Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 46
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Determining the boundary conditions of heat transfer in steel manufacturing is a very important issue. The heat transfer effect during contact of two solid bodies occurs in the continuous casting steel process. The temperature fields of solids taking part in heat transfer are described by the Fourier equation. The boundary conditions of heat transfer must be determined to get an accurate solution to the heat conduction equation. The heat flux between the tool and the object processed depends mainly on temperature, pressure and time. It is very difficult and complicated to accomplish direct identification and determination of the boundary conditions in this process. The solution to this problem may be the construction of a process model, performing measurements at a test stand, and using numerical methods. The proposed model must be verified on the basis of parameters which can easily be measured in industrial processes. One of them is temperature, which may be used in inverse methods to determine the heat transfer coefficient. This work presents the methodology for determining the heat flux between two solid bodies staying in contact. It consists of two stages – the experiment and the numerical computation. The problem was solved by using the finite element method (FEM) and a numerical program developed at AGH University of Science and Technology in Krakow. The findings of the conducted research are relationships describing the value of the heat flux versus the contact time and surface temperature.

Go to article

Authors and Affiliations

M. Rywotycki
Z. Malinowski
K. Sołek
J. Falkus
K. Miłkowska-Piszczek
Download PDF Download RIS Download Bibtex

Abstract

This article presents the results of an experimental study of cold rolling TRB strips of S235JR steel applying one grooved roll and another plain roll. The purpose of the study was to determine the possibility of rolling TRB strips with the technology studied, depending on the dimensions of the charge and the number of rolling passes. In addition, the possibility of reducing the magnitude of TRB strip curvature due to the introduction of asymmetry into the process was investigated. The effect of the rolling process and shape variation on the material’s hardening was evaluated by measuring hardness. Based on the results, it was determined that the greater the initial thickness of the charge, the higher the shape tolerances can be obtained. In addition, hardness variation was observed on the cross-section of TRB strips, which decreased with increasing values of plastic deformation. It has also been shown that it is possible to reduce the curvature of the TRB strip due to the use of double asymmetry.
Go to article

Authors and Affiliations

Bartosz Sułek
1 2
ORCID: ORCID
Janusz Krawczyk
3
ORCID: ORCID

  1. Łukasiewicz Research Network – Poznan Institute of Technology, 6 Ewarysta Estkowskiego Str, 61-755 Poznan, Poland
  2. AGH University of Krakow, Doctoral School, al. A. Mickiewicza 30, 30-059 Krakow, Poland
  3. AGH University of Krakow, Faculty of Metals Engineering and Computer Science, al. A. Mickiewicza 30, 30-059 Krakow, Poland
Download PDF Download RIS Download Bibtex

Abstract

Modern metal forming processes of non-ferrous metals, particularly aluminum and its alloys, are increasingly based on integrated technologies combining numerous operations in one process line. The subject of this paper focuses on the possibility of using materials after mould casting (simulating a continuous casting process between cylindrical crystallizers – Twin Roll Casting method) for the direct cold rolling process. As a part of this research a pilotage study on metallurgical synthesis and mould casting process of Al-Mg alloys with the magnesium contents of 5%-10%, testing their mechanical, electrical and structural properties as well as susceptibility to cold plastic deformation. This process was carried out with the measurement of strength parameters and confirmed the possibility of cold rolling alloys with a casting structure without prior hot deformation.

Go to article

Authors and Affiliations

W. Ściężor
A. Mamala
R. Kowal
P. Kwaśniewski
ORCID: ORCID
K. Franczak
ORCID: ORCID
P. Strzępek
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

