Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 113
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The Author discusses Anna Idzikowska-Czubaj 's study Cultural and Historical Significance of Rockand Roll in Poland". Rock and roll had immense importance in the contemporary history of Poland. It constituted one of the few fields of relatively free expression of the youth under communist mass culture. On the other hand it is true that communists tried to use it to canalize a potential revolt of young people.
Go to article

Authors and Affiliations

Marcin Kula
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

Hydraulic fracturing of rocks boosts the production rate by increasing the fracture-face surface area through the use of a pressurized liquid. Complex stress distribution and magnitude are the main factors that hinder the use of information gathered from in situ hydraulic fracturing in other locations. Laboratory tests are a good method for precisely determining the characteristics of these processes. One of the most important parameters is breakdown pressure, defined as the wellbore pressure necessary to induce a hydraulic fracture. Therefore, the main purpose of this investigation is to verify fracture resistance of rock samples fractured with the assistance of the most popular industry fluids. The experiments were carried out using a stand designed specifically for laboratory hydraulic fracturing. Repeatable results with a relative error within the range of 6-11% prove that the experimental methodology was correct. Moreover, the obtained results show that fracturing pressure depends significantly on fluid type. In the case of a water test, the fracturing pressure was 7.1±0.4 MPa. A similar result was achieved for slickwater, 7.5±0.7 MPa; however, a much lower value (4.7±0.5 MPa) was registered in the case of carbon dioxide.

Go to article

Authors and Affiliations

S. Stanisławek
P. Kędzierski
D. Miedzińska
Download PDF Download RIS Download Bibtex

Abstract

This paper is presents the research and analysis of rock climbing routes in Slovakia. It is concerned with a specific set of proper names which are known and used among rock climbers. In the Slovak onomastics J. Bauko has predominantly researched such proper names. Rock climbing has its own rules, morals, and ethics. The aim of the paper is to analyse proper names of rock climbing routes and to analysed the onymic processes used in the formation of these names. Proper names of rock climbing routes represent a specific set of names which reflect culture, language, and the social situation. In the paper, we present an overview of the names of rock climbing routes in Slovakia and a division of the names according to the type of motivation.
Go to article

Authors and Affiliations

Jaromir Krško
Shirley Lazarová
Download PDF Download RIS Download Bibtex

Abstract

 Widespread opinion holds that calcareous rocks have limited suitability for use in the production
 
 of aggregates and stone products having adequate frost resistance. However, some of the rocks, in
 
 particular those from earlier geological periods, provide a promising alternative to silicate rocks.
 
 The paper presents results of the analysis of Devonian carbonate rock originating from two selected
 
 mines in the Swietokrzyskie region. The examined mines extract limestone from two different
 
 deposits of the same age. The rock samples are collected from beds lying at different depths, distinct
 
 in texture and color in macroscopic examination. It was found that despite the changes in bulk density,
 
 porosity and absorption, all the examined samples were frost resistant.
 
 Using the Differential Analysis of Volumetric Strain method, the content of ice formed in the pore
 
 spaces was determined. In addition, the ratio of the content of water capable of freezing to the total
 
 pore volume, and the total amount of water absorbed due to capillary action in rock samples soaked
 
 in water, were analyzed. In all cases, it was revealed that the destructive action of freezing water was
 
 weakened due to a relatively low content of water capable of freezing and a substantial volume of
 
 pores that are not filled with water in capillary absorption.
 
 It is extremely important to be able to classify the available rock material. The generally adopted
 
 methods, including absorptivity tests, do not allow for precise categorization. In the investigations,

the authors focused on the analysis of the basic factors that are decisive for rock durability, including bulk density, pore filling level and volume absorption. The authors do not correspond compressive

strength and resistance to abrasion as this will be the subject of further research.

 
Go to article

Authors and Affiliations

Karol Skowera
Zbigniew Rusin
Download PDF Download RIS Download Bibtex

Abstract

The authors studied the fracture mechanical properties under half-symmetric loading in this paper. The stress distribution around the crack tip and the stress intensity factor of three kinds of notched specimens under half symmetric loading were compared. The maximum tensile stress σmax of double notch specimens was much greater than that of single notch specimens and the maximum shear stress τmax was almost equal, which means that the single notch specimens were more prone to Mode II fractures. The intensity factors KII of central notch specimens were very small compared with other specimens and they induced Mode I fractures. For both double notch and single notch specimens, KII was kept at a constant level and did not change with the change of a/h, and KII was much larger than KI. KII has the potential to reach its fracture toughness KIIC before KI and Mode II fractures occurred. Rock-like materials were introduced to produce single notch specimens. Test results show that the crack had been initiated at the crack tip and propagated along the original notch face, and a Mode II fracture occurred. There was no relationship between the peak load and the original notch length. The average value of KIIC was about 0.602 MPa×m1/2, and KIIC was about 3.8 times KIC. The half symmetric loading test of single notch specimens was one of the most effective methods to obtain a true Mode II fracture and determine Mode fracture toughness.

