Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The paper is devoted to the strength analysis of a simply supported three layer beam. The sandwich beam consists of: two metal facings, the metal foam core and two binding layers between the faces and the core. In consequence, the beam is a five layer beam. The main goal of the study is to elaborate a mathematical model of this beam, analytical description and a solution of the three-point bending problem. The beam is subjected to a transverse load. The nonlinear hypothesis of the deformation of the cross section of the beam is formulated. Based on the principle of the stationary potential energy the system of four equations of equilibrium is derived. Then deflections and stresses are determined. The influence of the binding layers is considered. The results of the solutions of the bending problem analysis are shown in the tables and figures. The analytical model is verified numerically using the finite element analysis, as well as experimentally.

Go to article

Authors and Affiliations

M.J. Smyczyński
E. Magnucka-Blandzi
Download PDF Download RIS Download Bibtex

Abstract

An analysis of sandwich beams with truss core is an important issue in many fields of industry such as civil engineering, automotive, aerospace or maritime. The objective of the present study is a nonlinear static response of sandwich beams subjected to the three-point bending test configuration. The beams are composed of two parent components: upper and lower laminated face sheets (unidirectional tape) and a pyramidal truss core manufactured by means of 3D printing. A polyamide filament strengthened with chopped carbon fibres – CF-PA-12 is used for the core development. The both, experimental and numerical analyses are presented. A detailed numerical model of the sandwich beam was developed in Abaqus software. The numerical model considers modelling of the adhesive joint with an additional layer of material placed between the parent components of the beam. A continuum hybrid solid shell elements were used to model the adhesive layer. In addition, a special care was taken to use an appropriate material model for the CF-PA-12 filament. To do so, the uniaxial tensile tests were performed on 3D printed samples. Having acquired the test data, a hyperelastic material model was evaluated based on a curve fitting approach.
Go to article

Authors and Affiliations

Miroslaw Wesolowski
1
ORCID: ORCID
Mariusz Ruchwa
1
ORCID: ORCID
Sandris Rucevskis
2
ORCID: ORCID

  1. Koszalin University of Technology, Faculty of Civil Engineering, Environment and Geodesy,ul. Sniadeckich 2, 75-453 Koszalin, Poland
  2. Riga Technical University, Faculty of Civil Engineering, 6B/6A Kipsalas Street, Riga, LV-1048, Latvia
Download PDF Download RIS Download Bibtex

Abstract

Thermally induced free vibration of sandwich beams with porous functionally graded material core embedded between two isotropic face sheets is investigated in this paper. The core, in which the porosity phase is evenly or unevenly distributed, has mechanical properties varying continuously along with the thickness according to the power-law distribution. Effects of shear deformation on the vibration behavior are taken into account based on both third-order and quasi-3D beam theories. Three typical temperature distributions, which are uniform, linear, and nonlinear temperature rises, are supposed. A mesh-free approach based on point interpolation technique and polynomial basis is utilized to solve the governing equations of motion. Examples for specific cases are given, and their results are compared with predictions available in the literature to validate the approach. Comprehensive studies are carried out to examine the effects of the beam theories, porosity distributions, porosity volume fraction, temperature rises, temperature change, span-to-height ratio, different boundary conditions, layer thickness ratio, volume fraction index on the vibration characteristics of the beam.
Go to article

