Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

While assessing the effects of climate change at global or regional scales, local factors responsible for climate change are generalized, which results in the averaging of effects. However, climate change assessment is required at a micro-scale to determine the severity of climate change. To ascertain the impact of spatial scales on climate change assessments, trends and shifts in annual and seasonal (monsoon and non-monsoon), rainfall and temperature (minimum, average and maximum) were determined at three different spatial resolutions in India (Ajmer city, Ajmer District and Rajasthan State). The Mann–Kendall (MK), MK test with pre-whitening of series (MK–PW), and Modified Mann–Kendall (MMK) test, along with other statistical techniques were used for the trend analysis. The Pettitt–Mann–Whitney (PMW) test was applied to detect the temporal shift in climatic parameters. The Sen’s slope and % change in rainfall and temperature were also estimated over the study period (35 years). The annual and seasonal average temperature indicates significant warming trends, when assessed at a fine spatial resolution (Ajmer city) compared to a coarser spatial resolution (Ajmer District and Rajasthan State resolutions). Increasing trend was observed in minimum, mean and maximum temperature at all spatial scales; however, trends were more pronounced at a finer spatial resolution (Ajmer city). The PMW test indicates only the significant shift in non-monsoon season rainfall, which shows an increase in rainfall after 1995 in Ajmer city. The Kurtosis and coefficient of variation also revealed significant climate change, when assessed at a finer spatial resolution (Ajmer city) compared to a coarser resolution. This shows the contribution of land use/land cover change and several other local anthropogenic activities on climate change. The results of this study can be useful for the identification of optimum climate change adaptation and mitigation strategies based on the severity of climate change at different spatial scales.

Go to article

Authors and Affiliations

Santosh Pingale
Jan Adamowski
Mahesh Jat
Deepak Khare
Download PDF Download RIS Download Bibtex

Abstract

In this study, cubic and cylindrical cement mortar specimens were first subjected to high temperatures, then the cubic and cylindrical specimens were taken out and conducted with uniaxial compressive test and splitting tensile test, respectively. The effect of the length to side ratio on the uniaxial compressive properties and the effect of thickness-to-diameter ratio on the splitting tensile properties of cement mortar specimens after high temperature were studied. Test results show that: (1) With temperature increasing from 25°C (room temperature) to 400°C, the compressive strength and elastic modulus of cubic specimens with three kinds of side lengths decrease; the decreasing rates of compressive strength and elastic modulus of cubic specimen with side length of 70.7 mm is higher than those of cubic specimens with side length of 100 mm and 150 mm, and the strain at the peak stress of cubic specimens with three kinds of side lengths increase. (2) After the same temperature, the tensile strength of cylindrical specimen decreases with the thickness-to-diameter ratio increasing from 0.5 to 1.0. The decreasing rate of tensile strength of cylindrical specimen with thickness-to-diameter ratio is highest when the temperature is 25°C (room temperature), followed by that after the temperature of 200°C, and that after the temperature of 400°C is the lowest.

Go to article

Authors and Affiliations

L.X. Xiong
X.J. Zhang
Z.Y. Xu
D.X. Geng

This page uses 'cookies'. Learn more