Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This paper presents mechanical fault detection in squirrel cage induction motors (SCIMs) by means of two recent techniques. More precisely, we have analyzed the rolling element bearing (REB) faults in SCIM. Rolling element bearing faults constitute a major problem among different faults which cause catastrophic damage to rotating machinery. Thus early detection of REB faults in SCIMs is of crucial importance. Vibration analysis is among the key concepts for mechanical vibrations of rotating electrical machines. Today, there is massive competition between researchers in the diagnosis field. They all have as their aim to replace the vibration analysis technique. Among them, stator current analysis has become one of the most important subjects in the fault detection field. Motor current signature analysis (MCSA) has become popular for detection and localization of numerous faults. It is generally based on fast Fourier transform (FFT) of the stator current signal. We have detailed the analysis by means of MCSA-FFT, which is based on the stator current spectrum. Another goal in this work is the use of the discrete wavelet transform (DWT) technique in order to detect REB faults. In addition, a new indicator based on the MCSA-DWT technique has been developed in this study. This new indicator has the advantage of expressing itself in the quantity and quality form. The acquisition data are presented and a comparative study is carried out between these recent techniques in order to ensure a final decision. The proposed subject is examined experimentally using a 3 kW squirrel cage induction motor test bed.

Go to article

Authors and Affiliations

N. Bessous
S. Sbaa
A.C. Megherbi
Download PDF Download RIS Download Bibtex

Abstract

The empirical mode decomposition (EMD) algorithm is widely used as an adaptive time-frequency analysis method to decompose nonlinear and non-stationary signals into sets of intrinsic mode functions (IMFs). In the traditional EMD, the lower and upper envelopes should interpolate the minimum and maximum points of the signal, respectively. In this paper, an improved EMD method is proposed based on the new interpolation points, which are special inflection points (SIP n) of the signal. These points are identified in the signal and its first ( n − 1) derivatives and are considered as auxiliary interpolation points in addition to the extrema. Therefore, the upper and lower envelopes should not only pass through the extrema but also these SIP n sets of points. By adding each set of SIP i (i = 1, 2, ..., n) to the interpolation points, the frequency resolution of EMD is improved to a certain extent. The effectiveness of the proposed SIP n-EMD is validated by the decomposition of synthetic and experimental bearing vibration signals.
Go to article

Authors and Affiliations

Mohsen Kafil
1 2
Kaveh Darabi
2
Saeed Ziaei-Rad
3

  1. Mechanical Engineering Group, Pardis College, Isfahan University of Technology, Isfahan, Iran
  2. Mobarakeh Steel Company, Isfahan, Iran
  3. Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, Iran

This page uses 'cookies'. Learn more