Donghua steel continuous casting-rolling (DSCCR) line is a new endless rolling line in which tunnel heating furnace is added before and after roughing mills to change the temperature field of slab and intermediate slab, but this change will affect the microstructure and properties of hot rolled plate. Therefore, the microstructure evolution, mechanical properties, texture analysis, hole expanding and earing test of 2.0 mm thick hot rolled plate produced by DSCCR line at different final rolling temperature of 860°C, 840°C and 820°C are studied. The results show that with the decrease of final rolling temperature, there is an obvious layered microstructure distribution along the thickness direction, and the surface coarse grain area gradually expands inward, at the same time the morphology of cementite also changed from large multi domain lamellar pearlite and long rod cementite to small single domain lamellar pearlite and short rod cementite. The engineering stress-strain curves have discontinuous yield with the yield elongation of 4-5% and the elongations are more than 35%. EBSD analysis shows that small angle grain boundaries and deformed grains increase significantly with the decrease of final rolling temperature, and are mainly distributed in fine grain area. Hole expanding and earing tests show that with the decrease of final rolling temperature, the earing performance decreased but the limiting hole expanding ratio is similar.
Go to article

Authors and Affiliations

Chaoyang Li
1
Peng Tian
2
ORCID: ORCID
Zhipeng Zhao
2
Xiaohui Liang
2
Shuhuan Wang
2
Yonglin Kang
2
Xian Luo
2

  1. North China University of Science and Technology, School of Metallurgy and Energy, Tangshan, 063210, China
  2. University of Science and Technology Beijing, School of Materials Science and Engineering, Beijing, 100083, China
Download PDF Download RIS Download Bibtex

Abstract

In this study, the effect of rolling of 1.25Cr-1Mo-0.5V-0.3C American Iron and Steel Institute 4340 modified steel for highspeed railway brake discs on the microstructure and mechanical properties was investigated. The materials were hot-rolled at 0%, 51%, and 66% reduction ratios, and then analyzed by optical microscopy, scanning electron microscopy, and electron backscattering diffraction (EBSD). needle-shaped ferrite block morphology in bainite varied with the rolling ratio. EBSD analysis reveals dynamic recovery and dynamic recrystallization, affected ferrite block boundaries and dislocation densities during rolling. Mechanical tests showed that hardness, toughness and elongation increase at higher rolling reduction ratio, while strength remained relatively constant. In particular, the impact toughness increased almost twice from the level of 70 J in S1 (0% reduction) to the level of 130 J in S3 (66% reduction). These results showed that the hot rolling can significantly improve the strength and toughness combination of cast brake discs material.
Go to article

Authors and Affiliations

Hyo-Seong Kim
1 2 4
ORCID: ORCID
Moonseok Kang
1
ORCID: ORCID
Minha Park
1
ORCID: ORCID
Byung Jun Kim
1
ORCID: ORCID
Yong-Shin Kim
3
Tae Young Lee
3
Byoungkoo Kim
1
ORCID: ORCID
Yong-Sik Ahn
2
ORCID: ORCID

  1. Korea Institute of Industrial Technology, 46938, Busan, Republic of Korea
  2. Pukyong National University, Department of Materials Science and Engineering, 48547, Busan, Republic of Korea
  3. KATEM, 51395, Changwon, Republic of Korea
  4. HD Korea Shipbuilding & Offshore Engineering, 44032, Ulsan, Republic of Korea
Download PDF Download RIS Download Bibtex

Abstract

The paper presents research results on the selection of parameters for the asymmetric rolling process of bimetallic plates 10CrMo9-10 + X2CrNiMo17-12-2. They consisted in determining the optimum parameters of the process, which would be ensured to obtain straight bands. Such deformation method introduces in the band the deformations resulting from shear stress, which affect changes in the microstructure. But their effect on the structure is more complicated than in the case of homogeneous materials. It has been shown that the introduction of asymmetric conditions into the rolling process results in greater grain refinement in the so-called hard layer. There was no negative effect on the structural changes in the soft layer observed.

