Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 15
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the modelling measurement results of the load-displacement relation for scaffold stands and bracings. In the case of stands, there are two sections of curves, i.e. a straight-line and curvilinear section, and in the case of bracings, two straight line sections as well as one curvilinear section are distinguished. As a result of analyses, it is concluded that the sections which can be approximated by means of linear functions should be distinguished in graphs, if possible. On the one hand, this results from the evaluation methods of scaffold components. Nevertheless, the determination of elastic-linear scope of components’ operation is useful in engineering practice during computer calculations. Moreover, the method of determining an intersection point between functions, approximating tests results, along with analysis of the impact of polynomial degree, approximating the research results, on the time and effectiveness of the process of approximating functions selection, are all demonstrated in this article. The proposed method can prove useful in all science fields where curves obtained from any research (laboratory test, in situ test, numerical analysis) require approximation or replacement with a simpler description.

Go to article

Authors and Affiliations

E. Błazik-Borowa
J. Szer
A. Borowa
A. Robak
M. Pieńko
Download PDF Download RIS Download Bibtex

Abstract

Chitosan (CS) is a polysaccharide readily used in tissue engineering due to its properties: similarity to the glycosaminoglycans present in the body, biocompatibility, non-toxicity, antibacterial character and owing to the fact that its degradation that may occur under the influence of human enzymes generates non-toxic products. Applications in tissue engineering include using CS to produce artificial scaffolds for bone regeneration that provide an attachment site for cells during regeneration processes. Chitosan can be used to prepare scaffolds exclusively from this polysaccharide, composites or polyelectrolyte complexes. A popular solution for improving the surface properties and, as a result enhancing cellbiomaterial interactions, is to coat the scaffold with layers of chitosan. The article focuses on a polysaccharide of natural origin – chitosan (CS) and its application in scaffolds in tissue engineering. The last part of the review focuses on bone tissue and interactions between cells and chitosan after implantation of a scaffold and how chitosan’s structure affects bone cell adhesion and life processes.
Go to article

Authors and Affiliations

Anna Kołakowska
1
ORCID: ORCID
Agnieszka Gadomska-Gajadhur
1
ORCID: ORCID
Paweł Ruśkowski
1
ORCID: ORCID

  1. Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

When designing injectable scaffolds for biomedical applications, it is crucial to determine the conditions for the formation of unlimited structures, in particular the kinetics at constant temperature. Despite many studies, these conditions have not been characterized so far after injection, which is such an important application aspect. The aim of the research is to discuss the impact of the injection application on the polymer structure and to propose new criteria for assessing the potential of thermosensitive biopolymer sols, considering the flow under high shear rates during the administration.
Based on the analysis of the obtained results of rheological tests, it was shown that the flow through the needles causes a significant change in the elastic properties that define the polymer structure, with almost unchanged viscous properties. As a consequence, the parameters characterizing the polymer coil change, which, combined with the quantitatively proven fragmentation, indicates that injection application may affect the size of the coils that will not reach the critical size of the aggregating nucleus.
Finally, extended research procedures for the conscious design of injectable scaffolds are proposed as well as key rheological parameters to ensure thermoinduced aggregation preceded by shear during injection are provided.
Go to article

Authors and Affiliations

Anna Rył
1
ORCID: ORCID
Piotr Owczarz
1
ORCID: ORCID

  1. Department of Chemical Engineering, Lodz University of Technology, Wolczanska 213, 93-005 Lodz
Download PDF Download RIS Download Bibtex

Abstract

Polyvinylidene fluoride (PVDF) is one of the most important piezoelectric polymers. Piezoelectricity in PVDF appears in polar b and ɣ phases. Piezoelectric fibers obtained by means of electrospinning may be used in tissue engineering (TE) as a smart analogue of the natural extracellular matrix (ECM). We present results showing the effect of rotational speed of the collecting drum on morphology, phase content and in vitro biological properties of PVDF nonwovens. Morphology and phase composition were analyzed using scanning electron microscopy (SEM) and Fourier-transform infrared spectroscopy (FTIR), respectively. It was shown that increasing rotational speed of the collector leads to an increase in fiber orientation, reduction in fiber diameter and considerable increase of polar phase content, both b and g. In vitro cell culture experiments, carried out with the use of ultrasounds in order to generate electrical potential via piezoelectricity, indicate a positive effect of polar phases on fibroblasts. Our preliminary results demonstrate that piezoelectric PVDF scaffolds are promising materials for tissue engineering applications, particularly for neural tissue regeneration, where the electric potential is crucial.

