Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 7
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Recently, Google Earth Engine (GEE) provides a new way to effectively classify land cover utilizing available in-built classifiers. However, there have a few studies on the applications of the GEE so far. Therefore, the goal of this study is to explore the capacity of the GEE platform in terms of land cover classification in Dien Bien Province of Vietnam. Land cover classification in the year of 2003 and 2010 were performed using multiple-temporal Landsat images. Two algorithms – GMO Max Entropy and Classification and Regression Tree (CART) integrated into the Google Earth Engine (GEE) plat-form – were applied for this classification. The results indicated that the CART algorithm performed better in terms of mapping land use. The overall accuracy of this algorithm in the year of 2003 and 2010 were 80.0% and 81.6%, respective-ly. Significant changes between 2003 and 2010 were found as an increase in barren land and a reduction in forest land. This is likely due to the slash-and-burn agricultural practice of ethnic minorities in the province. Barren land seems to occur more at locations near water sources, reflecting the local people’s unsuitable farming practice. This study may provide use-ful information in land cover change in Dien Bien Province, as well as analysis mechanisms of this change, supporting en-vironmental and natural resource management for the local authorities.

Go to article

Authors and Affiliations

Luong B. Nguyen
Download PDF Download RIS Download Bibtex

Abstract

In last years, accurate spatial data from high resolution satellite images are getting more and more frequently used for modelling topography and other surveying purposes. To extract accurate spatial information, a sensor's mathematical models are needed. Those models classified to two branches: rigorous (parameirical or physical) models and non-rigorous models. In the paper a dynamic sensor model is proposed to extract spatial information from geo-rectified images named the geo-images which their geometry at the time of imaging have been lost. The developed model has been reconstructed basing on a transformation of central-perspective projection into a parallel one.
Go to article

Authors and Affiliations

Luong Chinh Ke
Download PDF Download RIS Download Bibtex

Abstract

Nowadays, an orthomap destined for different purposes can be created from High Resolution Satellite (HRS) images using IKONOS, QuickBird and other satellite imageries having Ground Sampling Distance (GSD) lower than I m. The orthomap is one of the main sources for establishing GIS. Accuracy of the orthomap depends first of all on the parameters of Ground Control Points (GCPs) (the forms, number, accuracy and their distribution). In order to reduce the cost and number of GCP field measurements, the block of HRS images has been proposed. The accuracies of determined points in the block of HRS images are affected by the mathematical model used to build a block. The paper presents a general algorithm of bundle block adjustment model of HRS images using Keplerian parameters. In order to overcome strong correlation among exterior orientation elements of HRS images that causes the normal equation ill-conditioned, the ridge-stein estimator and orbital addition constraints have been proposed.
Go to article

Authors and Affiliations

Luong Chinh Ke
Download PDF Download RIS Download Bibtex

Abstract

In recent years, the rate of urban growth has increased rapidly especially in Egypt, due to the increase in population growth. The Egyptian government has set up new cities and established large factories, roads and bridges in new places to solve this trouble. This paper investigates the change monitoring of land surface temperature, urban and agricultural area in Egypt especially Kafr EL-Sheikh city as case study using high resolution satellite images. Nowadays, satellite images are playing an important role in detecting the change of urban growth. In this paper, cadastral map for Kafr El-Sheikh city with scale 1:5000, images from Landsat 7 with accuracy 30 meters; images from Google Earth with accuracy 0.5 meter; and images from SAS Planet with accuracy 0.5 m are used where all images are available during the study period (for year’s 2003, 2006, 2009, 2012, 2015 and 2017). The analysis has been performed in a platform of Geographical Information System (GIS) configured with Remote Sensing system using ArcGIS 10.3 and ERDAS Imagine image processing software. From the processing and analysis of the specified images during the studied time period, it is found that the building area was increased by 28.8% from year 2003 up to 2017 from Google Earth images and increased by percentage 34.4% from year 2003 up to year 2017 from supervised Landsat 7 images but for unsupervised Landsat 7 images, the building area was increased by percentage 35.9%. In this study, land surface temperature (LST) was measured also from satellite images for different years through 2003 until 2017. It is deduced that the increase in the building area (urban growth) in the specified city led to increase the land surface temperature (LST) which will affect some agricultural crops. Depending on the results of images analysis, Forecasting models using different algorithms for the urban and agricultural area was built. Finally, it is deduced that integration of spacebased remote sensing technology with GIS tools provide better platform to perform such activities.

