu Feng, “Shortest path algorithm: Taxonomy and Advance in Research”, Acta Geodaetica et Cartographica Sinica, vol. 30, no. 3, pp. 269-275, 2001.
[8] D. Dobrilovic, V. Jevtic, I. Beker, Z. Stojanov, “Shortest-path based Model for Warehouse Inner Transportation Optimization” in 7th IEEE International Symposium on Applied Computational Intelligence and Informatics (SACI)
[9] Y. Liu, T. M. Vitolo, “Graph Data Warehouse: Steps to Integrating Graph Databases Into the Traditional Conceptual Structure of a Data Warehouse,” 2013 IEEE International Congress on Big Data, 2013, pp. 433-434, https://doi.org/10.1109/BigData.Congress.2013.72
[10] H.Y. Jang, J.U. Sun, “A Graph Optimization Algorithm for Warehouses with Middle Cross Aisles,” Applied Mechanics and Materials, 2011, 145. 354-358, https://doi.org/10.4028/www.scientific.net/AMM.145.354.
[11] B.D. Acharya, M.K. Gill, “On the Index of Gracefulness of a Graph and the Gracefulness of Two-Dimensional Square Lattice Graphs, ” Indian J. Math., 1981, 23, 81-94.
[12] T.H. Cormen, C.E. Leiserson, and R.L. Rivest, “Introduction to algorithms,” MIT Press, 1994.
[13] Warehouse material flows and flow charts, https://www.mecalux.co.uk/warehouse-manual/warehouse-design/warehouse-material-flowchart
[14] A. Niemczyk et al., “Organizacja i monitorowanie procesów magazynowych,” Instytut Logistyki i Magazynowania, 2014.
[15] A. Szymonik, D. Chudzik, “Logistyka nowoczesnej gospodarki magazynowej,” Difin, 2018.
[16] B. Mbakop A. Kevine, “The Effectiveness of ABC Cross Analysis on Products Allocation in the Warehouse,” 2018, January – February, Vol. 5, Issue 1, pp: 11-30.
Go to article

Authors and Affiliations

Tomasz Markowski
1
Piotr Bilski
2
ORCID: ORCID

  1. Lukasiewicz – Institute of Logistics and Warehousing, Poland
  2. Warsaw University of Technology, Poland
Download PDF Download RIS Download Bibtex

Abstract

The research of robotics needs a good and accurate control. The proposed concept is touch less and non-verbal communication with the use of leap motion controller. The concept has two major parts: first part is “device perceive hand finger moments and send signal”, second part is robotic hand interfaced with PIC microcontroller which receives signal and controls robotic hand. The paper aims to link virtual environment with real time environment. The virtual environment is consisting of leap motion controller and laptop, real time environment is consisting of microcontroller and robotic arm. In real time environment parodist is converts into virtual environment.
Go to article