Go to article

Authors and Affiliations

A. Zaszczyńska
P.Ł. Sajkiewicz
A. Gradys
R. Tymkiewicz
O. Urbanek
D. Kołbuk
Download PDF Download RIS Download Bibtex

Abstract

Scaffolding is equipment usually used at construction sites. A scaffolding structure is lightweight and made of elements used many times. The characteristics of scaffolding make it susceptible to dynamic actions present at the structure or occurring nearby. A scaffolding structure of medium size was subjected to analysis in this paper. The structure FEM model was loaded with single force harmonic excitation with various frequencies ranging from 1 Hz to 12 Hz applied in one of many selected points on the scaffolding façade. In the first step, natural frequencies and mode shapes of the analyzed structure were calculated. Then the full dynamic analysis was carried out to obtain maximum displacements of selected control points. The relation of excitation force frequency and location to the amplitudes of generated displacement was observed. It was found that low excitation frequencies close to the natural frequencies of the structure produced vibrations ranging to large areas of the scaffolding surface. Higher excitation frequencies are usually less propagated at the scaffolding but still may produce some discomfort to the structure users in the vicinity of the excitation force location. Scaffolding is equipment usually used at construction sites. A scaffolding structure is lightweight and made of elements used many times. The characteristics of scaffolding make it susceptible to dynamic actions present at the structure or occurring nearby. A scaffolding structure of medium size was subjected to analysis in this paper. The structure FEM model was loaded with single force harmonic excitation with various frequencies ranging from 1 Hz to 12 Hz applied in one of many selected points on the scaffolding façade. In the first step, natural frequencies and mode shapes of the analyzed structure were calculated. Then the full dynamic analysis was carried out to obtain maximum displacements of selected control points. The relation of excitation force frequency and location to the amplitudes of generated displacement was observed. It was found that low excitation frequencies close to the natural frequencies of the structure produced vibrations ranging to large areas of the scaffolding surface. Higher excitation frequencies are usually less propagated at the scaffolding but still may produce some discomfort to the structure users in the vicinity of the excitation force location.
Go to article

Authors and Affiliations

Jarosław Bęc
1
ORCID: ORCID
Ewa Błazik-Borowa
1
ORCID: ORCID
Jacek Szer
2
ORCID: ORCID

  1. Faculty of Civil Engineering and Architecture, Lublin University of Technology, Poland
  2. Faculty of Civil Engineering, Architecture and Environmental Engineering, Lodz University of Technology, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper presents analysis of the vibrational environment on scaffoldings. It is based on the results obtained in the project considering workers safety on scaffoldings. The total number of 120 façade scaffoldings was analysed over a period of two years. One of the issues considered in this project was the vibrations influence on scaffoldings and workers safety. The values of natural frequencies were obtained based on in-situ measurements of free vibrations. Analysis of the tests results made it possible to verify the elaborated numerical models. Values of natural frequencies and displacements in mode shaped from numerical modal analyses were compared with test results. Measurements of forced vibrations were also made with various sources of vibrations active at scaffoldings. The detailed numerical dynamic analysis was performed considering excitation forces variable in time. The obtained results were compared with allowable values according to the appropriate Polish standards. Most influential sources of vibrations for human comfort were indicated in the conclusions.

Go to article

Authors and Affiliations

Jarosław Bęc
ORCID: ORCID
Ewa Błazik-Borowa
ORCID: ORCID
Paulina Jamińska-Gadomska
Tomasz Lipecki
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