Go to article

Authors and Affiliations

D. Rydz
ORCID: ORCID
B. Koczurkiewicz
G. Stradomski
T. Garstka
J. Wypart
Download PDF Download RIS Download Bibtex

Abstract

The required rail straightness is achieved by straightening with roller straighteners. The consequence of the straightening operation is the introduction of residual stresses to the straightened rail. An excessive level of residual stresses accumulated in the rail during use in the track may lead to its damage or fracture. ArcelorMittal Poland S.A., in cooperation with Łukasiewicz Research Network – Institute for Ferrous Metallurgy, carried out a research project (POI R.01.02.00-00-0167/16) the aim of which was to reduce residual stresses in railway rails by changing the technological parameters of the straightening process. The results of the presented study relate to rails 60E1 and 60E2. The study includes the measurement, testing, calculations and analyses of the obtained results. The conducted research indicates the possibility of obtaining a low level of residual stress in the rails for a system consisting of a 7-roller vertical straightener and a 9-roller horizontal straightener by changing the roller settings, the shape of the rollers, the shape of the rail foot and its curvature.
Go to article

Authors and Affiliations

D. Woźniak
1
ORCID: ORCID
S. Żak
2
ORCID: ORCID

  1. Łukasiewicz Research Network – Upper Silesian Institute of Technology, Karola Miarki 12-14, 44-100 Gliwice , Poland
  2. COO – Longs Experts Team, Arcel orMitt al Poland S.A.
Download PDF Download RIS Download Bibtex

Abstract

Production of spheroidal graphite cast iron is today quite mastered technology. There are many methods achieving the nodular graphite morphology. Each of these methods have specific characteristics and requirements to technical support, properties and the type of applied modifier. Selection of the spheroidization method is dependent on foundry disposition, production character, economic balance, quality requirements, etc. In case of centrifugally casting the core, which fills body and neck of the roll, is created by ductile iron. Considering the sophisticated production of centrifugally cast rolls for hot rolling mills it is necessary to ensure a high reproducibility and reliability of ductile cast iron production quality in the bulk range of 9-18 t per tapping. These conditions are in the Roll Foundry in Vítkovicke Slevarny, spol. s r.o. provided and verified mastered overpour method and the newly injection of cored wire in the melt.

Go to article

Authors and Affiliations

T. Válek
P. Šimon
L. Střílková
Download PDF Download RIS Download Bibtex

Abstract

An intentional change in material properties is an important condition for castings production. It is one way how to meet the casting requirements of how to adapt the material properties to the operating conditions. Centrifugally cast rolls are multi-layer rollers, castings. The working layer of the barrel is called the "shell" and the body of the roll and the necks rolls are called "core". The article deals with the influence of the properties of the core iron. Earlier laboratory experiments were primary analysed for metallographic analysis and mechanical properties. These data were compared back to the experiments. The results of these laboratory working were later applied in the operating conditions of the roll foundry Vítkovitcké slévárny, spol. s r.o. The spun cast roll produced with the applied metallurgical processing change was supplied to the hot strip mill. There were monitored the positive effect of the change of the metallurgical process of the production of the core iron on the useful properties of the centrifugally cast roll. The experiment was done in order to increase the mechanical properties of ductile pearlite ductile iron. The copper in these core iron material increases the hardness and strength primarily.
Go to article

Authors and Affiliations

J. Hampl
T. Válek
T. Hýbl
Download PDF Download RIS Download Bibtex

Abstract

In the domain of the equipment and apparatus construction, a permanent preoccupation worldwide is ensuring technical performances and high fiability in exploitation. The users’ requirement growth in this field led to producing materials with high characteristics such as iron-nickel alloys having a high nickel content with special magnetic, thermal, or elastic properties. The theoretical and experimental researches had the aim of obtaining cold rolled strip, thin (2.6 mm) and narrow (86 mm) from iron-nickel alloys with 41% Ni (low content of C: 0.02-0.04%; Fe: 58%; other elements: Mn, Si, Cu, Cr, Al: under 1%). Our own experiments aimed to establish an optimal cold rolling technology of hot rolled strips of iron-nickel alloys, in order to obtain cold rolled strips with superior mechanical and technological characteristics, strip profile according to current standards, including a finished product characterization.
Go to article