Go to article

Authors and Affiliations

Zhi Wang
Jiajia Zhou
Long Li
Download PDF Download RIS Download Bibtex

Abstract

The evaluation accuracies of rock mass structures based on the ratings of the Rock Quality Designation (RQD) and discontinuity spacing (S) in the Rock Mass Rating (RMR) system are very limited due to the inherent restrictions of RQD and S. This study presents an improvement that replaces these two parameters with the modified blockiness index (Bz) in the RMR system. Before proceeding with this replacement, it is necessary for theoretical model building to make an assumption that the discontinuity network contains three sets of mutually orthogonal disc-shaped discontinuities with the same diameter and spacing of discontinuities. Then, a total of 35 types of theoretical DFN (Discrete Fracture Network) models possessing the different structures were built based on the International Society for Rock Mechanics (ISRM) discontinuity classification (ISRM, 1978). In addition, the RQD values of each model were measured by setting the scanlines in the models, and the Bz values were computed following the modified blockiness evaluation method. Correlations between the three indices (i.e., Bz, RQD and S) were explored, and the reliability of the substitution was subsequently verified. Finally, RMR systems based on the proposed method and the standard approach were applied to real cases, and comparisons between the two methods were performed. This study reveals that RQD is well correlated with S but is difficult to relate to the discontinuity diameter (D), and Bz has a good correlation with RQD/S. Additionally, the ratings of RQD and S are always far from the actual rock mass structure, and the Bz ratings are found to give better characterizations of rock mass structures. This substitution in the RMR system was found to be acceptable and practical.
Go to article

Authors and Affiliations

Qingfa Chen
Tingchang Yin
Wenjing Niu
Download PDF Download RIS Download Bibtex

Abstract

What is patriotism as opposed to nationalism? And which of these is what sometimes surfaces in contemporary rock music?

Go to article

Authors and Affiliations

Michał Maurycy Mazurkiewicz
Download PDF Download RIS Download Bibtex

Abstract

Earth is filled with a myriad of minerals and rocks that charm us with their beauty and diversity. They usually take the form of solids or mineral components dissolved in water.
Go to article

Authors and Affiliations

Agnieszka Gałuszka
Zdzisław M. Migaszewski
Download PDF Download RIS Download Bibtex

Abstract

Three types of rock glaciers (moraine, cirque and subslope ones) were distinguished in northwestern Wedel Jarlsberg Land. Subslope rock glaciers were found different from nival moraines. A development of subslope and fossil cirque rock glaciers was connected with the older Holocene whereas of active cirque and moraine rock glaciers with the Little Ice Age.

Go to article

Authors and Affiliations

Jan Dzierżek
Jerzy Nitychoruk
Download PDF Download RIS Download Bibtex

Abstract

Recalling the body of experience gathered in the collieries of the Upper Silesian Coal Basin, the

increased risk of seismicity and rockburst occurrences in confined conditions including the exploitation of

remnants were identified. This study investigates geomechanical aspects of longwall mining in the areas

affected by old excavations aimed at relaxation of a multi-bed deposits within a thick coal seam or a group

of seams. It is assumed that high-energy seismicity is another factor determining the rockburst hazard

alongside the state of stress. A case study is recalled, describing a colliery where mining-induced seismic

activity of a de-stressed coal seam remained at the level comparable to or higher than it was experienced

in the de-stressed seam operations. An analytical model was used to study the stress state and potential

loss of structural continuity of an undisturbed rock body surrounding the longwall panel being mined

beneath or over the abandoned workings. Recalling the developed model of the system involving nonlinear

functions demonstrating the existence of abandoned mine workings within the rock strata, computer

simulations were performed to evaluate the rockburst hazards along the face area. Discussions of results

are based on observations of immediate roof convergence and the vertical stress concentration factor at

the longwall face zone. Computational data of the modelled mining situations demonstrates that despite

using the de-stressing method of mining, the occurrence of events impacting on mine working beneath

and over abandoned workings cannot be precluded. Here the scale of rockburst hazards is determined by

local mining and geological conditions, such as the type and extent of abandoned workings, their age and

vertical distance between them and the coal seam currently mined.