Lighting of the workplaces has a large impact on safety, proper vision comfort and visual efficiency. The aim of this article is to present an analysis of the lighting of the workplaces of people working on scaffoldings. The researches were carried out on 23 frame-type facade scaffoldings. The scaffoldings were examined from March to October 2017. Due to the specificity of works performed on scaffoldings, the researches were carried out in accordance with an individually adapted research program. The study analyzed the illuminance at particular points and variability in the lighting uniformity in a given workspace. Analysis of the obtained results showed a large variability in illuminance in workplaces of people working on scaffoldings. The measured illuminance levels in the workspaces on the one hand were higher than the minimum illuminance levels defined by the construction site standards, but on the other hand, illuminance levels that may dazzle the employees were also recorded. The luminous intensity depended on the season, time of day, location of the scaffolding, as well as the presence of a protective net installed on the scaffolding, which reduced the occurrence of values that could lead to situations in which the worker could be dazzled. The protective net installed on the scaffolding also reduces the differences in lighting in the scaffolding workspace, improving the lighting conditions of the workplaces.
Go to article

Authors and Affiliations

Iwona Szer
1
ORCID: ORCID
Jacek Szer
1
ORCID: ORCID

  1. Lodz University of Technology, Department of Building Materials Physics and Sustainable Design, Politechniki 6, 90-924 Łódz, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper discusses service load measurements (weight of construction materials, small equipment and workers) conducted on 120 frame scaffoldings all over Poland in 2016‒2018. Despite the fact that the scaffolding should ensure the safety of its users, most accidents on construction sites are caused by fall from height. Service loads are one of the elements affecting the safety of scaffolding use. On the basis of the studies, maximum load on one platform and maximum load on a vertical scaffolding module for one day were obtained. They were treated as the random variables of the maximum values. Histograms and probability density functions were determined for these variables. The selection of a probability distribution consisted in the selection of a probability density function by means of fitting curves to the study result histograms using the method of least squares. The analysis was performed for distribution Weibull and Gumbel probability density functions which are applied for maximum values of random variables. Parameters of these functions can be used for the purposes of the reliability analysis to calibrate partial safety factors in simulation of service load during the scaffolding failure risk assessment. Besides, the probability of not exceeding the standard loads provided for frame scaffoldings for 120 weeks was established on the aforementioned basis. The results of the presented research show that in Poland there is a high probability of exceeding the permissible service loads in one year and thus there is a high risk of scaffolding damage.
Go to article