Bibliography

[1] D.K. Jha, T. Kant, and R.K. Singh. A critical review of recent research on functionally graded plates. Composite Structures, 96:833–849, 2013. doi: 10.1016/j.compstruct.2012.09.001.
[2] A.S. Sayyad and Y.M. Ghugal. Modeling and analysis of functionally graded sandwich beams: a review. Mechanics of Advanced Materials and Structures, 26(21):1776–1795, 2019. doi: 10.1080/15376494.2018.1447178.
[3] A. Paul and D. Das. Non-linear thermal post-buckling analysis of FGM Timoshenko beam under non-uniform temperature rise across thickness. Engineering Science Technology, an International Journal, 19(3):1608–1625, 2016. doi: 10.1016/j.jestch.2016.05.014.
[4] A. Fallah and M.M. Aghdam. Thermo-mechanical buckling and nonlinear free vibration analysis of functionally graded beams on nonlinear elastic foundation. Composites Part B: Engineering, 43 (3):1523–1530, 2012. doi: 10.1016/j.compositesb.2011.08.041.
[5] A.I. Aria and M.I. Friswell. Computational hygro-thermal vibration and buckling analysis of functionally graded sandwich microbeams. Composites Part B: Engineering, 165:785–797, 2019. doi: 10.1016/j.compositesb.2019.02.028.
[6] S.E. Esfahani, Y. Kiani, and M.R. Eslami. Non-linear thermal stability analysis of temperature dependent FGM beams supported on non-linear hardening elastic foundations. International Journal of Mechanical Sciences, 69:10–20, 2013. doi: 10.1016/j.ijmecsci.2013.01.007.
[7] M. Lezgy-Nazargah. Fully coupled thermo-mechanical analysis of bi-directional FGM beams using NURBS isogeometric finite element approach. Aerospace Science and Technology, 45:154–164, 2015. doi: 10.1016/j.ast.2015.05.006.
[8] L.C. Trinh, T.P. Vo, H.-T. Thai, and T.-K. Nguyen. An analytical method for the vibration and buckling of functionally graded beams under mechanical and thermal loads. Composites Part B: Engineering, 100:152–163, 2016. doi: 10.1016/j.compositesb.2016.06.067.
[9] T.-K. Nguyen, B.-D. Nguyen, T.P. Vo, and H.-T. Thai. Hygro-thermal effects on vibration and thermal buckling behaviours of functionally graded beams. Composite Structures, 176:1050–1060, 2017. doi: 10.1016/j.compstruct.2017.06.036.
[10] P. Malekzadeh and S. Monajjemzadeh. Dynamic response of functionally graded beams in a thermal environment under a moving load. Mechanics of Advanced Materials and Structures, 23(3):248– 258, 2016. doi: 10.1080/15376494.2014.949930.
[11] N. Wattanasakulpong, B. Gangadhara Prusty, and D.W. Kelly. Thermal buckling and elastic vibration of third-order shear deformable functionally graded beams. International Journal of Mechanical Sciences, 53(9):734–743, 2011. doi: 10.1016/j.ijmecsci.2011.06.005.
[12] S.C. Pradhan and T. Murmu. Thermo-mechanical vibration of FGM sandwich beam under variable elastic foundations using differential quadrature method. Journal of Sound and Vibration, 321(1- 2):342–362, 2009. doi: 10.1016/j.jsv.2008.09.018.
[13] G.-L. She, F.-G. Yuan, and Y.-R. Ren. Thermal buckling and post-buckling analysis of functionally graded beams based on a general higher-order shear deformation theory. Applied Mathematical Modelling, 47:340–357, 2017. doi: 10.1016/j.apm.2017.03.014.
[14] H.-S. Shen and Z.-X. Wang. Nonlinear analysis of shear deformable FGM beams resting on elastic foundations in thermal environments. International Journal of Mechanical Sciences, 81:195–206, 2014. doi: 10.1016/j.ijmecsci.2014.02.020.
[15] T.T. Tran, N.H. Nguyen, T.V. Do, P.V. Minh, and N.D. Duc. Bending and thermal buckling of unsymmetric functionally graded sandwich beams in high-temperature environment based on a new third-order shear deformation theory. Journal of Sandwich Structures & Materials, 23(3):906–930, 2021. doi: 10.1177/1099636219849268.
[16] A.R. Setoodeh, M. Ghorbanzadeh, and P. Malekzadeh. A two-dimensional free vibration analysis of functionally graded sandwich beams under thermal environment. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 226(12):2860–2873, 2012. doi: 10.1177/0954406212440669.
[17] L. Chu, G. Dui, and Y. Zheng. Thermally induced nonlinear dynamic analysis of temperature-dependent functionally graded flexoelectric nanobeams based on nonlocal simplified strain gradient elasticity theory. European Journal of Mechanics - A/Solids, 82:103999, 2020. doi: 10.1016/j.euromechsol.2020.103999.
[18] Y. Fu, J. Wang, and Y. Mao. Nonlinear analysis of buckling, free vibration and dynamic stability for the piezoelectric functionally graded beams in thermal environment. Applied Mathematical Modelling, 36(9):4324–4340, 2012. doi: 10.1016/j.apm.2011.11.059.
[19] W.-R. Chen, C.-S. Chen, and H. Chang. Thermal buckling analysis of functionally graded Euler-Bernoulli beams with temperature-dependent properties. Journal of Applied and Computational Mechanics, 6(3):457–470, 2020. doi: 10.22055/JACM.2019.30449.1734.
[20] N. Wattanasakulpong and V. Ungbhakorn. Linear and nonlinear vibration analysis of elastically restrained ends FGM beams with porosities. Aerospace Science and Technology, 32(1):111–120, 2014. doi: 10.1016/j.ast.2013.12.002.
[21] N. Wattanasakulpong and A. Chaikittiratana. Flexural vibration of imperfect functionally graded beams based on Timoshenko beam theory: Chebyshev collocation method. Meccanica, 50(5):1331– 1342, 2015. doi: 10.1007/s11012-014-0094-8.