Go to article

Authors and Affiliations

Zbigniew Burtan
Andrzej Zorychta
Dariusz Chlebowski
Download PDF Download RIS Download Bibtex

Abstract

An analysis of the impact of mining with caving on the surface shows that a type of rock mass strata seems to be one of the critical factors affecting the process. Correlating the values of mining-induced surface deformation with the rock mass structure and the state of its disturbance is of crucial importance. Therefore, if other mining conditions are left unaffected, then those factors exert the key influence on a course and distribution of subsidence and rock mass deformation. A proper description of rock mass type and properties also seems rational for a proper determination of prediction parameters, especially in the case of a multi-seam coal mining, and/or the exploitation carried out at considerable depths. A general outcome of the study discussed in this paper is the development of the methodology and model practices for determining the rock mass type and, as a result, for selecting the optimal values of parameters for predicting the values of surface subsidence in relation to particular geological and mining conditions. The study proves that the type of rock mass may be described by such factors as the influence of overburden strata, the influence of Carboniferous layers, the disturbance of rock mass and the depth of exploitation.
Go to article

Authors and Affiliations

Katarzyna Kryzia
Tadeusz Majcherczyk
Zbigniew Niedbalski
Download PDF Download RIS Download Bibtex

Abstract

Rock glaciers are lobate or tongue-shaped landforms which consist of rock debris and have either an ice core or an ice-cemented matrix. Characteristics such as the landscape setting, morphology, material and current geomorphological state are universally used to classify rock glaciers. In Antarctica, rock glaciers have only been surveyed on the Antarctic Peninsula, Ellsworth Mountains and in Victoria Land. This paper presents the first data on the identification and description of rock glaciers in the Jutulsessen nunataks, Dronning Maud Land, East Antarctica. The rock glaciers in the Jutulsessen exhibit a variety of morphologies and states. Our data suggests that the rock glaciers in Brugdedalen and Jutuldalen are active, while the features at Vassdalen and Grjotlia are considered inactive, and a feature at Grjotøyra is considered relict. The described rock glaciers do not fit into existing classification systems and appear to be different to alpine, Arctic and Andean rock glaciers. They further present examples that fit both the ‘glaciogenic’ and ‘permafrost’ development theories.
Go to article

Authors and Affiliations

Elizabeth M. Rudolph
K. Ian Meiklejohn
Christel D. Hansen
David W. Hedding
Werner Nel
Download PDF Download RIS Download Bibtex

Abstract

Glacially abraded basaltic rock surfaces found within a Little Ice Age (LIA) foreland of Skálafellsjökull (SE Iceland) were studied at eight sites of different age applying different weathering indices. They include surface micro−roughness parameters measured with the Handysurf E35−B electronic profilometer – a new tool in geomorphology, Schmidt hammer rebound (R−values) and weathering rind thickness. Values of these indices obtained from study sites exposed to subaerial weathering for more than ca. 80 years are significantly different than those from younger moraines closer to the glacier snout. Despite a wide scatter of readings within each study site, there is a significant correlation between the ages and the values of the indices. It is concluded that the micro−roughness parameters provided by the Handysurf E35−B profilometer, Schmidt hammer R−values and weathering rind thickness are robust indices of rock surface deterioration rate in short time−scales. There is mounting evidence that rock surface undergoes relatively rapid weathering during first decades since deglaciation.
Go to article

Authors and Affiliations

Maciej Dąbski
Download PDF Download RIS Download Bibtex

Abstract

In 2017, the Central Mining Institute (GIG), Jastrzębska Spółka Węglowa SA (JSW SA), the largest producer of coking coal in Europe, and JOY KOMATSU, the producer of mining machinery, signed a consortium. The project’s main goal was to reduce the costs of driving mine workings by reintroducing the rock bolt support. The works began in November 2019, and for the first time in the history of Polish coal mining, a Bolter Miner machine was used for the purpose. The paper presents the results of measuring the axial forces in rock bolts at the measurement base and their analysis with numerical modelling.
Go to article

