Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 44
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Investor bears responsibility for proper preparation of the investment process. One of his tasks is to prepare the project documentation and obtaina building permit. Frequently, during his work, there are situations and events whose im pact interferes with the design solutions. Regardless of reasons, alterations to a project constitute a source of cost risk. In each case, the Investor should be prepared for this type of a risk. Exposure to risk should be taken into account in the planning stage of the investment. Also, a model of investment execution should be chosen at this stage. The type of model is associated with the distribution of risk throughout the project. The aim of this paper is to identify events that generate risk related to alterations to Project Documentation in the context of the selection of the investment executionmodel.

Go to article

Authors and Affiliations

I. Rybka
E. Bondar-Nowakowska
Download PDF Download RIS Download Bibtex

Abstract

The Job Shop scheduling problem is widely used in industry and has been the subject of study by several researchers with the aim of optimizing work sequences. This case study provides an overview of genetic algorithms, which have great potential for solving this type of combinatorial problem. The method will be applied manually during this study to understand the procedure and process of executing programs based on genetic algorithms. This problem requires strong decision analysis throughout the process due to the numerous choices and allocations of jobs to machines at specific times, in a specific order, and over a given duration. This operation is carried out at the operational level, and research must find an intelligent method to identify the best and most optimal combination. This article presents genetic algorithms in detail to explain their usage and to understand the compilation method of an intelligent program based on genetic algorithms. By the end of the article, the genetic algorithm method will have proven its performance in the search for the optimal solution to achieve the most optimal job sequence scenario.
Go to article

Authors and Affiliations

Habbadi SAHAR
1
Brahim HERROU
Souhail SEKKAT
2

  1. Sidi Mohamed Ben Abdellah University, Faculté des Sciences Techniques de Fès, Industrial Engineering Department, Morocco
  2. Ecole Nationale Supérieure d’Arts et Métiers ENSAM MEKNES, Industrial Engineering Department, Morocco
Download PDF Download RIS Download Bibtex

Abstract

This work is interested to optimize the job shop scheduling problem with a no wait constraint. This constraint occurs when two consecutive operations in a job must be processed without any waiting time either on or between machines. The no wait job shop scheduling problem is a combinatorial optimization problem. Therefore, the study presented here is focused on solving this problem by proposing strategy for making Jaya algorithm applicable for handling optimization of this type of problems and to find processing sequence that minimizes the makespan (Cmax). Several benchmarks are used to analyze the performance of this algorithm compared to the best-known solutions.
Go to article

Authors and Affiliations

Aimade Eddine BOUGLOULA
Download PDF Download RIS Download Bibtex

Abstract

One of the most popular heuristics used to solve the permutation flowshop scheduling problem (PFSP) is the NEH algorithm. The reasons for the NEH popularity are its simplicity, short calculation time, and good-quality approximations of the optimal solution for a wide range of PFSP instances. Since its development, many works have been published analysing various aspects of its performance and proposing its improvements. The NEH algorithm includes, however, one unspecified and unexamined feature that is related to the order of jobs with equal values of total processing time in an initial sequence. We examined this NEH aspect using all instances from Taillard’s and VRF benchmark sets. As presented in this paper, the sorting operation has a significant impact on the results obtained by the NEH algorithm. The reason for this is primarily the input sequence of jobs, but also the sorting algorithm itself. Following this observation, we have proposed two modifications of the original NEH algorithm dealing with sequencing of jobs with equal total processing time. Unfortunately, the simple procedures used did not always give better results than the classical NEH algorithm, which means that the problem of sequencing jobs with equal total processing time needs a smart approach and this is one of the promising directions for further research.
Go to article

Authors and Affiliations

Radosław Puka
1
Jan Duda
1
A. Stawowy
ORCID: ORCID

  1. Bialystok University of Technology, Faculty of Management Engineering, Poland
Download PDF Download RIS Download Bibtex

Abstract

Small bucket models with many short fictitious micro-periods ensure high-quality schedules in multi-level systems, i.e., with multiple stages or dependent demand. In such models, setup times longer than a single period are, however, more likely. This paper presents new mixedinteger programming models for the proportional lot-sizing and scheduling problem (PLSP) with setup operations overlapping multiple periods with variable capacity.
A new model is proposed that explicitly determines periods overlapped by each setup operation and the time spent on setup execution during each period. The model assumes that most periods have the same length; however, a few of them are shorter, and the time interval determined by two consecutive shorter periods is always longer than a single setup operation. The computational experiments showthat the newmodel requires a significantly smaller computation effort than known models.
Go to article