Authors and Affiliations

M. Bordei
1
ORCID: ORCID
B. Tudor
1
ORCID: ORCID

  1. Dunarea de Jos University of Galati, Faculty of Engineering, Materials and Environmental Quality Research Center (CMM), 47 Domneasca Street, RO-800008 Galati, Romania
Download PDF Download RIS Download Bibtex

Abstract

The Randomized Earned Value Method enable to control the time and cost of works during the implementation of a construction project. The method allows to assess the compliance of the current advancement in time and actually incurred costs with the adopted plan. It also allows to predict the date and amount of the project completion costs. Individual assessment indicators (BCWS, BCWP, ACWP) are calculated after the ongoing control of the progression of works. In the case of randomly changing of implementation conditions, the calculated in this way values of the indicators may be unacceptable because of overlarge differences in comparison to actual values. Therefore, it is proposed an EVM enhancement and additional risk conditions analysis. In this approach data from the quantity survey of works are randomized based on analysis of variations between actually measured and planned values of duration and cost of implemented works. It is estimated the randomized values of individual indicators after successive controls of the progress of works. After each project advancement control the duration and cost of the works that remain to be performed are estimated. Moreover, new verified overall time and total cost of the project implementation are also estimated. After the last inspection, randomized values of the final date and total cost of completion of the project are calculated, as well as randomized values of time extension and total cost overrun. Of course, for randomized values, standard deviations of individual quantities are calculated. Therefore, the risk of time and the risk of cost of the project implementation are presented in the risk charts. The proposed approach provides a better assessment of the progress of works under risk conditions. It is worth to add that the method does not require significant changes to the typical construction management process, however, it ensures realistic consideration of the influence of random factors on the course and results of individual works and the entire project.
Go to article

Authors and Affiliations

Tadeusz Kasprowicz
1
ORCID: ORCID
Anna Starczyk-Kołbyk
1
ORCID: ORCID

  1. Military University of Technology, Faculty of Civil Engineering and Geodesy, ul. gen. Sylwestra Kaliskiego 2, 00–908 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

In the ironmaking, sizes of raw materials such as iron ores and coke must be adjusted for subsequent process in the blast furnace. The depletion of high grade iron ore in recent years necessitates a technology that can utilize low-grade fine iron ores. Thus, steelmakers have been studying the sinter-briquette complex firing process that employs a method of charging the sinter feed together with briquettes made of fine iron ore. In this process, larger briquettes increase the briquette productivity per unit time but decrease the green strength of briquettes and they can break during transportation and charging. Thus, the briquette shape is very important.

Therefore, in this study, we simulate a twin roll briquetting process using the DEM analysis and compared the compressive force distributions in the briquette for different aspect ratios. This study is a new attempt, because research cases by numerical methods on the same or similar systems are very rare. Consequently, the optimal aspect ratio is 0.5 at briquette height 20 mm, 2.0 at 30 mm, and 1.5 at 40 mm. Also, the average compressive force increased in proportion with the pocket height at the same aspect ratio. Therefore, to increase the pocket depth for high productivity, the pocket height must also be increased for obtaining high strength briquettes.

Go to article

Authors and Affiliations

Kang-Min Kim
Jong-Ho Bae
Jeong-Whan Han
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

In this study, crystal grain refinement of pure titanium manufactured by electron beam melting through cryogenic rolling was performed. The effect of rolling in a cryogenic atmosphere on average grain size was investigated. Cryogenic atmosphere rolling was confirmed to be smaller than normal temperature rolling. Electron back scatter diffraction (EBSD) confirmed the presence of oriented crystal grains in the material. The deformation, temperature, and stress generated during rolling were calculated using 3D simulation. Finite element analysis (FEM) modeling was used to analyze the trend of average grain size change during the heat treatment of the rolled samples.
Go to article

Authors and Affiliations

Ui Jun Ko
1
ORCID: ORCID
Byoung Jun Han
1
ORCID: ORCID
Kyoung-Tae Park
2
ORCID: ORCID
Marzieh Ebrahimian
1
ORCID: ORCID
Jh Kim
1
ORCID: ORCID