Bibliography

[1] V. Artemyev, P. McInally, Improvements in Longwall Technology and Performance in Kuzbass Mines of Suek. Proceedings of the 18th Coal Operators’ Conference, Mining Engineering, University of Wollongong, 124-133 (2018).
[2] S . Banerjee, Performance evaluation of continuous miner based underground mine operation system: An OEE based approach. New Trends in Production Engineering 2, 1, 596-603 (2019). DOI: https://doi.org/10.2478/ntpe-2019-0065
[3] D . Bolstad, J. Hill, Bureau of Mines rock bolting research. Proceedings of the International Symposium on Rock Bolting, Abisko, Sweden, 313-320 (1983).
[4] F. Breinig, K. Opolony, Geplante Doppelnutzung einer Rechtankerstrecke in 1200 m Teufe im Flöz D2/C. Aachen International Mining Symposia, 5th International Symposium – Roofbolting in Mining, RWTH Aachen, 159-177 (2004).
[5] T . Bush, Streckenausbau mit eisernen Ankern. Zeitschrift für das Berg – Hütten – und Salinenwesen, Berlin, 7-9 (1919).
[6] I . Canbulat, A. Wilkinson, G. Prohaska, M. Mnisi, N. Singh, An investigation into the support systems in South African collieries. Safety in Mines Research Advisory Committee, Project No SI M 020205, CSIR Division of Mining Technology, Ground Consulting (Pty) Ltd (2005).
[7] C . Cao, PhD thesis, Bolt profile configuration and load transfer capacity optimisation. School of Civil, Mining and Environmental Engineering, University of Wollongong (2012).
[8] D .R. Dolinar, S.K. Bhatt, Trends in roof bolt application. Proceedings: new technology for coal mine roof support. C. Mark, D.R. Dolinar, R.J. Tuchman, T.M. Barczak, S.P. Signer, P.F. Wopat, (Eds.) Cincinnati, OH: U.S. Department of Health and Human Services, Public Health Service, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, DHHS (NIOSH) Publication No. 2000-151 (IC 9453), 43-51 (2000).
[9] R . Fletcher, Roof Bolting Equipment and Practices. Mng. Cong. J., Nov., 80-82 (1956).
[10] S .D. Flook, J.J. Leeming, Recent developments in longwall mining entry development and room and pillar systems. Gospodarka Surowcami Mineralnymi 24, 4/3, 11-23 (2008).
[11] Golder Associates UK Ltd, Initial Rockbolt Support Design. Rockbolting Trial, Budryk Colliery, Poland. Nottingham (2018).
[12] B. Hebblewhite, 25 Years of Ground Control Developments, Practices, and Issuses in Australia. 25th International Conference on Ground Control in Mining, Morgantown, WV, 111-117 (2006).
[13] H. Jalalifar, PhD thesis, A new approach in determining the load transfer mechanism in fully grouted bolts. School of Civil, Mining and Environmental Engineering, University of Wollongong (2006).
[14] H. Jurecka, Ankerausbau eine Schlüsseltechnologie für Hochleistungsstrebbetriebe in großen Teufen. Aachen International Mining Symposia, 4th International Symposium – Roofbolting in Mining, RWTH Aachen, 1-17 (2001).
[15] V. Kajzar, R. Kukutsch, P. Waclawik, P. Konicek, Coal pillar deformation monitoring using terrestrial laser scanner technology in room and pillar panel – A case study from the Ostrava-Karvina Coal Field. Rock Mechanics and Rock Engineering: From the Past to the Future – Ulusay et al. (Eds.), Taylor & Francis Group, London, 951-956 (2016).
[16] H. Kang, Support technologies for deep and complex roadways in underground coal mines: a review. Int. J. Coal Sci. Technol. 1 (3), 261-277 (2014). DOI: https://doi.org/10.1007/s40789-014-0043-0
[17] H. Kang, Sixty years development and prospects of rock bolting technology for underground coal mine roadways in China. Journal of China University of Mining & Technology 45 (6), 1071-1081 (2016).
[18] K . Kovári, The Control of Ground Response – Milestones up to the 1960s. Proc. of the AITES -ITA World Tunnel Congress, Italy, Milan, 93-119 (2001).
[19] A . Kumar, R. Singh, P. Waclawik, Numerical Modelling Based Investigation of Coal Pillar Stability for Room and Pillar Development at 900 m Depth of Cover. 37TH International Conference on Ground Control in Mining, 193-203 (2018).
[20] B. Langhanki, Planungskonzeption zur Doppelnutzung einer Rechtankerstrecke im Flöz D2/C in 1.200 m Teufe. Aachen International Mining Symposia, 4th International Symposium – Roofbolting in Mining, RWTH Aachen, 217-233 (2001).