Bibliography

[1] A. Saudabayev, H.A. Varol, “Sensors for robotic hands: A survey of state of the art”. IEEE Access. 2015;3: 1765-82.
[2] J. Kofman, X. Wu, T.J. Luu, S. Verma,. “Teleoperation of a robot manipulator using a vision-based human-robot interface”, IEEE Transactions on Industrial Electronics. 2005 Oct;52(5): 1206-19.
[3] N.S. Chu, C.L. Tai, “Real-time painting with an expressive virtual Chinese brush”, IEEE Computer Graphics and Applications. 2004 Sep;24(5): 76-85.
[4] D. Kruse, J.T. Wen, R.J. Radke, “A sensor-based dual-arm tele-robotic system”, IEEE Transactions on Automation Science and Engineering. 2015 Jan;12(1): 4-18.
[5] H. Jiang, B.S. Duerstock, J.P. Wachs. “A machine vision-based gestural interface for people with upper extremity physical impairments”, IEEE Transactions on Systems, Man, and Cybernetics: Systems. 2013 Aug 8;44(5): 630-41
[6] .A.S. Elons, M. Ahmed, H. Shedid, M.F. Tolba, “Arabic sign language recognition using leap motion sensor”, In 2014 9th International Conference on Computer Engineering & Systems (ICCES) 2014 Dec 22 (pp. 368-373). IEEE.
[7] S. Hirche, M. Buss, “Human-oriented control for haptic teleoperation”, Proceedings of the IEEE. 2012 Mar;100(3): 623-47.
[8] K.M. Vamsikrishna, D.P. Dogra, M.S. Desarka, “Computer-vision-assisted palm rehabilitation with supervised learning”, IEEE Transactions on Biomedical Engineering. 2016 May;63(5): 991-1001.
[9] G. Ponraj, H. Ren, “Sensor Fusion of Leap Motion Controller and Flex Sensors Using Kalman Filter for Human Finger Tracking”, IEEE Sensors Journal. 2018 Mar 1;18(5): 2042-9.
[10] K. Aditya, P. Chacko, D. Kumari, S. Bilgaiyan, “Recent Trends in HCI: A survey on Data Glove, LEAP Motion and Microsoft Kinect”, In 2018 IEEE International Conference on System, Computation, Automation and Networking (ICSCA) 2018 Jul 6 (pp. 1-5). IEEE.
[11] S. Mitra, T. Acharya, “Gesture recognition: A survey”. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews). 2007 May;37(3): 311-24.
[12] S. Waldherr, R. Romero, S.A. Thrun, A gesture based interface for h”uman-robot interaction. Autonomous Robots”, 2000 Sep 1;9(2): 151-73.
[13] G. Marin, F. Dominio, P. Zanuttigh. Hand gesture recognition with leap motion and kinect devices. In2014 IEEE International Conference on Image Processing (ICIP) 2014 Oct 27 (pp. 1565-1569). IEEE.
[14] A. Sarkar, K.A. Patel, R.G. Ram, G.K. Capoor, “ Gesture control of drone using a motion controller”. In2016 International Conference on Industrial Informatics and Computer Systems (CIICS) 2016 Mar 13 (pp. 1-5). IEEE.
[15] R .Satheeshkumar and R. Arivoli , ” Real Time Virtual Human Hand For Robotics.” Journal of Computational Information Systems 15.1 (2019): 82-89.
[16] R. Satheeshkumar and R. Arivoli , "Real Time Virtual Human Hand for Diagnostic Robot (DiagBot) Arm Using IOT“ Journal of Advanced Research in Dynamical and Control System, Vol. 12, 01-Special Issue, 2020.
[17] R. Satheeshkumar and R. Arivoli , "Real Time Robotic Arm Control Using Human Hand Gesture Measurement “ Journal of Advanced Research in Dynamical and Control System, Vol. 12, 04-Special Issue, 2020.
[18] R. Satheeshkumar and R. Arivoli, "IOT Integrated Virtual Hand for Robotic Arm Using Leap Motion Controller" The Journal of Research on the Lepidoptera, Vol. 12, 04-Special Issue, 2020.
Go to article

Authors and Affiliations

R. Satheeshkumar
1
R. Arivoli
1

  1. Annamalai University, India
Download PDF Download RIS Download Bibtex

Abstract

The main focus of the article is an advanced actuator, designed and optimized for small dynamic legged robots. The presented actuator prototype is unique, as the market lacks similar solutions when dimensions and weight of the module are considered. The actuator has a modular structure, which makes it easy to replace in case of malfunction and simplifies the overall structure of the robot. High torque bandwidth, achieved by the module, is crucial to agile locomotion, obstacle avoidance and push recovery of the quadrupedal robot. The Authors have conducted a solution review aimed at similar small-size modules. It was found that there are no advanced actuators suitable for sub 5 kg quadruped robots. The unique design presented in this paper is described in all three aspects: mechanical, electrical and software. The mechanical section depicts the solutions implemented in the module, especially the low gear ratio gearbox. The custom brushless motor driver is presented in the electrical section, together with detailed diagrams and hardware descriptions. The last section depicts solutions implemented in the software, the main motor control algorithm and auxiliary modules such as automatic motor parameter identification and encoder misalignment correction. Tests performed in the last part of this paper validated the design goals established for the actuator. The results confirmed the high torque capability and exhibited the motor saturation region. Continuous and peak torque were measured based on the thermal characteristics of the module. Moreover, the automatic motor parameter identification process carried out by the controller itself was validated by manual measurements.
Go to article

Authors and Affiliations

Piotr Wasilewski
1
Rafał Gradzki
2
ORCID: ORCID

  1. Bialystok University of Technology, Faculty of Electrical Engineering, Wiejska 45D, 15-351 Bialystok, Poland
  2. Bialystok University of Technology, Faculty of Mechanical Engineering, Department of Robotics and Mechatronics, Wiejska 45C, 15-351, Bialystok, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of experimental verification on using a zero-sum differential game and H control in the problems of tracking and stabilizing motion of a wheeled mobile robot (WMR). It is a new approach to the synthesis of input-output systems based on the theory of dissipative systems in the sense of the possibility of their practical application. This paper expands upon the problem of optimal control of a nonlinear, nonholonomic wheeled mobile robot by including the reduced impact of changing operating condtions and possible disturbances of the robot’s complex motion. The proposed approach is based on the H∞ control theory and the control is generated by the neural approximation solution to the Hamilton-Jacobi-Isaacs equation. Our verification experiments confirm that the H∞ condition is met for reduced impact of disturbances in the task of tracking and stabilizing the robot motion in the form of changing operating conditions and other disturbances, which made it possible to achieve high accuracy of motion.
Go to article