  1. Hanbat National University, Department of Materials Science and Engineering, Yuseong-gu, Daejeon 34158, Republic of Korea
  2. RareMetal R&D Group, Korea Institute of Industrial Technology, 12, Gaetbeol-ro, Yeonsu-gu, Incheon, 21999, Republic of Korea
Download PDF Download RIS Download Bibtex

Abstract

Through taking the cold rolling process as the research object, the three-dimensional finite element model of the strip rolling process is established by using ANSYS/LS-DYNA software. The actual rolling product data has strong consistency with the finite element simulation results. The rolling process is dynamically simulated, and the distribution curves of important rolling parameters such as equivalent stress, control efficiency coefficient, transverse rolling pressure, lateral thickness and work roll deflection is obtained. Based on summarizing the influence of rolling parameters on rolling deformation, the research results of this paper can play an important role in the actual rolling process control. The research results have certain guiding significance for the development and optimization of the rolling control system.
Go to article

Authors and Affiliations

Zhu-Wen Yan
1
ORCID: ORCID
Bao-Sheng Wang
1
ORCID: ORCID
He-Nan Bu
2
ORCID: ORCID
Hao Li
1
ORCID: ORCID
Lei Hong
1
ORCID: ORCID
Dian-Hua Zhang
3
ORCID: ORCID

  1. Nanjing Institute of Technology, Industrial Technology Research Institute of Intelligent Equipment, Jiangsu Provincial Engineering Laboratoryof Intelligent Manufacturing Equipment, Nanjing 211167, Peoples R China
  2. Jiangsu University of Science and Technology, School of Mechanical Engineering, Zhenjiang 212003, Peoples R China
  3. Northeastern University, State Key Laboratory of Rolling and Automation, 3-11 Wenhua Road, Shenyang, Peoples R China
Download PDF Download RIS Download Bibtex

Abstract

A numerical analysis of the process of single-pass rolling of AZ31 magnesium alloy bars in the three-high skew rolling mill has been carried out in the study. Based on the obtained investigation results, the effect of rolling speed on the band twist and the state of stress and strain occurring in the rolled band has been determined. From the obtained results of the numerical studies it has been found that with the increase in rolling speed the unit band twist angle θ, increase, which translates into an increase in the value of tangential stress in the axial zone of the rolled bar. This contributes directly to an increase in redundant strain in the rolled bar axial zone, which brings about a structure refinement. To verify the effect of rolling speed on the flow pattern and the stress and strain state, experimental tests were carried out. It has been found from the tests that the band twist (flow pattern) contributes to obtaining a bimodal structure in the bar cross-section.

Go to article

Authors and Affiliations

A. Stefanik
P. Szota
S. Mróz
Download PDF Download RIS Download Bibtex

Abstract

Theoretical and experimental research indicates that radial loads have a significant influence on the value of belt-on-idler rolling resistances. Computational models discussed in literature use the notion of unit rolling resistance, i.e. rolling resistance per unit length of the idler. The total value of the rolling resistance of belt on a single idler is determined by integrating unit rolling resistance with respect to the length of the contact zone between the belt and the idler. This procedure requires the knowledge of normal load distribution along the contact zone between the belt and the idler. Loads acting on the idler set have been the object of both theoretical analyses and laboratory tests. Literature mentions several models which describe the distribution of normal loads along the contact zone between the belt and the idler set (Krause & Hettler, 1974; Lodewijks, 1996; Gładysiewicz, 2003; Jennings, 2014). Numerous experimental tests (Gładysiewicz & Kisielewski, 2017; Król, 2017; Król & Zombroń, 2012) demonstrated that the resultant normal loads acting on idlers are approximate to the loads calculated in theoretical models. If the resultant normal load is known, it is possible to assume the distribution of loads acting along the contact zone between the belt and the idler. This paper analyzes various hypothetical load distributions calculated for both the center idler roll and for the side idler roll. It also presents the results of calculations of belt rolling resistances for the analyzed distributions. In addition, it presents the results of calculations with allowance for load distribution along the generating line of the idler.