[21] J. Luo, PhD thesis, A New Rock Bolt Design Criterion and Knowlwdge-based Expert System for Stratified Roof. Faculty of the Virginia Polytechnic Institute and State University, Blacksburg, Virginia (1999).
[22] T . Majcherczyk, A. Szaszenko, E. Sdżwiżkowa, Fundamentals of geomechanics. Wydawnictwo AGH, Kraków (2006).
[23] C .P. Mangelsdorf, Current Trends in Roof Truss Hardware. Proc. of 2nd Conference on Ground Control in Mining, edited by S.S. Peng, 108-112 (1982).
[24] C . Mark, Design of roof bolt systems. Proc.New Technology For Coal Mine Roof Support. U.S. Department of Health and Human Services, Pittsburgh, PA, 111-131 (2000).
[25] J. Modi, S. Bharti, R. Kant, Applicability of Continuous Miner in Room and Pillar Mining System: Higher Production and Productivity with Safety. International Conference on Deep Excavation, Energy Resource and Production (DEE P16), IIT Kharagpur, India (2017).
[26] A . Nierobisz, Rockbolting – history, present and future. Międzynarodowa Konferencja Szkoleniowa: Perspektywy stosowania obudowy kotwowej w polskich kopalniach węgla kamiennego, Jaworze, kwartalnik GIG Nr 2/1/2010, 184-203 (2010).
[27] A . Nierobisz, Development of Roof Bolting Use in Polish Coal Mines. Journal of Mining Science 47, No. 6, 751- 760 (2011).
[28] B. Neyman, R. Gocman, Guidelines for rockbolt support in workings. Biuletyn techniczno-informacyjny GIG nr 9 (1960).
[29] K. Opolony, H. Witthaus, A. Hucke, A. Studeny, Ergebnisse von numerischen Berechnungen und physikalischen Modellversuchen als Planungshilfe für eine Rechteckankerstrecke in Flöz D2/C. Aachen International Mining Symposia, 5th International Symposium – Roofbolting in Mining, RWTH Aachen, 539-554 (2004).
[30] S. Peng, Coal Mine Ground Control. (3rd ed.), Syd Peng Publisher, Morgantown (2008).
[31] K. Podgórski, W. Podgórski, Rockbolt support of underground workings. Wydawnictwo Śląsk. Katowice (1969).
[32] L. Rabcewicz, Bolted support for tunnels. Mine and Quarry- Engineering, April, 153-159 (1955).
[33] E.U. Reuther, A. Heime, Verbesserte Bemessung von Ankerausbau in Abbau- und Basisstrecken. Kommission der Europäischen Gemeinschaften, technische Forschung Kohle, Forschungsvertrag Nr. 7220-AB/120, Luxemburg (1990).
[34] A. Sahebi, J. Hossein, M. Ebrahimi, Stability analysis and optimum support design of a roadway in a faulted zone during longwall face retreat – case study: Tabas Coal Mine. N. Aziz (Eds.), 10th Underground Coal Operators’ Conference, University of Wollongong & the Australasian Institute of Mining and Metallurgy, 88-96 (2010).
[35] R. Schach, K. Garshol, A.M. Heltzen, Rock bolting: a practical handbook. Pergamon Press (1979).
[36] A.J.S. Spearing, G. Bylapudi, K. Mondal, A.W. Bhagwat, Rock anchor corrosion potential determination in US underground coal mines. The Southern African Institute of Mining and Metallurgy 6th South African Rock Engineering Symposium SARES (2014).
[37] A.J.S. Spearing, B. Greer, M. Reilly, Improving rockbolt installations in US coal mines. The Journal of The Southern African Institute of Mining and Metallurgy, Vol. 111, 555-563 (2011).
[38] S. Tadolini, R. Mazzoni, Understanding roof bolt selection and design still remains priceless. 25th International Conference on Ground Control, July 2006. Morgantown, WV, USA , 382-389 (2006).
[39] S . Taghipoor, Application of numerical modelling to study the efficiency of roof bolting pattern in east 1 main roadway of Tabas coal mine. 6th International Conference on Case Histories in Geotechnical Engineering, Arlington, 2-5 (2008).
[40] P. Waclawik, J. Ptacek, P. Konicek, R. Kukutsch, J. Nemcik, Stress-state monitoring of coal pillars during room and pillar extraction. Journal of Sustainable Mining 15, 49-56 (2016). DOI: https://doi.org/10.46873/2300-3960.1207
[41] P. Waclawik, R. Snuparek, R. Kukutsch, Rock Bolting at the Room and Pillar Method at Great Depths. Procedia Engineering 191, 575-582 (2017). DOI: https://doi.org/10.1016/j.proeng.2017.05.220
[42] W. Weigel, Channel Iron for Roof Control. Engineering and Mining Journal, Vol. 144, May, 70-72 (1943).
[43] J. Arthur, Ground control in coal mines in Great Britain. Coal 2006: Coal Operators’ Conference, University of Wollongong & the Australasian Institute of Mining and Metallurgy, 10-19 (2006).
Go to article