Go to article

Authors and Affiliations

Zaki M. Zeidan
Ashraf A.A. Beshr
Sanaa S. Soliman
Download PDF Download RIS Download Bibtex

Abstract

In recent times there have been many changes on Earth, which have appeared after anthropogenic impact. Finding solu-tions to problems in the environment requires studying the problems quickly, make proper conclusions and creating safe and useful measures. Humanity has always had an effect on the environment. There can be many changes on the Earth be-cause of direct and indirect effects of humans on nature. Determining these changes at the right time and organizing meas-urements of them requires the creation of quick analysing methods. This development has improved specialists’ interest for remote sensing (RS) imagery. Moreover, in accordance with analysis of literature sources, agriculture, irrigation and ecolo-gy have the most demand for RS imagery. This article is about using geographic information system (GIS) and RS technol-ogies in cadastre and urban construction branches. This article covers a newly created automated method for the calculation of artificial surface area based on satellite images. Accuracy of the analysis is verified according to the field experiments. Accuracy of analysis is 95%. According to the analysis from 1972 to 2019 artificial area enlargement is 13.44%. This method is very simple and easy to use. Using this data, the analysis method can decrease economical costs for field measures. Using this method and these tools in branches also allows for greater efficiency in time and resources.
Go to article

Bibliography

ARIFJANOV A., APAKHODJAEVA T., AKMALOV SH. 2019a. Calculation of losses for transpiration in water reservoirs with using new computer technologies. In: International Conference on Information Science and Communication Technologies (ICISCT). 04–06.11.2019 Tashkent. IEEE p. 1–4. DOI 10.1109/ICISCT47635.2019.9011883.
ARIFJANOV A., SAMIEV L., APAKHODJAEVA T., AKMALOV SH. 2019b Distribution of river sediment in channels. In: XII International Scientific Conference on Agricultural Machinery Industry. 10–13.09.2019 Don State Technical University, Russian Federation. IOP Conference Series: Earth and Environmental Science. Vol. 403, 012153. DOI 10.1088/1755-1315/403/1/012153.
AYRES-SAMPAIO D., TEODORO A.C., FREITAS T.A., SILLERO N. 2012. The use of remotely sensed environmental data in the study of asthma disease. Remote Sensing for Agriculture, Ecosystems, and Hydrology 14. Vol. 8531, 853124. DOI 10.1117/12. 974539.
BALAWEJDER M., NoGa K. 2016. The influence of the highway route on the development of patchwork of plots. Journal of Water and Land Development. No. 30 p. 3–11. DOI 10.1515/jwld-2016-0015.
BEKHIRA A., HABI M., MORSLI B. 2019. Management of hazard of flooding in arid region urban agglomeration using HEC-RAS and GIS software: The case of the Bechar's city. Journal of Water and Land Development. No. 42 (VII–IX) p. 21–32. DOI 10.2478/jwld-2019-0041.
BIEDA A., BYDŁOSZ J., WARCHOŁ A., BALAWEJDER M. 2020. Historical underground structures as 3D cadastral objects. Remote Sensing. Vol. 12. Iss. 10, 1547 p. 1–29. DOI 10.3390/rs12101547.
BRIGANTE R., RADICIONINI F. 2014. Use of multispectral sensors with high spatial resolution for territorial and environmental analysis. Geographia Technica. Vol. 9. No. 2 p. 9–20.