Go to article

Authors and Affiliations

Lech Gładysiewicz
Martyna Konieczna-Fuławka
Download PDF Download RIS Download Bibtex

Abstract

This article concerns the issues of modeling and the optimizational approach for the performance of ore comminution circuits. A typical, multi-stage comminution circuit was analyzed with the high-pressure grinding rolls unit operating at a fine crushing stage. The final product of the circuit under investigation was, at the same time, a flotation feed in which particle size distribution initially determined the effectiveness of flotation operations. In order to determine the HPGR-based comminution circuit performance, a suitable mathematical model was built wherein the target function was linked directly with the effectiveness of the flotation processes. The target function in the presented model considers the issue in terms of the flotation operation’s effectiveness. The particle size distribution of individual comminution products and resulting from the weight recoveries of individual size fractions were criteria determining the quality of the comminution product. Weight recoveries of individual size fractions, in turn, were tied with the technical operating parameters of individual comminution devices. In the first model, profit maximization was the target function, while the second variant of the model took into account maximization of the useful mineral weight recovery in the concentrate. The HPGR application into ore processing circuits also results in energy saving benefits which were presented in a comparative analysis of the energy consumption of two comminution circuits – the first based on conventional crushing devices, and the second on the HPGR unit application which replaced the rod mills. The main benefit of such a modernization was almost two times lower energy consumption by the fine crushing stage and a decrease in the ball mills’ grinding operations load through bypassing a part of the material directly for the rough flotation operations.

Go to article

Authors and Affiliations

Daniel Saramak
Download PDF Download RIS Download Bibtex

Abstract

This paper describes comminution processes using the theories of limiting states, elasticity, and plasticity to explain some effects observed in the process of crushing brittle materials. It further describes the phenomena occurring during crushing in high-pressure roll presses and analyzes the effects of selected factors upon crushing results. The evaluation of the usefulness of various hypotheses for interpretation of the crushing process in the high-pressure grinding roll was carried out by means of experimental investigations. A series of laboratory crushing tests were also conducted in which limestone samples were pressed in a hydraulic piston-die press. Comminution conditions in this press are similar to those observed in the working chamber of HPGR presses. The limestone aggregate, placed in a steel cylinder, was exposed to pressure exerted by the stamp of the press. Samples had various particle size distributions, and experiments were conducted for two values of pressing force. Operating pressure was the main parameter influencing the obtained comminution effects, but the particle size distribution also has an impact on the process effects. A comparison of the results of the investigations indicated that there exists a significant potential for adjusting the operational parameters of high-pressure grinding rolls. Internal stresses are a derivate of crushing actions such as compression, impact, bending, and shearing. The result of crushing in a particular crusher depends on the strength properties of particles reacting to a specific type of crushing actions. In every crusher there are many crushing actions out of which one is dominating due to the crusher type. Impact is a dominating factor in impact or hummer crushers. Various actions of crusher elements on the crushed material are beneficiary. For example, the shape of the jaw surface in jaw crushers, cone surface in cone crushers, or roll surface in roll presses are important.