Authors and Affiliations

Wojciech Masny
1
ORCID: ORCID
Łukasz Nita
2
ORCID: ORCID
Jerzy Ficek
3

  1. Central Mining Institute, 1 Gwarków Sq., 40-166 Katowice, Poland
  2. Jastrzębska Spółka Węglowa SA, KWK „Budryk”, Poland
  3. „Geofic“ Scientific and Technical Office, Poland
Download PDF Download RIS Download Bibtex

Abstract

Cutting blasting has been widely used for tunnel excavation. The cutting forms significantly influence the blasting effect. This research focuses on the study of the relationship between cutting forms and blasting effects. Similarity theory is proposed for the experimental study of the rock blasting using small models. Then four experimental modes with different cutting forms are used to study the blasting effect due to the cutting forms. The cutting depth, borehole utilization rate, fragments volume, and average fragment size are analysed. The blasting effects with various cutting forms are compared. The influences of the borehole space and the blasting delay are discussed. It is concluded that the spiral cutting form can produce more fragments and is recommend for the small section tunnel excavation.
Go to article

Bibliography


[1] Sato, T., T. Kikuchi, and K. Sugihara, “In-situ experiments on an excavation disturbed zone induced by mechanical excavation in Neogene sedimentary rock at Tono mine, central Japan,” Engineering geology 56(1): pp. 97–108, 2000. https://doi.org/10.1016/S0013-7952(99)00136-2.
[2] Cunningham, C., “Fragmentation estimations and the Kuz-Ram model-Four years on”, in Proc. 2nd Int. Symp. on Rock Fragmentation by Blasting,1987.
[3] Kisslinger, C., The generation of the primary seismic signal by a contained explosion, DTIC Document, 1963.
[4] Kuznetsov, V., “The mean diameter of the fragments formed by blasting rock,” Journal of Mining Science 9(2): pp. 144–148, 1973. https://doi.org/10.1007/BF02506177.
[5] Clark, L.D. and S.S. Saluja, “Blasting mechanics” Trans. Am. Inst. Min. Engrs229: pp. 78–90, 1964.
[6] Langefors, U. and B. Kihlström, “The modern technique of rock blasting” Wiley, 1978.
[7] Porter, D.D., “Crater formation in plaster of Paris models by enclosed charges” Colorado School of Mines, 1961.
[8] Saluja, S.S., “Mechanism of rock failure under the action of explosives”, in The 9th US Symposium on Rock Mechanics (USRMS): American Rock Mechanics Association, 1967.
[9] Wei, X., Z. Zhao, and J. Gu, “Numerical simulations of rock mass damage induced by underground explosion” ,International Journal of Rock Mechanics and Mining Sciences 46(7): pp. 1206–1213, 2009. https://doi.org/10.1016/j.ijrmms.2009.02.007.
[10] Liu, H., D. Williams, D. Pedroso, et al., “Numerical procedure for modelling dynamic fracture of rock by blasting”, in Controlling Seismic Hazard and Sustainable Development of Deep Mines: 7th International Symposium On Rockburst and Seismicity in Mines (rasim7), Vol 1 and 2: Rinton Press, 2009.
[11] Saharan, M.R. and H. Mitri, “Numerical procedure for dynamic simulation of discrete fractures due to blasting,” Rock mechanics and rock engineering 41(5): pp. 641–670, 2008. https://doi.org/10.1007/s00603-007-0136-9.
[12] Ma, G. and X. An, “Numerical simulation of blasting-induced rock fractures,” International Journal of Rock Mechanics and Mining Sciences. 45(6): pp. 966–975, 2008. https://doi.org/10.1016/j.ijrmms.2007.12.002.
[13] Wang, Z.-L., Y.-C. Li, and R. Shen, “Numerical simulation of tensile damage and blast crater in brittle rock due to underground explosion,” International Journal of Rock Mechanics and Mining Sciences. 44(5): pp. 730–738, 2007. https://doi.org/10.1016/j.ijrmms.2006.11.004.
[14] Wang, Z., Y. Li, and J. Wang, “A method for evaluating dynamic tensile damage of rock”, Engineering fracture mechanics. 75(10): pp. 2812–2825, 2008.
[15] Zhu, Z., B. Mohanty, and H. Xie, “Numerical investigation of blasting-induced crack initiation and propagation in rocks,” International Journal of Rock Mechanics and Mining Sciences. 44(3): pp. 412–424, 2007.
[16] Huang, D., X.Y. Qiu, X.Z. Shi, et al., “Experimental and Numerical Investigation of Blast-Induced Vibration for Short-Delay Cut Blasting in Underground Mining,” Shock and Vibration. 2019: 13, 2019.
[17] Liu, K., Q.Y. Li, C.Q. Wu, et al., “A study of cut blasting for one-step raise excavation based on numerical simulation and field blast tests” ,International Journal of Rock Mechanics and Mining Sciences, 109: pp. 91–104, 2018. https://doi.org/10.1016/j.ijrmms.2018.06.019.
[18] Man, K., X.L. Liu, J. Wang, et al., “Blasting Energy Analysis of the Different Cutting Methods” ,Shock and Vibration. 2018: p. 13, 2018. https://doi.org/10.1155/2018/9419018.
[19] Xie, L.X., W.B. Lu, Q.B. Zhang, et al., “Analysis of damage mechanisms and optimization of cut blasting design under high in-situ stresses” , Tunnelling and Underground Space Technology. 66: pp. 19–33, 2017. https://doi.org/10.1016/j.tust.2017.03.009.
[20] Xie, L.X., W.B. Lu, Q.B. Zhang, et al., “Damage evolution mechanisms of rock in deep tunnels induced by cut blasting”, Tunnelling and Underground Space Technology. 58: pp. 257–270, 2016. https://doi.org/10.1016/j.tust.2016.06.004.
[21] Qu, S.J., X.B. Zheng, L.H. Fan, et al., “Numerical simulation of parallel hole cut blasting with uncharged holes” ,Journal of University of Science and Technology Beijing 15(3): 209–214, 2008.
Go to article