Bibliography

  1.  B. Kovács, G. Szayer, F. Tajti, M. Burdelis, and P. Korondi, “A novel potential field method for path planning of mobile robots by adapting animal motion attributes,” Rob. Auton. Syst., vol. 82, pp. 24–34, 2016, doi: 10.1016/j.robot.2016.04.007.
  2.  A. Pandey, “Mobile Robot Navigation and Obstacle Avoidance Techniques: A Review,” Int. Robotics Autom. J., vol. 2, no. 3, pp. 96–105, 2017, doi: 10.15406/iratj.2017.02.00023.
  3.  R.C. Arkin, Behavior-based robotics. The MIT Press, 1998.
  4.  M. Szuster and Z. Hendzel, Intelligent Optimal Adaptive Control for Mechatronic Systems. Springer, 2018.
  5.  M.J. Giergiel, Z. Hendzel, and W. Żylski, Modeling and control of mobile wheeled robots. PWN, 2013, [in Polish].
  6.  P. Bozek, Y.L. Karavaev, A.A. Ardentov, and K.S. Yefremov, “Neural network control of a wheeled mobile robot based on optimal tra- jectories,” Int. J. Adv. Rob. Syst., vol. 17, no. 2, pp. 1–10, 2020, doi: 10.1177/1729881420916077.
  7.  P. Gierlak and Z. Hendzel, Control of wheeled and manipulation robots. Publishing House Rzeszow Univ. of Technology, 2011, [in Polish].
  8.  B. Kiumarsi, K.G. Vamvoudakis, H. Modares, and F.L. Lewis, “Optimal and Autonomous Control Using Reinforcement Learning: A Survey,” IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 6, pp. 2042–2062, 2018.
  9.  F.L. Lewis, D. Vrabie, and V.L. Syrmos, Optimal control. John Wiley & Sons, 2012.
  10.  K.G. Vamvoudakis and F.L. Lewis, “Online actor-critic algorithm to solve the continuous-time infinite horizon optimal control problem,” Automatica, vol. 46, no. 5, pp. 878–888, 2010.
  11.  F.-Y.Wang, H. Zhang, and D. Liu, “Adaptive Dynamic Programming: An Introduction,” IEEE Comput. Intell. Mag., vol. 4, no.  May, pp. 39–47, 2009.
  12.  A.G. Barto, W. Powell, J. Si, and D.C. Wunsch, Handbook of learning and approximate dynamic programming. Wiley-IEEE Press, 2004.
  13.  D. Liu, Q. Wei, D. Wang, X. Yang, and H. Li, Adaptive Dynamic Programming with Applications in Optimal Control. Springer, Advances in Industrial Control, 2017.
  14.  A.J. van der Schaft, L2-Gain and Passivity Techniques in Nonlinear Control. Springer International Publishing, 2017.
  15.  B. Brogliato, R. Lozano, B. Maschke, and O. Egeland, Dissipative Systems Analysis and Control. Springer-Verlag London, 2007.
  16.  A.W. Starr and Y.C. Ho, “Nonzero-sum differential games,” J. Optim. Theory Appl., vol. 3, no. 3, pp. 184–206, 1969.
  17.  M. Abu-Khalaf, J. Huang, and F.L. Lewis, Nonlinear H2 Hinf Constrained Feedbacka Control. Springer-Verlag London, 2006.
  18.  D. Liu, H. Li, and D. Wang, “Neural-network-based zero-sum game for discrete-time nonlinear systems via iterative adaptive dynamic programming algorithm,” Neurocomputing, vol. 110, pp.  92–100, 2013.
  19.  C. Qin, H. Zhang, Y. Wang, and Y. Luo, “Neural network-based online Hinf control for discrete-time affine nonlinear system using adaptive dynamic programming,” Neurocomputing, vol. 198, pp.  91–99, 2016.
  20.  D. Liu, H. Li, and D. Wang, “Hinf control of unknown discretetime nonlinear systems with control constraints using adaptive dynamic programming,” in The 2012 International Joint Conference on Neural Networks (IJCNN). IEEE, 2012, pp. 1–6.
  21.  Z. Hendzel and P. Penar, “Zero-Sum Differential Game in Wheeled Mobile Robot Control,” Int. Conf. Mechatron., vol. 934, pp. 151–161, 2017.
  22.  Z. Hendzel, “Optimality in Control for Wheeled Robot,” Adv Intell. Syst. Comput.: Autom. 2018, vol. 743, pp. 431–440, 2018.
  23.  Y. Fu and T. Chai, “Online solution of two-player zero-sum games for continuous-time nonlinear systems with completely unknown dynamics,” IEEE Trans. Neural Netw. Learn. Syst., vol. 27, no. 12, pp. 2577–2587, 2015.