CAPOLUPO A., MONTERISI C., TARANTINO E. 2020. Landsat Images Classification Algorithm (LICA) to automatically extract land cover information in Google Earth engine environment. Remote Sensing. Vol. 12. Iss. 7, 1201. DOI 10.3390/ rs12071201.
CHEN Z., NING X., ZHANG J. 2012. Urban land cover classification based on WorldView-2 image data. In: International Symposium on Geomatics for Integrated Water Resource Management. IEEE p. 1–5.
DINKA M.O., CHAKA D.D. 2019. Analysis of land use/land cover change in Adei watershed, Central Highlands of Ethiopia. Journal of Water Land Development. No. 41 p. 146–153. DOI 10.2478/jwld-2019-0025.
GINIYATULLINA O.L., POTAPOV V.P., SCHACTLIVTCEV E.L. 2014 Integral methods of environmental assessment at mining regions based on remote sensing data. International Journal of Engineering and Innovative Technology (IJEIT). Vol. 4. Iss. 4 p. 220–224.
Impactmin 2010. WP4-Satelite remote sensing deliverable D4. 1 Report on the limitations and potentials of satelite EO data [online]. Contract No. 244166. Impact Monitoring of Mineral Resources Exploitation pp. 143. [Access 08.05.2020]. Available at: https://impactmin.geonardo.com/downloads/impactmin_d41.pdf
MACHAULT V., VIGNOLLES C., BORCHI F., VOUNATSOU P., BRIOLANT S., LACAUX J.P., ROGIER C. 2011. The use of remotely sensed environmental data in the study of malaria. Geospatial Health. Vol. 5. No. 2 p. 151–168. DOI 10.1117/12.974539.
NAVULUR K. 2006. Multispectral image analysis using the object-oriented paradigm. UK CRC Press. ISBN 987-1-4200-4306-8 pp. 204.
NAVULUR K., PACIFICI F., BAUGH B. 2013. Trends in optical commercial remote sensing industry [Industrial profiles]. IEEE Geoscience and Remote Sensing Magazine. Vol. 1. Iss. 4 p. 57–64. DOI 10.1109/MGRS.2013.2290098.
RAMOELO A., CHO M. 2014. Dry season biomass estimation as an indicator of rangeland quantity using multi-scale remote sensing data. In: 10th International Conference on African Association of Remote Sensing of Environment (AARSE). University of Johannesburg p. 27–31.
RONCZYK M., WOJTASZEK-LEVENTE H. 2012. Object-based classification of urban land cover extraction using high spatial resolution imagery. In: The impact of urbanization, industrial, agricultural and forest technologies on the natural environment. Eds. M. Neményi, B. Heil. Sopron. Nyugat-magya¬rországi Egyetem p. 171–181.
TOGAEV I., NURKHODJAEV A., AKMALOV SH. 2020. Structurally decryptable complexes-a new taxonomic unit in cosmo-geological research. In: E3S Web of Conferences. EDP Sciences. Vol. 164 p. 07027. DOI 10.1051/e3sconf/2020164 07027
TUKHLIEV N., KREMENSOVA А. 2007. O’zbekiston milliy ensiklopediyasi [National encyclopedy of Uzbekistan]. State Scientific Publishing. Tashkent. Uzbekistan p. 560.
Uzkommunkhizmat 2010. Water supply of Syr Darya province. World Bank Project [online]. Uzbekistan, Tashkent Agency «Uzkommunservice» pp. 152. [Access 12.02.2020]. Available at: http://documents1.worldbank.org/curated/pt/198941468127470671/pdf/E23850P11176001C10EIA71Report1Final.pdf
XU D., GUO X., LI Z., YANG X., YIN X. 2014. Measuring the dead component of mixed grassland with Landsat Imagery. Remote Sensing of Environment. Vol. 142 p. 33–43. DOI 10.1016.j.rse.2013.11.017.