Go to article

Authors and Affiliations

Marian Brożek
Zdzisław Naziemiec
Download PDF Download RIS Download Bibtex

Abstract

The paper presents experimental research carried out to determine the possible actions to reduce the noise generated by trams in a highly urbanised area. A few design strategies affecting tram ride quality have been presented – especially in the aspect of the acoustic phenomena. Main sources of the noise in trams were characterised. The paper includes selected results of comprehensive studies of tram noise in the pass-by test based on the authors’ research methodology. The tests were carried out on various types of trams to recognise the acoustic phenomena characteristic for the rolling stock in a selected tram system. The results of the measurements were analysed both in the field of amplitudes based on noise maps and in respect to frequencies based on noise spectra. The results indicated the rolling noise as important issue demanding taking some actions in order to reduce its level. In this area, elements for the application of individual attenuation solutions, i.e. at the source and during propagation, were presented. The results of the measurements were used as input data to the assumptions of the noise attenuation passive system, which was the final outcome of the study. Dedicated external dampers were used in the case of wheel and rail pairs, where the dominant power of the noise is emitted. The acoustic properties of the bogie area and the bogie side covers were redeveloped to hamper the noise propagation, which is a novel application. The presented results indicate measurable benefits from the applied solutions on the tram noise reduction.

Go to article

Authors and Affiliations

Tomasz Nowakowski
Bartosz Firlik
Tomasz Staśkiewicz
Download PDF Download RIS Download Bibtex

Abstract

The microstructure and mechanical properties of hot-rolled Fe-9Mn-0.2C medium-manganese steels with different Al, Cu, and Ni contents were investigated in this study. Based on the SEM, XRD, and EBSD analysis results, the microstructure was composed of martensite, band-type delta ferrite, and retained austenite phases depending on the Al, Cu, and Ni additions. The tensile and Charpy impact test results showed that the sole addition of Al reduced significantly impact toughness by the presence of delta-ferrite and the decrease of austenite stability although it increased yield strength. However, the combined addition of Al and Cu or Ni provided the best combination of high yield strength and good impact toughness because of solid solution strengthening and increased austenite stability.
Go to article

Bibliography

[1] S.I. Lee, S.Y. Lee, J. Han, B. Hwang, Mater. Sci. Eng. A 742, 334-343 (2019).
[2] S.I. Lee, S.Y. Lee, S.G. Lee, H.G. Jung, B. Hwang, Met. Mater. Int. 24, 1221-1231 (2018).
[3] S.Y. Lee, S.I. Lee, B. Hwang, Mater. Sci. Eng. A. 711, 22- 28 (2018).
[4] S.I. Lee, J. Lee, B. Hwang, Mater. Sci. Eng. A. 758, 56-59 (2019). 1011
[5] H . Gwon, S. Shin, J. Jeon, T. Song, S. Kim, B.C.D. Cooman, Met. Mater. Int. 25, 594-605 (2019).
[6] Y. Kwon, J.H. Hwang, H.C. Choi, T.T.T. Trang, B. Kim, A. Zargaran, N.J. Kim, Met. Mater. Int. 26, 75-82 (2020).
[7] M . Kuzmina, D. Ponge, D. Raabe, Acta Mater. 86, 182-192 (2015).
[8] H . Choi, S. Lee, J. Lee, F. Barlat, B.C.D. Cooman, Mater. Sci. Eng. A 687, 200-210 (2017).
[9] Z.H. Cai, H. Ding, R.D.K. Misra, H. Kong, H.Y. Wu, Mater. Sci. Eng. A 595, 86-91 (2014).
[10] Z.C. Li, H. Ding, Z.H. Cai, Mater. Sci. Eng. A 639, 559-566 (2015).
[11] T.W. Hong, S.I. Lee, J.H. Shim, J. Lee, M.G. Lee, B. Hwang, Korean J. Mater. Res. 28, 570-577 (2018).
[12] M .T. Kim, T.M. Park, K.H. Baik, W.S. Choi, P.P. Choi, J. Han, Acta. Mater. 164, 122-134 (2019).
[13] M . Soleimani, H. Mirzadeh, C. Dehghanian, Met. Mater. Int. 26, 882-890 (2020).
[14] S. H. Kim, H. Kim, N. J. Kim, Nature 518, 77-19 (2015).
[15] J.H. Hollomon, Trans. Metall. Soc. AIME, 162, 268-290 (1945).
[16] G E. Dieter, McGraw-Hill, Mechanical Metallurgy, London 1988.
[17] J. Chen, M. Lv, S. Tang, Z. Liu, G. Wang, Mater. Charact. 106, 108-111 (2015).
[18] Y.K. Lee, J. Han, Mater. Sci, Technol. 31, 843-856 (2015).
[19] J. Han, A.K. Silva, D. Ponge, D. Raabe, S.M. Lee, Y.K. Lee, S.I. Lee, B. Hwang, Acta Mater. 122, 199-206 (2017).
Go to article