Bibliography

  1.  R.I. Harris and N.J. Cook, “The parent wind speed distribution: Why Weibull?”, J. Wind Eng. Ind. Aerodyn. 131, 72‒87 (2014).
  2.  T.M. Lystad, A. Fenercib, and O.Øiseth, “Evaluation of mast measurements and wind tunnel terrain models to describe spatially variable wind field characteristics for long-span bridge design”, J. Wind Eng. Ind. Aerodyn. 179, 558‒573 (2018).
  3.  J.A. Żurański, Effects of the climatic and topographic conditions on wind loads on building structures, Prace Naukowe Instytutu Techniki Budowlanej, Warsaw, 2005.
  4.  J.A. Żurański and A. Sobolewski, Snow loads in Poland in designing and diagnostics of structures, Prace Naukowe Instytutu Techniki Budowlanej, Warsaw, 2016.
  5.  P. Croce, P. Formichi, F. Landi, P. Mercogliano, E. Bucchignani, A. Dosio, and S. Dimova, “The snow load in Europe and the climate change”, Clim. Risk Manag. 20, 138‒154 (2018).
  6.  J. Blanchet, C. Marty, and M. Lehning, “Extreme value statistics of snowfall in the Swiss Alpine region”, Water Resour. Res. 45(5), W05424 (2009).
  7.  B. Ellingwood, T.V. Galambos, J.G. MacGregor, and C.A. Cornell, Development of a probability based load criterion for American National Standard A58, NBS Special Report 577, U.S. Department of Commerce, National Bureau of Standards, 1980.
  8.  R.B. Corotis and V.A. Doshi, “Probability models for live-load survey results”, J. Struct. Div. 103(6), 1257‒1274 (1977).
  9.  R.B. Corotis and V. Jaria, “Stochastic nature of building live loads”, J. Struct. Div. 105(3), 493510 (1979).
  10.  P.L. Chalk and R.B. Corotis, “Probability model for design live loads”, J. Struct. Div. 106(10), 2017‒2033 (1980).
  11.  A.S. Nowak and A.M. Rakoczy, “Uncertainties in the building process”, Bull. Pol. Acad. Sci. Tech. Sci. 61(1), 129‒135 (2013).
  12.  M.G. Stewart, “Optimization of serviceability load combinations for structural steel beam design”, Struct. Saf. 18(2/3), 225‒238 (1996).
  13.  V. Kamjoo and C.D. Eamon, “Reliability-based design optimization of a vehicular live load model”, Eng. Struct. 168, 799‒808 (2018).
  14.  Y. Liu, L. Liu, B. Stratman, and S. Mahadevan, “Multiaxial fatigue reliability analysis of railroad wheels”, Reliab. Eng. Syst. Saf. 93(3), 456‒467 (2008).
  15.  F. Schmidt, B. Jacob, and F. Domprobst, “Investigation of truck weights and dimensions using WIM data”, Transp. Res. Procedia 14, 811‒819 (2016).
  16.  A.S. Nowak, “System reliability models for bridge structures”, Bull. Pol. Acad. Sci. Tech. Sci. 52(4), 321‒328 (2004).
  17.  J. Bojórquez, S.E. Ruiz, B. Ellingwood, A. Reyes-Salazar, and E. Bojórquez, “Reliability-based optimal load factors for seismic design of buildings”, Eng. Struct. 151, 527‒539 (2017).
  18.  D. Sun, B. Chen, and S. Sun, “Study based on bridge health monitoring system on multihazard load combinations of earthquake and truck loads for bridge design in the southeast coastal areas of China”, Shock Vib., 829380, 1‒12 (2015).
  19.  M.G. Stewart, “Reliability-based load factor design model for explosive blast loading”, Struct. Saf. 71, 13‒23 (2018).
  20.  M.G. Stewart, M.D. Netherton, Y. Shi, M. Grant, and J. Mueller, “Probabilistic terrorism risk assessment and risk acceptability for infrastructure protection”, Aust. J. of Struct. Eng. 13(1), 1‒17 (2012).
  21.  EN 12811-1:2003. Temporary works equipment – Part 1: Scaffolds – Performance requirements and general design. European Committee for Standardization, Brussels, 2003.
  22.  AS/NZS 1576.1. Scaffolding. Part 1: General requirements, Council of Standards Australia and Council of Standards New Zealand, Sydney, 2010.
  23.  29 CFR 1926. Safety and health regulations for construction. Scaffold Specifications, Electronic Code of Federal Regulations, https:// ecfr.federalregister.gov/current/title-29/subtitle-B/chapter-XVII (accesed April 2021).
  24.  P. Jamińska-Gadomska, J. Bęc, T. Lipecki, and A. Robak, “Verification of the façade scaffolding computer model”, Arch. Civ. Eng. 64 (1), 41‒53 (2018).
  25.  E. Błazik-Borowa, Loads and actions on scaffolding as engineering structures, Lublin University of Technology, Lublin, 2018, [in Polish].
  26.  H. Bojar, F. Silveira, M. Rebelo, E. Czarnocka, and K. Czarnocki, “Health behaviours in scaffold use risk assessment model – SURAM”, Ann Agric Environ Med. 26(1), 138‒142 (2019).
  27.  M. Jabłoński, I. Szer, and J. Szer, “Probability of occurrence of health and safety risks on scaffolding caused by noise exposure”, J. Civ. Eng. Manag. 24(6), 437‒443 (2018).
  28.  T. Lipecki, P. Jamińska-Gadomska, J. Bęc, and E. Błazik-Borowa, “Façade scaffolding behavior under wind action”, Arch. Civ. Mech. Eng. 20, 27 (2020).
  29.  M. Pieńko, A. Robak, E. Błazik-Borowa, and J. Szer, “Safety conditions analysis of scaffolding on construction sites”, Int. J. Civ. Env. Eng. 12(2), 72‒77 (2018).
  30.  I. Szer, E. Błazik-Borowa, and J. Szer, “The influence of environmental factors on employee comfort based on an example of location temperature”, Arch. Civ. Eng. 63(3), 163–174 (2017).
  31.  B. Hoła and T. Nowobilski, “Analysis of the influence of socio-economic factors on occupational safety in the construction industry”, Sustain. 11, 4469 (2019).
  32.  E. Castillo, A.S. Hadi, N. Balakrishnan, and J.M. Sarabia, Extreme value and related models with applications in engineering and science, John Wiley & Sons, New Jersey, 2005.
  33.  M. Nagode and M. Fajdiga, “The influence of variable operating conditions upon the general multi-modal Weibull distribution”, Reliab. Eng. Syst. Saf. 64, 383‒389 (1999).
  34.  A.S. Nowak and K.R. Collins, Reliability of structures, Taylor & Francis Group, New York, 2013.
  35.  D. Pekasiewicz, “Analysis of chosen estimation methods of maximum statistic limit distribution parameters”, Quant. Meth. Econom. 16(4), 75‒84 (2015), [in Polish].
  36.  E. Błazik-Borowa, J. Szer, A. Borowa, A. Robak, and M. Pieńko, “Modelling of load-displacement curves obtained from scaffold components tests”, Bull. Pol. Acad. Sci. Tech. Sci. 67(2), 317‒327 (2019).
  37.  M.G. Stewart, “Effect of construction and service loads on reliability of existing RC buildings”, J. Str. Eng. 127(10), 1232‒1235 (2001).
  38.  Construction activity (Ruch Budowlany), General Office of Building Control, https://www.gunb.gov.pl/strona/ruch-budowlany, (accesed November 2020), [in Polish].
Go to article