[22] D. Shahsavari, M. Shahsavari, L. Li, and B. Karami. A novel quasi-3D hyperbolic theory for free vibration of FG plates with porosities resting on Winkler/Pasternak/Kerr foundation. Aerospace Science and Technology, 72:134–149, 2018. doi: 0.1016/j.ast.2017.11.004.
[23] Z. Ibnorachid, L. Boutahar, K. EL Bikri, and R. Benamar. Buckling temperature and natural frequencies of thick porous functionally graded beams resting on elastic foundation in a thermal environment. Advances in Acoustics and Vibration, 2019:7986569, 2019. doi: 10.1155/2019/7986569.
[24] Ş.D. Akbaş. Thermal effects on the vibration of functionally graded deep beams with porosity. International Journal of Applied Mechanics, 9(5):1750076, 2017. doi: 10.1142/ S1758825117500764.
[25] H. Babaei, M.R. Eslami, and A.R. Khorshidvand. Thermal buckling and postbuckling responses of geometrically imperfect FG porous beams based on physical neutral plane. Journal of Thermal Stresses, 43(1):109–131, 2020. doi: 10.1080/01495739.2019.1660600.
[26] F. Ebrahimi and A. Jafari. A higher-order thermomechanical vibration analysis of temperature-dependent FGM beams with porosities. Journal of Engineering, 2016:9561504, 2016. doi: 10.1155/2016/9561504.
[27] Y. Liu, S. Su, H. Huang, and Y. Liang. Thermal-mechanical coupling buckling analysis of porous functionally graded sandwich beams based on physical neutral plane. Composites Part B: Engineering, 168:236–242, 2019. doi: 10.1016/j.compositesb.2018.12.063.
[28] S.S. Mirjavadi, A. Matin, N. Shafiei, S. Rabby, and B. Mohasel Afshari. Thermal buckling behavior of two-dimensional imperfect functionally graded microscale-tapered porous beam. Journal of Thermal Stresses, 40(10):1201–1214, 2017. doi: 0.1080/01495739.2017.1332962.
[29] E. Salari, S.A. Sadough Vanini, A.R. Ashoori, and A.H. Akbarzadeh. Nonlinear thermal behavior of shear deformable FG porous nanobeams with geometrical imperfection: Snap-through and postbuckling analysis. International Journal of Mechanical Sciences, 178:105615, 2020. doi: 10.1016/j.ijmecsci.2020.105615.
[30] N. Ziane, S.A. Meftah, G. Ruta, and A. Tounsi. Thermal effects on the instabilities of porous FGM box beams. Engineering Structures, 134:150–158, 2017. doi: 10.1016/j.engstruct. 2016.12.039.
[31] A.I. Aria, T. Rabczuk, and M.I. Friswell. A finite element model for the thermo-elastic analysis of functionally graded porous nanobeams. European Journal of Mechanics - A/Solids, 77:103767, 2019. doi: 10.1016/j.euromechsol.2019.04.002.
[32] G.R. Liu and Y.T. Gu. A point interpolation method for two-dimensional solids. International Journal for Numerical Methods in Engineering, 50(4):937–951, 2001. doi: 10.1002/1097-0207(20010210)50:4937::AID-NME62>3.0.CO;2-X.
[33] Y.T. Gu and G.R. Liu. A local point interpolation method for static and dynamic analysis of thin beams. Computer Methods in Applied Mechanics and Engineering, 190(42):5515–5528, 2001. doi: 10.1016/S0045-7825(01)00180-3.
[34] T.H. Chinh, T.M. Tu, D.M. Duc, and T.Q. Hung. Static flexural analysis of sandwich beam with functionally graded face sheets and porous core via point interpolation meshfree method based on polynomial basic function. Archive of Applied Mechanics, 91:933–947, 2021. doi: 10.1007/s00419-020-01797-x.
[35] J.N. Reddy and C.D. Chin. Thermomechanical analysis of functionally graded cylinders and plates. Journal of Thermal Stresses, 21(6):593–626, 1998. doi: 10.1080/01495739808956165.
[36] H.-S. Shen. Functionally Graded Materials: Nonlinear Analysis of Plates and Shells. CRC Press, 2016. doi: 10.1201/9781420092578.
[37] T.-K. Nguyen, T.P. Vo, B.-D. Nguyen, and J. Lee. An analytical solution for buckling and vibration analysis of functionally graded sandwich beams using a quasi-3D shear deformation theory. Composite Structures, 156:238–252, 2016. doi: 10.1016/j.compstruct.2015.11.074.
[38] M. Şimşek. Fundamental frequency analysis of functionally graded beams by using different higher-order beam theories. Nuclear Engineering and Design, 240(4):697–705, 2010. doi: 10.1016/j.nucengdes.2009.12.013.
[39] J.N. Reddy. Mechanics of Laminated Composite Plates and Shells: Theory and Analysis. 2nd ed. CRC Press, 2003.
[40] G.R. Liu. Meshfree Methods: Moving Beyond the Finite Element Method. 2nd ed. Taylor & Francis, 2009. doi: 10.1201/9781420082104.
[41] G.R. Liu, Y.T. Gu, and K.Y. Dai. Assessment and applications of point interpolation methods for computational mechanics. International Journal for Numerical Methods in Engineering, 59(10):1373– 1397, 2004. doi: 10.1002/nme.925.
[42] T.P. Vo, H.-T. Thai, T.-K. Nguyen, F. Inam, and J. Lee. A quasi-3D theory for vibration and buckling of functionally graded sandwich beams. Composite Structures, 119:1–12, 2015. doi: 10.1016/j.compstruct.2014.08.006.
Go to article

Authors and Affiliations

Tran Quang Hung
1
Tran Minh Tu
2
ORCID: ORCID
Do Minh Duc
1

  1. Faculty of Civil Engineering, The University of Da Nang - University of Science and Technology, Da Nang, Vietnam
  2. Hanoi University of Civil Engineering, Hanoi, Vietnam

This page uses 'cookies'. Learn more