Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

A common problem in transient rotordynamic simulations is the numerical effort necessary for the computation of hydrodynamic bearing forces. Due to the nonlinear interaction between the rotordynamic and hydrodynamic systems, an adequate prediction of shaft oscillations requires a solution of the Reynolds equation at every time step. Since closed-form analytical solutions are only known for highly simplified models, numerical methods or look-up table techniques are usually employed. Numerical solutions provide excellent accuracy and allow a consideration of various physical influences that may affect the pressure generation in the bearing (e.g., cavitation or shaft tilting), but they are computationally expensive. Look-up tables are less universal because the interpolation effort and the database size increase significantly with every considered physical effect that introduces additional independent variables. In recent studies, the Reynolds equation was solved semianalytically by means of the scaled boundary finite element method (SBFEM). Compared to the finite element method (FEM), this solution is relatively fast if a small discretization error is desired or if the slenderness ratio of the bearing is large. The accuracy and efficiency of this approach, which have already been investigated for single calls of the Reynolds equation, are now examined in the context of rotordynamic simulations. For comparison of the simulation results and the computational effort, two numerical reference solutions based on the FEM and the finite volume method (FVM) are also analyzed.
Go to article

Authors and Affiliations

Simon Pfeil
1
ORCID: ORCID
Fabian Duvigneau
1
ORCID: ORCID
Elmar Woschke
1
ORCID: ORCID

  1. Otto von Guericke University, Institute of Mechanics, Universitätspl. 2, 39106 Magdeburg, Germany
Download PDF Download RIS Download Bibtex

Abstract

State-of-the-art analyses for the rotordynamic assessment of pumps and specific requirements for the simulation tools are described. Examples are a horizontal multistage pump with two fluid film bearings in atmospheric pressure, a horizontal submerged multistage pump with many bearings, and a submerged vertical single-stage pump with water-lubricated bearings. The rotor of the horizontal pump on two bearings is statically overdetermined by the seals and the static bearing forces depend on the deflection in the seals and the bearings. The nonlinear force-displacement relation in the bearings is considered in this paper. The stability of pumps is assessed by Campbell diagrams considering linear seal and bearing properties. Cylindrical bearings can have a destabilizing effect in the case of low loads as in the examples of the submerged pumps. For the pump with many bearings, the influence of the bearing ambient pressure and the bearing specific load on the stability is analyzed. For the vertical pump, the limit cycle, i.e. the vibration level of stabilization, is determined with a nonlinear analysis. All examples have a practical background from engineering work, although they do not exactly correspond to real cases. Analyses were performed with the rotordynamic software MADYN 2000.
Go to article

Bibliography

  1.  D. Childs, Turbomachinery Rotordynamics, New York, Chichester, Brisbane, Toronto, Singapore: Wiley Inter Science Publication, 1993.
  2.  J. Glienicke, “Feder- und Dämpfungskonstanten von Gleitlagern für Turbomaschinen und deren Einfluss auf das Schwingungsverhalten eines einfachen Rotors,” Dissertation, Technische Hochschule Karlsruhe, 1966.
  3.  J. Lund and K. Thomsen, “A Calculation Method and Data for the Dynamic Coefficients of Oil Lubricated Journal Bearings,” in Topics in Fluid Film Bearing and Rotor Bearing System Design and Optimization. New York: ASME, 1978, pp. 1–28.
  4.  X. Cheng, “Einfluss einer Schmierfilmkavitation auf die dynamischen Eigenschaften von Quetschöldämpfern,” Fortschr.-Ber. VDI Reihe 1 no. 243, Düsseldorf, VDI-Verlag.
  5.  A. Fuchs, J. Schmied, and A. Kosenkov, “Hydrodynamic Bearings – State of the Art Calculations,” in Proceedings of the 11th Conference on Vibrations in Rotating Machines (SIRM), Magdeburg, Germany, 2015.
  6.  R. Nordmann and F.J. Dietzen, “Calculating Rotordynamic Coefficients of Seals by Finite-Difference Techniques,” ASME J. Tribol., vol. 109, pp. 388–394, July 1987.
  7.  J. Schmied, “Application of MADYN 2000 to rotor dynamic problems of industrial machinery,” in Proceedings of the 13th International Conference on Dynamics of Rotating Machines (SIRM), Copenhagen, Denmark, 2019.
  8.  American Petroleum Institute, “Centrifugal Pumps for Petroleum, Petrochemical and Natural Gas Industries – ANSI/API Standard 610,” Eleventh Edition, September 2010.
  9.  J. Schmied and A. Fuchs, “Nonlinear Analyses in Rotordynamic Engineering,” in Proceedings of the 10th International Conference on Rotor Dynamics – IFToMM, 2019, vol. 3, pp. 426‒442.
Go to article

Authors and Affiliations

Frédéric Gaulard
1
Joachim Schmied
1
Andreas Fuchs
1

  1. Delta JS AG, Technoparkstrasse 1, 8005 Zürich, Switzerland

This page uses 'cookies'. Learn more