Go to article

Authors and Affiliations

Aybek M. Arifjanov
1
ORCID: ORCID
Shamshodbek B. Akmalov
1
ORCID: ORCID
Luqmon N. Samiev
1
ORCID: ORCID

  1. Tashkent Institute of Irrigation and Agricultural Mechanization Engineers, 39 Kari Niyazov Str. Tashkent 100000, Uzbekistan
Download PDF Download RIS Download Bibtex

Abstract

The article discusses the monitoring of horizontal displacements of the channel of Dniester, the second largest river in Ukraine, based on topographic maps, satellite images, as well as geological, soil and quaternary sediment maps. Data pro-cessing has been carried out using the geographic information system ArcGIS. The monitoring over a 140-year period (1874–2015) has been performed at the river’s transition from a mountainous to plain terrain on the 67 km section of the river. During this period, maximum displacements in the study area were 590–620 m. The research examines water protection zones needed for channel displacements. The article describes the monitoring methodology and analyses changes over a pe-riod of 18 years (2000–2018). The analysis includes the anthropogenic influence on the channel in the monitoring area. Results of the research may be useful for construction and cadastral works related to the channel in the area concerned, as well as for water management.
Go to article

Authors and Affiliations

Volodymyr Shevchuk
1
ORCID: ORCID
Khrystyna Burshtynska
1
ORCID: ORCID
Iryna Korolik
1
ORCID: ORCID
Maksym Halochkin
1
ORCID: ORCID

  1. Lviv Polytechnic National University, Institute of Geodesy, Department of Photogrammetry and Geoinformatics, Stepana Bandery St, 12, Lviv, Lviv Oblast, 79000, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

This paper presents unsupervised change detection method to produce more accurate change map from imbalanced SAR images for the same land cover. This method is based on PSO algorithm for image segmentation to layers which classify by Gabor Wavelet filter and then K-means clustering to generate new change map. Tests are confirming the effectiveness and efficiency by comparison obtained results with the results of the other methods. Integration of PSO with Gabor filter and k-means will providing more and more accuracy to detect a least changing in objects and terrain of SAR image, as well as reduce the processing time.
Go to article