  24.  K.G. Vamvoudakis and F.L. Lewis, “Online solution of nonlinear two-player zero-sum games using synchronous policy iteration,” Int. Robust. Nonlinear Control, vol. 22, pp. 1460–1483, 2012.
  25.  S. Yasini, A. Karimpour, M.-B. Naghibi Sistani, and H. Modares, “Online concurrent reinforcement learning algorithm to solve two-player zero-sum games for partially unknown nonlinear continuous-time systems,” Int. J. Adapt Control Signal Process., vol. 29, no. 4, pp. 473– 493, 2015.
  26.  B. Luo, H.-N. Wu, and T. Huang, “Off-policy reinforcement learning for Hinf control design,” IEEE Trans. Cybern., vol. 45, no. 1, pp. 65–76, 2014.
  27.  H.-N. Wu and B. Luo, “Neural Network Based Online Simultaneous Policy Update Algorithm for Solving the HJI Equation in Nonlinear Hinf Control,” IEEE Trans. Neural Netw. Learn. Syst., vol.  23, no. 12, pp. 1884–1895, 2012.
  28.  Y. Zhu, D. Zhao, and X. Li, “Iterative adaptive dynamic programming for solving unknown nonlinear zero-sum game based on online data,” IEEE Trans. Neural Netw. Learn. Syst., vol. 28, no. 3, pp. 714–725, 2016.
  29.  J. Zhao, M. Gan, and C. Zhang, “Event-triggered Hinf optimal control for continuous-time nonlinear systems using neurodynamic pro- gramming,” Neurocomputing, vol. 360, pp. 14–24, 2019.
  30.  B. Dong, T. An, F. Zhou, S. Wang, Y. Jiang, K. Liu, F. Liu, H. Lu, and Y. Li, “Decentralized Robust Optimal Control for Modular Robot Manipulators Based on Zero-Sum Game with ADP,” in International Symposium on Neural Networks. Springer, 2019, pp. 3–14.
  31.  H. Modares, F.L. Lewis, and Z.-P. Jiang, “Hinf Tracking Control of Completely Unknown Continuous-Time Systems via Off-Policy Reinforcement Learning,” IEEE Trans. Neural Netw. Learn. Syst., vol. 26, no. 10, pp. 2550–2562, 2015.
  32.  J.C. Willems, “Dissipative Dynamical Systems. Part I: General Theory,” Arch. Ration. Mech. Anal., vol. 45, pp.  321–351, 1972.
  33.  D.J. Hill and P.J. Moylan, “Dissipative Dynamical Systems: Basic Input-Output and State Properties,” J. Franklin Inst., vol. 305, no.  5, pp. 327–357, 1980.
  34.  A.J. van der Schaft, “L2-gain Analysis of Nonlinear Systems and Nonlinear State Feedback Hinf Control,” IEEE Trans. Autom. Control, vol. 37, no. 6, pp. 770–784, 1992.
  35.  S. Boyd, L.E. Ghaoui, E. Feron, and V. Balakrishnam, Linear Matrix Inequalities in System and Control Theory. SIAM studies in applied mathematics: 15, 1994.
  36.  S. Yasini, M.B.N. Sistani, and A. Karimpour, “Approximate dynamic programming for two-player zero-sum game related to Hinf control of unknown nonlinear continuous-time systems,” Int. J. Control Autom. Syst., vol. 13, no. 1, pp. 99–109, 2014.
  37.  W. Zylski, Kinematics and dynamics of mobile wheeled robots. Publishing House Rzeszow Univ. of Technology, 1996, [in Polish].
  38.  J. Giergiel and W. Żylski, “Description of motion of a mobile robot by Maggie’s equations,” J. Theor. Appl. Mech., vol. 43, no. 3, pp. 511–521, 2005.
  39.  J. Garca De Jaln, A. Callejo, and A.F. Hidalgo, “Efficient solution of Maggi’s equations,” J. Comput. Nonlinear Dyn., vol. 7, no. 2, 2012, doi: 10.1115/1.4005238.
  40.  A. Kurdila, J.G. Papastavridis, and M.P. Kamat, “Role of Maggi’s equations in computational methods for constrained multibody systems,” J. Guidance Control Dyn., vol. 13, no. 1, pp. 113–120, 1990, doi: 10.2514/3.20524.
  41.  DS1103, Hardware Installation and Configuration. dSpace, 2009.
  42.  ActiveMedia, Pioneer 2DX Operation Manual Peterborough, 1999.
Go to article

Authors and Affiliations

Zenon Hendzel
1
ORCID: ORCID
Paweł Penar
1

  1. Department of Applied Mechanics and Robotics, Faculty of Mechanical Engineering and Aeronautics, Rzeszów University of Technology, ul. Powstańców Warszawy 12, 35-959 Rzeszów, Poland

This page uses 'cookies'. Learn more