Bibliography

[1] I. Barany, T.J. van Roy and L.A. Wolsey: Uncapacitated lot-sizing: The convex hull of solutions. Mathematical Programming Studies, 22 (1984), 32–43, DOI: 10.1007/BFb0121006.
[2] G. Belvaux and L.A. Wolsey: Modelling practical lot-sizing problems as mixed-integer programs. Management Science, 47(7), (2001), 993–1007, DOI: 10.1287/mnsc.47.7.993.9800.
[3] J.D. Blocher, S. Chand and K. Sengupta: The changeover scheduling problem with time and cost considerations: Analytical results and a forward algorithm. Operations Research, 47(7), (1999), 559-569, DOI: 10.1287/opre.47.4.559.
[4] W. Bozejko, M. Uchronski and M. Wodecki: Multi-machine scheduling problem with setup times. Archives of Control Sciences, 22(4), (2012), 441– 449, DOI: 10.2478/v10170-011-0034-y.
[5] W. Bozejko, A. Gnatowski, R. Idzikowski and M. Wodecki: Cyclic flow shop scheduling problem with two-machine cells. Archives of Control Sciences, 27(2), (2017), 151–167, DOI: 10.1515/acsc-2017-0009.
[6] D. Cattrysse, M. Salomon, R. Kuik and L. vanWassenhove: A dual ascent and column generation heuristic for the discrete lotsizing and scheduling problem with setup times. Management Science, 39(4), (1993), 477–486, DOI: 10.1287/mnsc.39.4.477.
[7] K. Copil, M. Worbelauer, H. Meyr and H. Tempelmeier: Simultaneous lotsizing and scheduling problems: a classification and review of models. OR Spectrum, 39(1), (2017), 1–64, DOI: 10.1007/s00291-015-0429-4.
[8] A. Drexl and K. Haase: Proportional lotsizing and scheduling. International Journal of Production Economics, 40(1), (1995), 73–87, DOI: 10.1016/0925-5273(95)00040-U.
[9] B. Fleischmann: The discrete lot-sizing and scheduling problem. European Journal of Operational Research, 44(3), (1990), 337-348, DOI: 10.1016/0377-2217(90)90245-7.
[10] K. Haase: Lotsizing and scheduling for production planning. Number 408 in Lecture Notes in Economics and Mathematical Systems. Springer-Verlag, Berlin, 1994.
[11] W. Kaczmarczyk: Inventory cost settings in small bucket lot-sizing and scheduling models. In Total Logistic Management Conference, Zakopane, Poland, November 25-28 2009.
[12] W. Kaczmarczyk: Modelling multi-period set-up times in the proportional lot-sizing problem. Decision Making in Manufacturing and Services, 3(1-2), (2009), 15–35, DOI: 10.7494/dmms.2009.3.2.15.
[13] W. Kaczmarczyk: Proportional lot-sizing and scheduling problem with identical parallel machines. International Journal of Production Research, 49(9), (2011), 2605–2623, DOI: 10.1080/00207543.2010.532929.
[14] W. Kaczmarczyk: Valid inequalities for proportional lot-sizing and scheduling problem with fictitious microperiods. International Journal of Production Economics, 219(1), (2020), 236–247, DOI: 10.1016/j.ijpe.2019.06.005.
[15] W.Kaczmarczyk: Explicit modelling of multi-period setup times in proportional lot-sizing problem with constant capacity. (2021), Preprint available at Research Square, DOI: 10.21203/rs.3.rs-1086310/v1.
[16] U.S. Karmarkar and L. Schrage: The deterministic dynamic product cycling problem. Operations Research, 33(2), (1985), 326–345, DOI: 10.1287/opre.33.2.326.
Go to article

Authors and Affiliations

Waldemar Kaczmarczyk
1

  1. Department of Strategic Management, AGH University of Science and Technology, Al.Mickiewicza 30, 30-059, Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

Given that a source is located underground and detected by sounds that cannot be completely known or predicted, every stage of the operation from grade changes to product sales exhibits uncertainties. Parameters and constraints used in mining optimizations (sales price, costs, efficiency, etc.) comprise uncertainties. In this research, chrome open-pit resource optimization activities were performed in the province of Adana, Turkey. Metallurgical recovery, which is considered a constant as an optimization parameter in mining software, has been optimized as a variable based on fixed and variable values related to the waste material grade of processing. Based on scenario number 7, which yields the highest net present value in both optimizations, this difference corresponds with an additional $1.4 million, i.e., 7% minimum. When the number of products sold were compared, a difference of 25,977 tons of concentrate production was noted (Optimization II produces less than Optimization I). In summary, concentrated efficiency and economic findings show that using variable metallurgical recovery parameters in NPV estimation improves optimization success by reducing the level of uncertainty.
Go to article

Authors and Affiliations

Furkan K. Kasa
1
ORCID: ORCID
Ahmet Dağ
1
ORCID: ORCID

  1. Çukurova University, Department of Mining Engineering, Adana, Turkey
Download PDF Download RIS Download Bibtex