Authors and Affiliations

Huaming An
1
ORCID: ORCID
Yushan Song
1
ORCID: ORCID
Deqiang Yang
2

  1. Kunming University of Science and Technology, Faculty of Public Security and Emergency Management, 650093, Kunming, China
  2. University of Science and Technology Beijing, School of Civil and Resource Engineering, 100083, Beijing, China
Download PDF Download RIS Download Bibtex

Abstract

The assessment of a rock’s behaviour around excavations and the effectiveness of its reinforcement in underground ore mines is dependent on the performance of the rock-bolt and rock-mass interaction, which can be estimated on the basis of appropriately designed measurements. Based on the background of various measurements solutions described in the literature, concerning rock bolt monitoring methods, the authors proposed a new, original device for mass measurements in mine conditions. After examining the advantages and disadvantages of existing constructions, the article presents the essence, principle of operation and method of measuring anchor load in an underground excavation with the a instrument, indicator WK-2/8. The prototype has been carefully researched and successfully tested in a full-scale laboratory environment. This instrument, also referred to as a load indicator or force pad, does not require electrical power and allows for relatively accurate (with a resolution of 10-14kN, up to about 90kN loading capacity) and a remote reading of the axle loading of the anchor (AGH patent) by any person present in the specified area. The device can be installed in mining excavations under loading conditions. The relatively low cost of a measuring instrument, practically used as an additional washer, as well as an easy assembly method, makes it universally applicable in mines where anchoring is used as a means of strengthening the rock.

Go to article

Authors and Affiliations

Waldemar Korzeniowski
Krzysztof Skrzypkowski
Łukasz Herezy
Download PDF Download RIS Download Bibtex

Abstract

This article presents a concept method which aids the forecasting of the reclamation cost in post- rock mining areas. The method may also prove useful in estimating the investment profitability of a mining operation at its planning stage as well as managing a potential Reserve Fund to cover future activities, such as land reclamation. The development of the method consisted in defining a set of basic/typical land reclamation directions and the typical structure of reclamation operations/works, which are based on “statistically stable” values. The estimations included the distribution of the probable cost of these works with respect to the reclamation direction and were calculated on the basis of the analyzed current price lists and historical land reclamation projects. The article proposes a method for estimating the cost structure of multi-directional projects by combining the basic directions. The changeability and predictability of various land reclamation solutions was analyzed in terms of fuzzy logic. A price list was developed, which included unit costs for separate types of reclamation works, independent of their type and scale. The assumed optimal measure involved comparing the cost of individual types of operations to the surface of the reclamation area. As an example, the method was also applied to hypothetical data from a clastic rock mine with a surface of 20 ha, and for the forest, agricultural and forest-agricultural reclamation directions. The forest-agricultural reclamation directions was presented in the proportions of 0.3:0.7.

Go to article

Authors and Affiliations

Urszula Kaźmierczak
Jerzy Malewski
Paweł Strzałkowski
Download PDF Download RIS Download Bibtex

Abstract

Methane is an atmospheric trace gas, which is estimated to contribute about 20% to global warming. Coal mining used to be regarded as attributing considerably to the anthropogenic emissions of that potent greenhouse gas. Recently discovered methanotrophic abilities of coalbed rocks brought a new argument to the discussion about the environmental impact of the mining industry. In the present work, we determined the methanotrophic activity and maximum capacity (Vmaxl of methane oxidation originating from rocks surrounding seam 385/2 of the "Bogdanka" coal mine. Methane oxidation rates ranged from 0.23lμM CH4 g "day ·1 in the rock from the middle of the seam to 0.619 μM CH4 g "day ·1 in the bottom rock (4.4 m depth). Methanotrophic activity and Ymax increased with the distance to the coal body and with decreasing TOC content. Initial and terminal redox conditions (Eh>320 mV, pH 7.60-8.62) confirmed the oxic character of the methane oxidation process.
Go to article

Authors and Affiliations

Zofia Stępniewska
Anna Pytlak
Download PDF Download RIS Download Bibtex

Abstract

Geodesic measurements of mining area deformations indicate that their description fails to be regular,

as opposed to what the predictions based on the relationships of the geometric-integral theory suggest.

The Knothe theory, most commonly applied in that case, considers such parameters as the exploitation

coefficient a and the angle of the main influences range tgβ, describing the geomechanical properties of the

medium, as well as the mining conditions. The study shows that the values of the parameters a = 0.8 and

tgβ = 2.0, most commonly adopted for the prediction of surface deformation, are not entirely adequate in

describing each and every mining situation in the analysed rock mass. Therefore, the paper aims to propose

methodology for determining the value of exploitation coefficient a, which allows to predict the values

of surface subsidence caused by underground coal mining with roof caving, depending on geological and

mining conditions. The characteristics of the analysed areas show that the following factors affect surface

subsidence: thickness of overburden, type of overburden strata, type of Carboniferous strata, rock mass

disturbance and depth of exploitation. These factors may allow to determine the exploitation coefficient a,

used in the Knothe theory for surface deformation prediction.