Authors and Affiliations

Ewa Błazik-Borowa
1
ORCID: ORCID
Michał Pieńko
1
ORCID: ORCID
Iwona Szer
2
ORCID: ORCID
Bożena Hoła
3
ORCID: ORCID
Krzysztof Czarnocki
4
ORCID: ORCID

  1. Faculty of Civil Engineering and Architecture, Lublin University of Technology, Nadbystrzycka 40, 20-618 Lublin, Poland
  2. Faculty of Civil Engineering, Architecture and Environmental Engineering, Lodz University of Technology, Politechniki 6, 90-924 Łódz, Poland
  3. Faculty of Civil Engineering, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
  4. Faculty of Management, Lublin University of Technology, Nadbystrzycka 38, 20-618 Lublin, Poland
Download PDF Download RIS Download Bibtex

Abstract

The article presents the results of research, the aim of which was to determine the qualitative and quantitative structure of the causes of accidents that were a result of falling from scaffolding. An original methodology for the classification of accidents with regards to their causes was developed and was based on cluster analysis. An example of using the proposed methodology is provided. 187 post-accident protocols of occupational accidents involving construction scaffolding, which occurred between 2010 and 2017 in selected Polish voivodeships, were analyzed. Afterwards, the matrix of accident causes, for which the calculations were made, was created. Five subsets of accidents were obtained and the accidents were classified to a subset with similar causes.

Go to article

Authors and Affiliations

T. Nowobilski
B. Hoła
Download PDF Download RIS Download Bibtex

Abstract

The basic dynamic characteristics of façade scaffolding are natural frequencies of vibrations and corresponding mode shapes. These properties affect the scaffolding safety, as well as comfort and safety of its users. Many of the dynamic actions present at scaffolding are in the low frequency range, i.e. below 10–15 Hz. The first natural frequency of a structure is usually in the range of 0.7 to 4 Hz which corresponds to resonant frequencies of human body and it means that vibrations induced at scaffolding may strongly affect the human comfort. The easiest way of increasing the rigidity of the structure is by ensuring correct boundary conditions (support, anchorage) and bracing of the structure. The numerical analysis was performed for the real scaffolding structure of medium size. The analysis consisted of natural frequencies calculation for the original structure and for models with modified bracing and anchoring systems. The bracing modifications were introduced by reducing or increasing the number of vertical bracing shafts. The anchor system was modified by reduction of the 6 anchors in the top right corner of the scaffolding in three stages or by evenly removing nearly 1/3 of the total number of anchors. The modifications of bracing and anchor systems resulted in changing the natural frequencies. The increase of natural frequencies due to higher number of anchors and more bracing is not even for all mode shapes. Bracing is more effective in acting against longitudinal vibrations, while anchoring against vibrations perpendicular to the façade.
Go to article

Authors and Affiliations

Jarosław Bęc
1
ORCID: ORCID

  1. Lublin University of Technology, Faculty of Civil Engineering and Architecture, Nadbystrzycka 40St, 20-618 Lublin, Poland
Download PDF Download RIS Download Bibtex

Abstract

This paper presents an analysis of natural vibrations of typical façade scaffolding. Three Finite Element Method models with different levels of accuracy of the real structure of the scaffolding representation were used. Modal analysis was carried out for each of these models. The obtained frequencies and mode shapes were compared with the results from the measurements performed on the full-scale scaffolding. The authors of the paper point out the difficulties arise while modelling such structures, and suggest ways to improve the accuracy of scaffolding computational models.