Abstract

The paper brings forward an idea of multi-threaded computation synchronization based on the shared semaphored cache in the multi-core CPUs. It is dedicated to the implementation of multi-core PLC control, embedded solution or parallel computation of models described using hardware description languages. The shared semaphored cache is implemented as guarded memory cells within a dedicated section of the cache memory that is shared by multiple cores. This enables the cores to speed up the data exchange and seamlessly synchronize the computation. The idea has been verified by creating a multi-core system model using Verilog HDL. The simulation of task synchronization methods allows for proving the benefits of shared semaphored memory cells over standard synchronization methods. The proposed idea enhances the computation in the algorithms that consist of relatively short tasks that can be processed in parallel and requires fast synchronization mechanisms to avoid data race conditions.
Go to article

Authors and Affiliations

Adam Milik
1
Michał Walichiewicz
1

  1. Silesian University of Technology, Faculty of Automatic Control, Electronics and Computer Science, Digital Systems Division, Gliwice, Poland
Download PDF Download RIS Download Bibtex

Abstract

In this work we consider a problem from the field of power- and energy-aware scheduling, in which a set of batteries have to be charged in a minimum time. The formulated problem is to schedule independent and nonpreemptable jobs to minimize the schedule length, where each job requires some amount of power and consumes a certain amount of energy during its processing. We assume that the power demand of each job linearly decreases with time, as it is the case when Li-ion batteries are being charged. For the assumed job model we prove that each next job should be started as soon as the required amount of power is available. Basing on the proven theorem we formulate a procedure generating a minimum-length schedule for an assumed order of jobs. We also analyze the case of identical jobs, and show some interesting properties of this case.

Go to article

Authors and Affiliations

R. Różycki
G. Waligóra
J. Węglarz
Download PDF Download RIS Download Bibtex

Abstract

With its position as the capital, Hanoi is the political center as well as the second largest economic center of the country. Therefore, the city is always allocated a large budget in construction investment to create material facilities for political tasks and economic and social development. During the implementation of construction projects, a number of difficulties and limitations have appeared. In which, projects are delayed in construction and disbursement, reducing investment efficiency and not meeting the expectations of the government and people. From this fact, the authors have conducted a study to evaluate the causes affecting the time schedule of construction projects in Hanoi. The method F-APH (Fuzzy Analytic Hierarchy Process) was used to analyze data objectively and accurately about the causes affecting the time schedule. From there, these causes are classified into groups of subjective causes (from within the project) and groups of objective causes (from outside the project). The results show that subjective causes, originating from project participants, have a stronger influence than objective causes. A number of specific proposals to the actors involved in construction projects are made to eliminate or limit the impact of the causes of construction progress.
Go to article

Authors and Affiliations

Dinh Tuan Hai
1
ORCID: ORCID

  1. Hanoi Architectural University, Faculty of Civil Engineering, Km 10, Nguyen Trai Street, Thanh Xuan District, Hanoi City, Vietnam
Download PDF Download RIS Download Bibtex

Abstract

Complex construction projects require appropriate planning that allows for time and cost optimization, maximization of the use of available resources and appropriate investment control. Scheduling is a complicated process, due to the uncertainties and risks associated with construction works, the paper describes the development of the scheduling method traditionally used in Poland, based on data from KNR catalogs, by using the RiskyProject Professional program. In the RiskyProject Professional program, the risk and uncertainty with reference to a specific construction project were modeled, and the calculation results were compared with the real time of the project implementation. The conclusions from the work carried out confirm that the SRA (Schedule Risk Analysis) analysis of the base schedule allows for a more faithful representation of the actual conditions of a construction project. The probability of investment realization generated on the basis of the SRA analysis may be assumed at the level of 75÷90%.
Go to article

Authors and Affiliations

Paulina Kostrzewa-Demczuk
1
ORCID: ORCID
Magdalena Rogalska
2
ORCID: ORCID

  1. Kielce University of Technology, Faculty of Civil Engineering and Architecture, Al. Tysiąclecia Państwa Polskiego 7, 25-314 Kielce, Poland
  2. Lublin University of Technology, Faculty of Civil Engineering and Architecture, Nadbystrzycka St. 40, 20-618 Lublin, Poland
Download PDF Download RIS Download Bibtex

Abstract

The aim of the work was to develop a prioritizing and scheduling method to be followed in small and medium-sized companies operating under conditions of non-rhythmic and nonrepeatable production. A system in which make to stock, make to order and engineer to order (MTS, MTO and ETO) tasks are carried out concurrently, referred to as a non-homogenous system, has been considered. Particular types of tasks have different priority indicators. Processes involved in the implementation of these tasks are dependent processes, which compete for access to resources. The work is based on the assumption that the developed procedure should be a universal tool that can be easily used by planners. It should also eliminate the intuitive manner of prioritizing tasks while providing a fast and easy to calculate way of obtaining an answer, i.e. a ready plan or schedule. As orders enter the system on an ongoing basis, the created plan and schedule should enable fast analysis of the result and make it possible to implement subsequent orders appearing in the system. The investigations were based on data from the non-homogenous production system functioning at the Experimental Plant of the Łukasiewicz Research Network – Institute of Ceramics and Building Materials, Refractory Materials Division – ICIMB. The developed procedure includes the following steps: 1 – Initial estimation of resource availability, 2 – MTS tasks planning, 3 – Production system capacity analysis, 4 – ETO tasks planning, 5 – MTO orders planning, 6 – Evaluation of the obtained schedule. The scheduling procedure is supported by KbRS (Knowledge-based Rescheduling System), which has been modified in functional terms for the needs of this work assumption.
Go to article

