Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the stability analysis of a sandwich plate of the shape of an isosceles trapezoid, subjected to unidirectional in-plane compression. The critical load value of the trapezoidal sandwich plate was obtained by a combination of the Galerkin orthogonalisation method and the proposed method of the coordinate system transformation. An influence of plate material and geometrical properties on the critical load level was analysed. The obtained results were verified in a numerical experiment conducted with the FEM ANSYS software package.
Go to article

Authors and Affiliations

Radosław Mania
Download PDF Download RIS Download Bibtex

Abstract

The paper is devoted to buckling problem of an axially compressed generalized cylindrical sandwich panel and rectangular sandwich plate. The continuous variation of mechanical properties in thickness direction of the structures is assumed. The generalized theory of deformation of the straight line normal to the neutral surface is applied. The analytical model of this sandwich panel is elaborated. Three differential equations of equilibrium of this panel based on the principle of stationary potential energy are obtained. This system of equations is analytically solved and the critical load is derived. Moreover, the limit transformation of the sandwich panel to a sandwich rectangular plate is presented. The critical loads of the example cylindrical panels and rectangular plates are derived.
Go to article

Authors and Affiliations

Krzysztof Magnucki
1
ORCID: ORCID
Ewa Magnucka-Blandzi
ORCID: ORCID
Leszek Wittenbeck
2
ORCID: ORCID

  1. Łukasiewicz Research Network – Poznan Institute of Technology, Rail Vehicles Center, ul. Warszawska 181, 61-055 Poznan, Poland
  2. Institute of Mathematics, Poznan University of Technology, ul. Piotrowo 3A, 60-965 Poznan, Poland
Download PDF Download RIS Download Bibtex

Abstract

The influence of sheeting made by sandwich panels on the lateral-torsional buckling resistance of hot rolled purlin was studied in this paper. The actual shear and torsional stiffness as well as resistance of connections between sandwich panel and purlins were considered in analysis. Parameters of these factors were determined using the finite element method, as well as by own experimental tests. Simple models with beam elements were used in LBA analysis to calculate the critical moments of the purlins. Advanced models with GMNIA analysis using shell elements was performed to simulate the behaviour of the purlins stabilized by sandwich panels. The results show that the stiffness of sheeting made by sandwich panels is insufficient to ensure the full protection of purlin against lateral-torsional buckling. The connections resistance also limited the ability of purlins stabilisation. Nevertheless including sandwich panels in purlin stability analysis results in a significant increase in their LTB resistance.
Go to article

Authors and Affiliations

Marcin Górski
1
Aleksander Kozłowski
2

  1. Rzeszów University of Technology, Faculty of Civil and Environmental Engineering and Architecture, ul. Poznańska 2, 35-084 Rzeszów, Poland
  2. Rzeszów University of Technology, Faculty of Civil and Environmental Engineeringand Architecture, ul. Poznańska 2, 35-084 Rzeszów
Download PDF Download RIS Download Bibtex

Abstract

In the paper there the laboratory tests of interaction between thin-walled beams of the Z crosssection and the sandwich panels with PIR foam core are presented. The different numbers of connectors (0, 4, and 8) were used to connect the sandwich panels with the thin-walled beams. Furthermore, the parallel and perpendicular to the longitudinal axis of the thin-walled beam load arrangement was analysed. The research provides a qualitative and quantitative comparison of the mentioned experiments using the ultimate capacity, the deformation capacity, and the stiffness. In the second part of the paper, the numerical analysis of the thin-walled beam was also performed. The beam was modelled as a shell element and loaded in two ways, which corresponded to the loading scenario during laboratory tests (uniformly distributed and concentrated loads). The results of the numerical calculations of the beam without lateral stabilization were compared with the laboratory results of the beam stabilized by the sandwich panels.
Go to article

Authors and Affiliations

Katarzyna Ciesielczyk
1
ORCID: ORCID
Robert Studziński
1
ORCID: ORCID

  1. Poznan University of Technology, Faculty of Civil and Transport Engineering, ul. Piotrowo 3, 60-965 Poznan, Poland

This page uses 'cookies'. Learn more