Authors and Affiliations

Young-Chul Yoon
1
ORCID: ORCID
Sang-Gyu Kim
1
ORCID: ORCID
Sang-Hyeok Lee
1
ORCID: ORCID
Byoungchul Hwang
1
ORCID: ORCID

  1. Seoul National University of Science and Technology, Department of Materials Science and Engineering, 232, Gongneung-Ro., Nowon-gu, Seoul 01811, Korea
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the results of research into the cross wedge rolling (CWR) process of axle forgings. The presented results concern the parallel rolling process with two wedges. The use of two parallel wedges is aimed at shortening the tool length (increasing productivity) and reducing the values of wedge opening angles and increasing the forming angles, so that the condition 0.04 ≤ tgαtgβ ≤ 0.08 is maintained to guarantee the highest quality forgings. The article analyses the influence of the design of the double wedge tool on the geometric correctness of the forgings obtained, the value of the failure criterion and the force parameters of the process. The results obtained show that the use of multi wedge tools improves rolling conditions by increasing productivity and reducing the tendency of the material to crack with appropriately selected tool parameters.
Go to article

Authors and Affiliations

T. Bulzak
1
ORCID: ORCID

  1. Lublin University of Technology, Faculty of Mechanical Engineering, Department of Metal Forming, 36 Nadbystrzycka Str., 20-618, Lublin, Poland
Download PDF Download RIS Download Bibtex

Abstract

A simple methodology was used for calculating the equivalent strain values during forming the sample alternately in two mutually perpendicular directions. This method reflects an unexpected material flow out of the nominal deformation zone when forming on the MAXStrain II device. Thus it was possible to perform two temperature variants of the simulation of continuous rolling and cooling of a long product made of steel containing 0.17% C and 0.80% Mn. Increasing the finishing temperature from 900°C to 950°C and decreasing the cooling rate from 10°C/s to 5°C/s led to a decrease in the content of acicular ferrite and bainite and an increase in the mean grain size of proeutectoid ferrite from about 8 µm to 14 µm. The result was a change in the hardness of the material by 15%.
Go to article

Authors and Affiliations

I. Schindler
1
ORCID: ORCID
P. Kawulok
1
ORCID: ORCID
K. Konečná
1
ORCID: ORCID
M. Sauer
1
ORCID: ORCID
H. Navrátil
1
ORCID: ORCID
P. Opěla
1
ORCID: ORCID
R. Kawulok
1
ORCID: ORCID
S. Rusz
1
ORCID: ORCID

  1. VŠB – Technical University of Ostrava, Faculty of Materials Science and Technology, Ostrava, Czech Republic
Download PDF Download RIS Download Bibtex

Abstract

The studied collecting electrodes for electrostatic precipitators are cold-rolled formed. Here Sigma 750 open section was manufactured of DC01 steel grade. Length of the electrodes ranged from 8 to 13 meters, all were thin-walled of 1.5 mm. Tolerance of their manufacture is strictly set. A database of material properties, chemical composition, and a set of final tolerance of manufactured profiles has been collected. At first basic statistics for the data has been done. Finally statistical relation between the material composition and profile geometrical tolerance has been studied, next between the material mechanical properties and profile geometrical tolerance has been examined.
Go to article

Authors and Affiliations

P. Tracz
1
K. Wacławiak
2
ORCID: ORCID
J. Chrapoński
2
ORCID: ORCID
R. Popiel
1

  1. PST Consulting Rafał Popiel, Poland
  2. Silesian University of Technology, Department of Materials Technologies, 8. Krasińskiego Str., 40-019 Katowice, Poland

This page uses 'cookies'. Learn more