Authors and Affiliations

Bożena Skołud
1
Agnieszka Szopa
2
Krzysztof Kalinowski
1

  1. Silesian University of Technology, Faculty of Mechanical Engineering, Poland
  2. The Institute of Ceramics and Building Materials, Refractory Materials Division in Gliwice, Poland
Download PDF Download RIS Download Bibtex

Abstract

Most scheduling methods used in the construction industry to plan repetitive projects assume that process durations are deterministic. This assumption is acceptable if actions are taken to reduce the impact of random phenomena or if the impact is low. However, construction projects at large are notorious for their susceptibility to the naturally volatile conditions of their implementation. It is unwise to ignore this fact while preparing construction schedules. Repetitive scheduling methods developed so far do respond to many constructionspecific needs, e.g. of smooth resource flow (continuity of work of construction crews) and the continuity of works. The main focus of schedule optimization is minimizing the total time to complete. This means reducing idle time, but idle time may serve as a buffer in case of disruptions. Disruptions just happen and make optimized schedules expire. As process durations are random, the project may be delayed and the crews’ workflow may be severely affected to the detriment of the project budget and profits. For this reason, the authors put forward a novel approach to scheduling repetitive processes. It aims to reduce the probability of missing the deadline and, at the same time, to reduce resource idle time. Discrete simulation is applied to evaluate feasible solutions (sequence of units) in terms of schedule robustness.

Go to article

Authors and Affiliations

Piotr Jaśkowski
ORCID: ORCID
Sławomir Biruk
ORCID: ORCID
Michał Krzemiński
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The construction contractor is concerned with reducing the cost of the project, including reducing unnecessary downtime. This is achieved when resources are fully utilized; this means the crews work continuously moving without interruption from one location to the other. However, any disturbance in the optimally scheduled workflow caused by random events is likely to result in delays, interruptions in the crews work, and productivity losses. There is therefore a need for scheduling methods that allow plans to be more resilient to disruptions and ensure a reduction in downtime and implementation costs. The authors put forward a proactive-reactive approach to the schedule risk management. Proposed method makes it possible to protect schedule deadlines from the impact of risk factors by allocating time buffers (proactive approach). It also takes into account the measures that managers take during execution in response to delays that occur, such as changing construction methods, employing extra resources, or working overtime (reactive approach). It combines both ideas and is based on project simulation technique. The merits of the proposed approach are illustrated by a case of a repetitive project to erect a number of buildings. The presented example proves that the proposed method enables the planner to estimate the scale of delays of processes’ start and consider the impact of measures to reduce duration of processes in particular locations taken in reaction to delays. Thus, it is possible to determine the optimal schedule, at which the costs of losses associated with delays and downtime are minimal.
Go to article

Authors and Affiliations

Piotr Jaskowski
1
ORCID: ORCID
Sławomir Biruk
1
ORCID: ORCID
Michał Krzeminski
2
ORCID: ORCID

  1. Lublin University of Technology, Faculty of Civil Engineering and Architecture, Nadbystrzyckastr. 40, 20-618 Lublin, Poland
  2. Warsaw University of Technology, Faculty of Civil Engineering, Al. Armii Ludowej 16, 00-637 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

It is a usual practice for a contractor to deliver several projects at a time. Typically, the projects involve similar types of works and share the same pool of resources (i.e. construction crews). For this reason, the company’s portfolio of orders considered for a particular planning horizon can be modeled as a project with repeatable processes to be performed in heterogeneous units located in a number of construction sites. Its scheduling requires determining the best sequence of the resources’ moving from unit to unit while minding the due dates related with particular orders as well as resource continuity constraints. The authors present a model of this scheduling problem in the form of a mixed-integer linear program. The aim is to schedule a portfolio of projects in a way that minimizes the total of the resource idle time-related costs, the indirect costs, and the delay penalties. The model can be solved by means of a general-purpose solver. The model is applied to schedule a portfolio of multifamily housing projects.
Go to article

Authors and Affiliations

Piotr Jaśkowski
1
ORCID: ORCID
Sławomir Biruk
1
ORCID: ORCID
Michał Krzemiński
2
ORCID: ORCID

  1. Lublin University of Technology, Faculty of Civil Engineering and Architecture, Nadbystrzycka str. 40, 20-618 Lublin, Poland
  2. Warsaw University of Technology, Faculty of Civil Engineering, Armii Ludowej str. 16, 00-637 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