Go to article

Authors and Affiliations

P. Jamińska-Gadomska
J. Bęc
T. Lipecki
A. Robak
Download PDF Download RIS Download Bibtex

Abstract

The study aimed to produce nano- and microfibrous materials from polyurethane (ChronoFlex®C75A/ C75D in 1,1,1,3,3,3–hexafluoro–2–propanol) by solution blow spinning. Experiments were carried out in order to determine the impact of solution blow spinning parameters on fibre diameter and quality of produced materials. The following properties of produced fibre scaffolds were investigated: fibre size, porosity and pore size, wettability, and mechanical properties. The results confirmed that produced nano- and microfibrous materials could be potentially used as scaffolds in three-dimensional cell and tissue cultures.
Go to article

Authors and Affiliations

Iwona Łopianiak
1
Michał Wojasiński
1
Beata Butruk-Raszeja
1

  1. Warsaw University of Technology, Faculty of Chemical and Process Engineering, Waryńskiego 1, 00-645 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

In this study, a simple and effective way to fabricate highly porous scaffolds with controlled porosity and pore size is demonstrated. Ti-7Zr-6Sn-3Mo shape memory alloy fibers were prepared through a melt overflow process. The scaffolds with porosity of 65-85% and large pores of 100-700 μm in size were fabricated by sintering the as-solidified fibers. Microstructures and transformation behaviors of the porous scaffolds were investigated by means of SEM, DSC and XRD. The scaffolds were composed of β phase at room temperature. Superelasticity with the superelastic recovery strain of 7.4% was achieved by β↔α” phase transformation. An effect of porosity on mechanical properties of porous scaffolds was investigated by using compressive test. As the porosity increased from 65% to 85%, elastic modulus and compressive strength decreased from 0.95 to 0.06 GPa and from 27 to 2 MPa, respectively.

Go to article

Authors and Affiliations

Yeon-Wook Kim
Bagus D. Erlangga
Dalhyun Do
Seong-Min Lee
Download PDF Download RIS Download Bibtex

Abstract

The process of cognitive aging in global sense can be characterised by changes of the fluid and crystallised intelligence. In the context of this explanation the basic question is which cognitive functions and regulatory mechanisms play the basic role of the determinants for cognitive aging. Probable, mechanism of associative memory play a central role in top-down direction of cognitive processing. This type of memory connect the resources/networks of long term memory with the current processing in working memory. Another set of mechanisms concerns with bottom-up direction based on procedural memory, which is fundamental for the functioning of the mind as whole (Tulving theory,1985). Unfortunately, our knowledge about associative memory and its relations to working and procedural memory is incomplete and unclear. The importance of associative memory are partly, empirically supported by classic research on decreasing the cognitive components of intelligence aging, since the fluid and crystallized intelligence where discovered (Horn, Cattell, 1967). Changes of the mind functioning and its cognitive growth/aging can be characterised as a complex chain from primary, biologically determined mind, through Piagetian and Vygotsky’s type of mind to relatively balanced mind.

Go to article

Authors and Affiliations

Czesław S. Nosal
Download PDF Download RIS Download Bibtex

Abstract

The article analyses the issue of the potential development of theoretical thinking in young children. The context for this discussion is found in the cultural and historical development theory of L.S. Vygotsky which constitutes the basis for assumptions regarding the thinking about development and education of children. It highlights the elementary education stage as a very important area of designing „developmental teaching” as understood by Vygotsky. The article emphasizes the role of an adult who builds the scaffolding for the child’s thinking and acting, and establishes the conditions and teaching environment necessary for the performance of a cognitive process directed at the development of theoretical thinking. In the author’s opinion building the foundation for theoretical thinking will be possible when teachers set „the right developmental and educational tasks” for a child who is constructing knowledge.

Go to article

Authors and Affiliations

Ewa Filipiak

This page uses 'cookies'. Learn more