Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This paper provides an overview of the effects of timing jitter in audio sampling analog-to-digital converters (ADCs), i.e. PCM (conventional or Nyquist sampling) ADCs and sigma-delta (ΣΔ) ADCs. Jitter in a digital audio is often defined as short-term fluctuations of the sampling instants of a digital signal from their ideal positions in time. The influence of the jitter increases particularly with the improvements in both resolution and sampling rate of today's audio ADCs. At higher frequencies of the input signals the sampling jitter becomes a dominant factor in limiting the ADCs performance in terms of signal-to-noise ratio (SNR) and dynamic range (DR).

Go to article

Authors and Affiliations

Zbigniew Kulka
Download PDF Download RIS Download Bibtex

Abstract

The paper is a review of analog and digital electronics dedicated to monitor nanosecond pulses. Choosing the optimal peak detector construction depends on many factors for example precision, complexity, or costs. The work shows some virtues and limitations of selected peak detection methods, for example standard peak detector with rectifier, sample and hold circuit with triggering units and ADC fast acquisition. However, the main attention is paid to problems of results from effective triggering signal for sample and hold operation. The obtained results allow for designing a peak detector construction as an alternative for costly and very complex fast acquisition systems based on ADC and FPGA technologies.

Go to article

Authors and Affiliations

Krzysztof Achtenberg
ORCID: ORCID
Janusz Mikołajczyk
ORCID: ORCID
Dariusz Szabra
Artur Prokopiuk
Zbigniew Bielecki
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a new construction of an optical pulse amplitude monitoring unit (PAMU) used in a transceiver of Free Space Optics. It consists of a buffer, constant fraction discriminator (CFD), delay line, and a sample and hold (S&H) circuit. In the design FSO system, the PAMU provides to monitor transmitted and received optical pulses with duration of few ns. Using this device, there is no need to apply complicated and expensive digitizing systems. The unique aspect of its construction is to control S&H circuit using the CFD. The lab model of this unit allows to perform tests to define some virtues of constant fraction and leading-edge discriminators. The results were implemented in optical signal monitoring of FSO system. The unit was prepared to cooperate with two different detection modules. Using this setup, it was possible, e.g. to determine operation characteristics of FSO transmitter, identify interruption of transmission, and control light power to provide high safety of work.

Go to article

Authors and Affiliations

K. Achtenberg
J. Mikołajczyk
D. Szabra
A. Prokopiuk
Z. Bielecki

This page uses 'cookies'. Learn more