Duration of construction projects can be reduced by harmonizing construction processes: adjusting productivity rates of specialized crews and enabling the crews to work in parallel as in a production line. This is achievable in the case of projects whose scope can be divided into units where a similar type of work needs to be conducted in the same sequence. A number of repetitive project scheduling methods have been developed to assist the planner in minimizing the execution time and smoothing resource profiles. However, the workflow, especially in construction, is subject to disturbance, and the actual process durations are likely to vary from the as-scheduled ones. The inherent variability of process durations results not only in delays of a particular process in a particular unit but also in the propagation of disruptions throughout the initially well-harmonized schedule. To counteract the negative effects of process duration variability, a number of proactive scheduling methods have been developed. They consist in some form of predicting the conditions to occur in the course of the project and implementing a strategy to mitigate disturbance propagation. This paper puts forward a method of scheduling repetitive heterogeneous processes. The method aims to reduce idle time of crews. It is based on allocating time buffers in the form of breaks between processes conducted within units. The merits of the method are illustrated by an example and assessed in the course of a simulation experiment.
Go to article

Authors and Affiliations

Piotr Jaśkowski
1
ORCID: ORCID
Sławomir Biruk
1
ORCID: ORCID
Michał Krzemiński
2
ORCID: ORCID

  1. Lublin University of Technology, Faculty of Civil Engineering and Architecture, Nadbystrzycka str.40, 20-618 Lublin, Poland
  2. Warsaw University of Technology, Faculty of Civil Engineering, Armii Ludowej str. 16, 00-637 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

We consider the real-life problem of planning tasks for teams in a corporation, in conditions of some restrictions. The problem takes into account various constraints, such as for instance flexible working hours, common meeting periods, time set aside for self-learning, lunchtimes and periodic performance of tasks. Additionally, only a part of the team may participate in meetings, and each team member may have their own periodic tasks such as self-development. We propose an algorithm that is an extension of the algorithm dedicated for scheduling on parallel unrelated processors with the makespan criterion. Our approach assumes that each task can be defined by a subset of employees or an entire team. However, each worker is of a different efficiency, so task completion times may differ. Moreover, the tasks are prioritized. The problem is NP-hard. Numerical experiments cover benchmarks with 10 instances of 100 tasks assigned to a 5-person team. For all instances, various algorithms such as branch-and-bound, genetic and tabu search have been tested.
Go to article

Authors and Affiliations

Marek Bazan
1 2
Czesław Smutnicki
1
Maciej E. Marchwiany
2

  1. Wroclaw University of Scienceand Technology, Department of Computer Engineering, Wrocław, Poland
  2. JT Weston sp. z o.o. Warszawa, Poland
Download PDF Download RIS Download Bibtex

Abstract

Production problems have a significant impact on the on-time delivery of orders, resulting in deviations from planned scenarios. Therefore, it is crucial to predict interruptions during scheduling and to find optimal production sequencing solutions. This paper introduces a selflearning framework that integrates association rules and optimisation techniques to develop a scheduling algorithm capable of learning from past production experiences and anticipating future problems. Association rules identify factors that hinder the production process, while optimisation techniques use mathematical models to optimise the sequence of tasks and minimise execution time. In addition, association rules establish correlations between production parameters and success rates, allowing corrective factors for production quantity to be calculated based on confidence values and success rates. The proposed solution demonstrates robustness and flexibility, providing efficient solutions for Flow-Shop and Job-Shop scheduling problems with reduced calculation times. The article includes two Flow-Shop and Job-Shop examples where the framework is applied.
Go to article

Authors and Affiliations

Mateo DEL GALLO
Filippo Emanuele CIARAPICA
Giovanni MAZZUTO
Maurizio BEVILACQUA
Download PDF Download RIS Download Bibtex

Abstract

A method of creating production schedules regarding production lines with parallel machines is presented. The production line setup provides for intermediate buffers located between individual stages. The method mostly concerns situations when part of the production machines is unavailable for performance of operations and it becomes necessary to modify the original schedule, the consequence of which is the need to build a new schedule. The cost criterion was taken into account, as the schedule is created with the lowest possible costs regarding untimely completion of products (e.g. fines for delayed product completion). The proposed method is relaxing heuristics, thanks to which scheduling is performed in a relatively short time. This was confirmed by the presented results of computational experiments. These experiments were carried out for the rescheduling of machine parts production.