Bibliography


[1] Feng Gao, Junyu Dong, Bo Li, Qizhi Xu, Cui Xie, “Change detection from synthetic aperture radar images based on neighborhood-based ratio and extreme learning machine,” J. Appl. Remote Sens. 10(4), 046019 (2016), https://doi.org/10.1117/1.JRS.10.046019.
[2] Turgay Celik, " Unsupervised Change Detection in Satellite Images Using Principal Component Analysis and k-Means Clustering", IEEE geoscience and remote sensing letters, vol. 6, no. 4, October 2009.
[3] Xinzheng Zhang, Guo Liu, Ce Zhang, Peter M. Atkinson, Xiaoheng Tan, Xin Jian, Xichuan Zhou and Yongming Li, " Two-Phase Object-Based Deep Learning for Multi-Temporal SAR Image Change Detection", Remote Sensing. 2020.
[4] Karpenko A.P., Seliverstov E.Yu. Review of the particle swarm optimization method (PSO) for a global optimization problem. Nauka i obrazovanie. MGTU im. N.E. Baumana [Science and Education of the Bauman MSTU], 2009, no. 3 (in Russ.). https://doi.org/10.7463/00309.0116072.
[5] Xinzheng Zhang, Hang Su, Ce Zhang, Peter M. Atkinson, Xiaoheng Tan, Xiaoping Zeng and Xin Jian." A Robust Imbalanced SAR Image Change Detection Approach Based on Deep Difference Image and PCANet", arXiv.org > cs > arXiv:2003.01768, 2020
[6] Feng Gao, Xiao Wang, Junyu Dong, Shengke Wang, " SAR Image Change Detection Based on Frequency Domain Analysis and Random Multi-Graphs", Journal of Applied Remote Sensing, 2017
[7] Feng Gao, Junyu Dong, Bo Li, and Qizhi Xu, " Automatic Change Detection in Synthetic Aperture Radar Images Based on PCANet", IEEE geoscience and remote sensing letters, vol. 13, no. 12,2016.
[8] Li Yufeng & He Wei, " Research on SAR image change detection algorithm based on hybrid genetic FCM and image registration", Springer Science+Business Media New York 2017.
[9] Yunhao Gao, Feng Gao, Junyu Dong, and Shengke Wang, " Change Detection from Synthetic Aperture Radar Images Based on Channel Weighting-Based Deep Cascade Network", IEEE journal of selected topics in applied earth observations and remote sensing, 2019.
[10] Wenping Ma, Hui Yang, Yue Wu, Yunta Xiong, Tao Hu, Licheng Jiao and Biao Hou, " Change Detection Based on Multi-Grained Cascade Forest and Multi-Scale Fusion for SAR Images", Remote Sensing. 2019.
[11] Jun Wanga, Xuezhi Yangb, Xiangyu Yanga, Lu Jiaa, Shuai Fanga, "Unsupervised change detection between SAR images based on hypergraphs", ISPRS Journal of Photogrammetry and Remote Sensing 164 (2020) 61–72
[12] J Kennedy, R Eberhart. Particle swarm optimization. // Proceedings of IEEE International conference on Neural Networks. – 1995, pp. 1942 - 1948.
[13] Rupak Chakraborty, Rama Sushil, M. L. Garg, " An Improved PSO-Based Multilevel Image Segmentation Technique Using Minimum Cross-Entropy Thresholding", Arabian Journal for Science and Engineering, King Fahd University of Petroleum & Minerals 2018.
[14] Nameirakpam Dhanachandra, Yambem Jina Chanu, "An image segmentation approach based on fuzzy c-means and dynamic particle swarm optimization algorithm", Springer Science+Business Media, LLC, part of Springer Nature 2020.
[15] Jin Liu, Zilu Wu, Qi Li " A Novel Local Feature Extraction Algorithm Based on Gabor Wavelet Transform", ICAIP 2019: Proceedings of the 2019 3rd International Conference on Advances in Image Processing.
[16] David Bařina, “Gabor Wavelets in Image Processing”, Proceedings of conference and competitions student EEICT 2011, Czech Republic, pp. 1-5.
[17] Deepak Verma, Dr. Vijaypal Dhaka, Shubhlakshmi Agrwa, “An Improved Average Gabor Wavelet Filter Feature Extraction Technique for Facial Expression Recognition”, International Journal of Innovations in Engineering and Technology (IJIET), Vol. 2 Issue 4 August 2013, pp. 35-41.
[18] Youguo Li, Haiyan Wu, " A Clustering Method Based on K-Means Algorithm", 2012 International Conference on Solid State Devices and Materials Science
[19] Joaquín Pérez-Ortega, Nelva Nely Almanza-Ortega, Andrea Vega-Villalobos, Rodolfo Pazos-Rangel, Crispín Zavala-Díaz and Alicia Martínez-Rebollar, " The K-Means Algorithm Evolution", book, April 3rd 2019, https://doi.org/10.5772/intechopen.85447
[20] T. Celik, “Unsupervised change detection in satellite images using principal component analysis and k-means clustering,” IEEE Geosci. Remote Sens. Lett., vol. 6, no. 4, pp. 772–776, Oct. 2009.
[21] F. Gao, X. Wang, Y. Gao, J. Dong, and S. Wang, “Sea ice change detection in SAR images based on convolutional-wavelet neural networks” IEEE Geosci. Remote Sens. Lett., vol. 16, no. 8, pp. 1240–1244, Aug. 2019.
[22] Maoguo Gong, Meng Jia, Linzhi Su, Shuang Wang & Licheng Jiao, "Detecting changes of the Yellow River Estuary via SAR images based on a local fit-search model and kernel-induced graph cuts" Journal International Journal of Remote Sensing, 2014, Remote sensing of the China seas
[23] Stelios Krinidis ; Vassilios Chatzis, " A Robust Fuzzy Local Information C-Means Clustering Algorithm", IEEE Transactions on Image Processing , May 2010.
[24] Maoguo Gong, Linzhi Su, Meng Jia, Weisheng Chen, " Fuzzy Clustering With a Modified MRF Energy Function for Change Detection in Synthetic Aperture Radar Images", IEEE Transactions on Fuzzy Systems, Feb. 2014.
Go to article

Authors and Affiliations

Jinan N. Shehab
1
Hussein A. Abdulkadhim
1

  1. University of Diyala, College of Engineering, Dept. of Communication Engineering, Iraq

This page uses 'cookies'. Learn more