Go to article

Authors and Affiliations

Katarzyna Kryzia
Tadeusz Majcherczyk
Zbigniew Niedbalski
Download PDF Download RIS Download Bibtex

Abstract

In order to optimize the stope structure parameters in broken rock conditions, a novel method for the optimization of stope structure parameters is described. The method is based on the field investigation, laboratory tests and numerical simulation. The grey relational analysis (GRA) is applied to the optimization of the stope structure parameters in broken rock conditions with multiple performance characteristics. The influencing factors include stope height, pillar diameter, pillar spacing and pillar array pitch, the performance characteristics include maximum tensile strength, maximum compressive strength and ore recovery rate. The setting of influencing factors is accomplished using the four factors four levels Taguchi experiment design method, and 16 experiments are done by numerical simulation. Analysis of the grey relational grade indicates the first effect value of 0.219 is the pillar array pitch. In addition, the optimal stope structure parameters are as follows: the height of the stope is 3.5 m, the pillar diameter is 3.5 m, the pillar spacing is 3 m and the pillar array pitch is 5 m. In-situ measurement shows that all of the pillars can basically remain stable, ore recovery rate can be ensured to be more than 82%. This study indicates that the GRA method can efficiently applied to the optimization of stope structure parameters.
Go to article

Authors and Affiliations

Shunman Chen
Aixiang Wu
Yiming Wang
Xun Chen
Download PDF Download RIS Download Bibtex

Abstract

To solve the problem of large deformation soft rock roadway with complicated stress condition in Baluba copper mine, the characteristics of roadway deformation and failure modes are analyzed deeply on the basis of geological survey. Combined with the theoretical analysis and numerical simulation, the new reinforcement technology with floor mudsill and grouting anchor cable is proposed. Moreover, the three dimension numerical simulation model is established by the software FLAC-3D, the support parameter is optimized by it. The results show that the optical array pitch of the U-steel shelf arch is 0.8 m, and the optical array pitch of the grouting anchor cable is 2.4 m. At last, the field experiments are done all over the soft rock roadway. Engineering practice shows that the deformation of soft rock roadway in Baluba copper mine is effectively controlled by adopting the new reinforcement technology, which can provide certain references for similar engineering.
Go to article

Authors and Affiliations

Aixiang Wu
Shunman Chen
Yiming Wang
Xun Chen
Download PDF Download RIS Download Bibtex

Abstract

The currently applicable legal provisions and also the economic concepts emphasize the importance of circular economy. In this aspect, it is very important to reduce the waste production respectively planning and running a business. Technical research is the key to finding a new applications for waste, in particular disposed on landfilling. Mining and energy industries belong to the biggest producers of waste in Poland. The total share of these two branches in waste production is up to 70% (mining and quarrying 53%; electricity, gas, steam and air conditioning supplay 17%). In environment, economy and social aspect, it is very important to develop this waste. The paper presents research on the physico-mechanical properties of the aggregates based on colliery shale supplemented by fly ash (20% - 40% supplement of fly ash). The following tests should be mentioned among performed: particle size distribution, the sand equivalent test, freeze resistance and direct shear tests. Also the chemical properties found in the literature was invoked. The research shows good physico-mechanical properties of the mixes, such as cohesion (44.62 kPa - 68.57 kPa) or internal firiction angle (34.74° - 40.52°). Though low resistance to weathering and a large susceptibility to frost heave (the mass loss after the freezing cycles is 76%) may limit its applicatin in road engineering. The sand equivalent tests were made only for aggregates. Tested materials shows usefulness for earthen structures. However, the research should be supplemented by chemical tests and also observations of the material properties changes as the effect of time. The research on the leachability of chemical pollutants, which will determine the acceptable share of ash in the mix, could be especially significant. The fact that fly ash contains a lot of sulphates and chlorides, which leach into the environment may pose a threat to living organisms.

Go to article

Authors and Affiliations

Mateusz Blajer
Agnieszka Stopkowicz
Justyna Adamczyk
Marek Cała
Download PDF Download RIS Download Bibtex

Abstract

In this paper, the different mechanical behaviors of layered rocks with different bedding angles during uniaxial compression tests are studied. Numerical simulation models of layered rock are validated based on laboratory tests, and uniaxial compression tests are conducted by using Particle Flow Code (PFC). Using these simulations, the uniaxial compressive strength, failure patterns, development of micro-cracks, and displacement of meso particles are analyzed. When the bedding angle is similar to the failure angle, the macro failure planes develop directly along the beddings, the bedding behavior dictates the behavior of the layered rock, reducing the compressive strength.

Go to article

Authors and Affiliations

Nan Yao
Yi-Cheng Ye
Bin Hu
Wei-Qi Wang
Qi-Hu Wang

This page uses 'cookies'. Learn more