Go to article

Authors and Affiliations

Marek Magiera
Download PDF Download RIS Download Bibtex

Abstract

Optimization in mine planning could improve the economic benefit for mining companies. The main optimization contents in an underground mine includes stope layout, access layout and production scheduling. It is common to optimize each part sequentially, where optimal results from one phase are treated as the input for the next phase. The production schedule is based on the mining design. Access layout plays an important role in determining the connection relationships between stopes. This paper proposes a shortest-path search algorithm to design a network that automatically connects each stope. Access layout optimization is treated as a network flow problem. Stopes are viewed as nodes, and the roads between the stopes are regarded as edges. Moreover, the decline location influences the ore transport paths and haul distances. Tree diagrams of the ore transportation path are analyzed when each stope location is treated as an alternative decline location. The optimal decline location is chosen by an enumeration method. Then, Integer Programming (IP) is used to optimize the production scheduling process and maximize the Net Present Value (NPV). The extension sequence of access excavation and stope extraction is taken into account in the optimization model to balance access development and stope mining. These optimization models are validated in an application involving a hypothetical gold deposit, and the results demonstrate that the new approach can provide a more realistic solution compared with those of traditional approaches.

Go to article

Authors and Affiliations

Jie Hou
Guoqing Li
Nailian Hu
Download PDF Download RIS Download Bibtex

Abstract

A machine learning model was developed to support irrigation decisions. The field research was conducted on ‘Gala’ apple trees. For each week during the growing seasons (2009–2013), the following parameters were determined: precipitation, evapotranspiration (Penman–Monteith formula), crop (apple) evapotranspiration, climatic water balance, crop (apple) water balance (AWB), cumulative climatic water balance (determined weekly, ΣCWB), cumulative apple water balance (ΣAWB), week number from full bloom, and nominal classification variable: irrigation, no irrigation. Statistical analyses were performed with the use of the WEKA 3.9 application software. The attribute evaluator was performed using Correlation Attribute Eval with the Ranker Search Method. Due to its highest accuracy, the final analyses were performed using the WEKA classifier package with the J48graft algorithm. For each of the analysed growing seasons, different correlations were found between the water balance determined for apple trees and the actual water balance of the soil layer (10–30 cm). The model made correct decisions in 76.7% of the instances when watering was needed and in 87.7% of the instances when watering was not needed. The root of the classification tree was the AWB determined for individual weeks of the growing season. The high places in the tree hierarchy were occupied by the nodes defining the elapsed time of the growing season, the values of ΣCWB and ΣAWB.
Go to article

Authors and Affiliations

Waldemar Treder
1
ORCID: ORCID
Krzysztof Klamkowski
1
ORCID: ORCID
Katarzyna Wójcik
1
ORCID: ORCID
Anna Tryngiel-Gać
1
ORCID: ORCID

  1. National Institute of Horticultural Research, Konstytucji 3 Maja St, 1/3, 96-100 Skierniewice, Poland
Download PDF Download RIS Download Bibtex

Abstract

The unpredictable and huge data generation nowadays by smart devices from IoT and mobile Crowd Sensing applications like (Sensors, smartphones, Wi-Fi routers) need processing power and storage. Cloud provides these capabilities to serve organizations and customers, but when using cloud appear some limitations, the most important of these limitations are Resource Allocation and Task Scheduling. The resource allocation process is a mechanism that ensures allocation virtual machine when there are multiple applications that require various resources such as CPU and I/O memory. Whereas scheduling is the process of determining the sequence in which these tasks come and depart the resources in order to maximize efficiency. In this paper we tried to highlight the most relevant difficulties that cloud computing is now facing. We presented a comprehensive review of resource allocation and scheduling techniques to overcome these limitations. Finally, the previous techniques and strategies for allocation and scheduling have been compared in a table with their drawbacks.
Go to article

Authors and Affiliations

Abbas M. Ali Al-muqarm
1 2
Naseer Ali Hussien
3

  1. University of Kufa, Iraq
  2. Computer Technical Engineering Department, The Islamic University, Iraq
  3. Alayen University, Iraq
Download PDF Download RIS Download Bibtex

Abstract

Workflow Scheduling is the major problem in Cloud Computing consists of a set of interdependent tasks which is used to solve the various scientific and healthcare issues. In this research work, the cloud based workflow scheduling between different tasks in medical imaging datasets using Machine Learning (ML) and Deep Learning (DL) methods (hybrid classification approach) is proposed for healthcare applications. The main objective of this research work is to develop a system which is used for both workflow computing and scheduling in order to minimize the makespan, execution cost and to segment the cancer region in the classified abnormal images. The workflow computing is performed using different Machine Learning classifiers and the workflow scheduling is carried out using Deep Learning algorithm. The conventional AlexNet Convolutional Neural Networks (CNN) architecture is modified and used for workflow scheduling between different tasks in order to improve the accuracy level. The AlexNet architecture is analyzed and tested on different cloud services Amazon Elastic Compute Cloud- EC2 and Amazon Lightsail with respect to Makespan (MS) and Execution Cost (EC).
Go to article

Bibliography

  1. A.M. Manasrah and H. Ba Ali, “Workflow scheduling using hybrid GA-PSO algorithm in cloud computing,” Wireless Commun. Mob. Comput., vol. 15, no. 3, pp. 1–16, 2018, doi: 10.1155/2018/1934784.
  2.  S.G. Ahmad, C.S. Liew, E.U. Munir, A.T. Fong, and S.U. Khan, “A hybrid genetic algorithm for optimization of scheduling workflow applications in heterogeneous computing systems,” J. Parallel Distrib. Comput., vol. 87, no. 2, pp. 80–90, 2016, doi: 10.1016/j. jpdc.2015.10.001.
  3.  H. Alaskar, A. Hussain, N. Al-Aseem, P. Liatsis, and D. Al-Jumeily, “Application of convolutional neural networks for automated ulcer detection in wireless capsule endoscopy images,” Sensors., vol. 19, no. 6, pp. 1265–1281, 2019, doi: 10.3390/s19061265.
  4.  L. Teylo, L. Arantes, P. Sens, and L.M.A. Drummond, “A dynamic task scheduler tolerant to multiple hibernations in cloud environments,” J. Cluster Comput., vol. 21, no. 5, pp. 1–23, 2020, doi: 10.1007/s10586-020-03175-2.
  5.  M. Sardaraz and M. Tahir, “A parallel multi-objective genetic algorithm for scheduling scientific workflows in cloud computing,” Int. J. Distri. Sensor Net., vol. 16, no. 8, pp. 1–10, 2020, doi: 10.1177/1550147720949142.
  6.  M. Hosseinzadeh, M.Y. Ghafour, and H.K. Hama, “Multi-objective task and workflow scheduling approaches in cloud computing: a comprehensive review,” J. Grid Comput., vol. 18, no. 3, pp. 327–356, 2020, doi: 10.1007/s10723-020-09533-z.
  7.  C.L. Chen, M.L. Chiang, and C.B. Lin, “The high performance of a task scheduling algorithm using reference queues for cloud- computing data centers,” Electronics, . vol. 9, no. 1, pp. 371–379, 2020, doi: 10.3390/electronics9020371.
  8.  Y. Hu, H. Wang, and W. Ma, “Intelligent Cloud workflow management and scheduling method for big data applications,” J. Cloud Comp, vol. 9, no. 1, pp. 1–13, 2020, doi: 10.1186/s13677-020-00177-8.
  9.  M. Grochowski, A. Kwasigroch, and A. Mikołajczyk,” Selected technical issues of deep neural networks for image classification purposes,” Bull. Polish Acad. Sci. Tech. Sci., vol. 67, no. 2, pp. 363–376, 2019, doi: 10.24425/bpas.2019.128485.
  10.  A.A. Nasr, N.A. El-Bahnasawy, and G. Attiya, “Cost-effective algorithm for workflow scheduling in cloud computing under deadline constraint,” Arab. J. Sci. Eng., vol.44, no. 4, pp. 3765–3780, 2019, doi: 10.1007/s13369-018-3664-6.
  11.  Z. Swiderska-Chadaj, T. Markiewicz, J. Gallego, G. Bueno, B. Grala, and M. Lorent, “Deep learning for damaged tissue detection and segmentation in Ki-67 brain tumor specimens based on the U-net model,” Bull. Polish Acad. Sci. Tech. Sci., vol. 66, no. 6, pp. 849–856, 2018, doi: 10.24425/bpas.2018.125932.
  12.  Y. Cui and Z. Xiaoqing, “Workflow tasks scheduling optimization based on genetic algorithm in Clouds,” in IEEE 3rd Int. Conf. on Cloud Computing and Big Data Analysis (ICCCBDA), Chengdu, 2018, pp. 6–10, doi: 10.1109/ICCCBDA.2018.8386458.
  13.  T. Wang, Z. Liu, Y. Chen, Y. Xu, and X. Dai, “Load balancing task scheduling based on Genetic algorithm in Cloud Computing,” in IEEE 12th Int. Conf. on Dependable, Autonomic and Secure Computing, Dalian, 2014, pp. 146–152, doi: 10.1109/DASC.2014.35.
  14.  X. Zhao, Y. Wu, G. Song, Z. Li, Y. Zhang, and Y. Fan, “A deep learning model integrating FCNNs and CRFs for brain tumor segmentation,” Med. Imag. Anal., vol. 43, no. 4, pp.  98–111, 2018, doi: 10.1016/j.media.2017.10.002.
  15.  C. Liu, R. Zhao, W. Xie, and M. Pang, “Pathological lung segmentation based on random forest combined with deep model and multi- scale superpixels,” Neu. Proc, Let., vol. 52, no. 2, pp. 1631–1649, 2020, doi: 10.1007/s11063-020-10330-8.
  16.  C. Zhang, J. Zhao, Ji. Niu, and D. Li, “New convolutional neural network model for screening and diagnosis of mammograms,” PLoS One., vol. 15, no. 8, pp. 67–80, 2020, doi: 10.1371/journal.pone.0237674.
  17.  L.D. Nicanor, H.R. Orozco Aguirre, and V.M. Landassuri Moreno, “An assessment model to establish the use of services resources in a cloud computing scenario,” J. High Perf. Vis. Int., vol. 12, no. 5, pp. 83–100, 2020, doi: 10.1007/978-981-15-6844-2_7.
  18.  V. Magudeeswaran and J. Fenshia Singh, “Contrast limited fuzzy adaptive histogram equalization for enhancement of brain images,” Int. J. Imag. Sys. and Tech., vol. 27, no. 1, pp. 98–103, 2017, doi: 10.1002/ima.22214.
  19.  S.P. Cleary and J.S. Prell, “Liberating native mass spectrometry from dependence on volatile salt buffers by use of Gábor transform,” Int. J. Imag. Syst. Tech., vol. 20, no. 4, pp. 519–523, 2019, doi: 10.1002/cphc.201900022.
  20.  V. Srivastava, R.K. Purwar, and A. Jain, “A dynamic threshold‐based local mesh ternary pattern technique for biomedical image retrieval,” Int. J. Imag. Sysy. Tech., vol.29, no. 2, pp. 168–179, 2019, doi: 10.1002/ima.22296.
  21.  J.H. Johnpeter and T. Ponnuchamy, “Computer aided automated detection and classification of brain tumors using CANFIS classification method,” Int. J. Imag. Sysy. Tech., vol.29, no. 4, pp. 431–438, 2019, doi: 10.1002/ima.22318.
  22.  N. Kumar and D. Kumar, “Classification using artificial neural network optimized with bat algorithm”, Int. J. Innovative Tech. Exploring Eng. (IJITEE), vol. 9, no. 3, pp.  696–700, 2020, doi: 10.35940/ijitee.C8378.019320.
  23.  A.S. Mahboob and S.H. Zahiri, “Automatic and heuristic complete design for ANFIS classifier, network: computation in neural systems,” J. Net. Comput. Neu. Syst., vol. 30, no. 4, pp. 31–57, 2019, doi: 10.1080/0954898X.2019.1637953.
  24.  C. Shorten and T.M. Khoshgoftaar, “A survey on image data augmentation for deep learning,” J. Big. Data., vol.  60, no. 6, pp. 1–48, 2019, doi: 10.1186/s40537-019-0197-0.
Go to article

Authors and Affiliations

P. Tharani
1
A.M. Kalpana
1

  1. Department of Computer Science and Engineering, Government College of Engineering, Salem-636011, Tamil Nadu, India
Download PDF Download RIS Download Bibtex

Abstract

The problem of performing software tests using Testing-as-a-Service cloud environment is considered and formulated as an~online cluster scheduling on parallel machines with total flowtime criterion. A mathematical model is proposed. Several properties of the problem, including solution feasibility and connection to the classic scheduling on parallel machines are discussed. A family of algorithms based on a new priority rule called the Smallest Remaining Load (SRL) is proposed. We prove that algorithms from that family are not competitive relative to each other. Computer experiment using real-life data indicated that the SRL algorithm using the longest job sub-strategy is the best in performance. This algorithm is then compared with the Simulated Annealing metaheuristic. Results indicate that the metaheuristic rarely outperforms the SRL algorithm, obtaining worse results most of the time, which is counter-intuitive for a metaheuristic. Finally, we test the accuracy of prediction of processing times of jobs. The results indicate high (91.4%) accuracy for predicting processing times of test cases and even higher (98.7%) for prediction of remaining load of test suites. Results also show that schedules obtained through prediction are stable (coefficient of variation is 0.2‒3.7%) and do not affect most of the algorithms (around 1% difference in flowtime), proving the considered problem is semi-clairvoyant. For the Largest Remaining Load rule, the predicted values tend to perform better than the actual values. The use of predicted values affects the SRL algorithm the most (up to 15% flowtime increase), but it still outperforms other algorithms.

Go to article

Authors and Affiliations

J. Rudy
C. Smutnicki
Download PDF Download RIS Download Bibtex

Abstract

The new industrial era, industry 4.0, leans on Cyber Physical Systems CPS. It is an emergent approach of Production System design that consists of the intimate integration between physical processes and information computation and communication systems. The CPSs redefine the decision-making process in shop floor level to reach an intelligent shop floor control. The scheduling is one of the most important shop floor control functions. In this paper, we propose a cooperative scheduling based on multi-agents modelling for Cyber Physical Production Systems. To validate this approach, we describe a use case in which we implement a scheduling module within a flexible machining cell control tool.
Go to article

Authors and Affiliations

Hassan Khadiri
1
Souhail Sekkat
2
Brahim Herrou
3

  1. Sidi Mohamed Ben Abdellah University, Laboratory of Industrial Technologies, Morocco
  2. Moulay Ismail University, ENSAM-Meknes, Morocco
  3. Sidi Mohamed Ben Abdellah University, Superior School of Technology, Morocco

This page uses 'cookies'. Learn more