Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 7
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The properties of the nonlinear phenomenon in water, including sea water, have been well known for many decades. The feature of the non homogeneous distribution of the speed of sound along the depth of the sea is very interesting from the physical and technical point of view. It is important especially in the observation of underwater area by means of acoustical method (Grelowska et al., 2013; 2014). The observation of the underwater space has been carried out for more than hundred years. In the second half of the twentieth century we observed very intense trend of development of the measuring methods of underwater sound speed. It was done mainly in the linear sound propagation aspect. At the end of 20th century nonlinear devices were invented. Thus, from this point of view, knowledge on the nonlinear properties of the sea water is the matter of interest. The phenomenon of nonlinear distortion of elastic waves, and the same the efficiency of nonlinear transfer of energy from the primary wave to the higher harmonic components depend on properties of the medium, especially on the material constant known as the nonlinearity parameter B/A. The Baltic Sea is a specific reservoir with untypically low salinity and low depth (Grelowska, 2000). In the paper results of investigation of nonlinear properties of the South and the Central Baltic by means of thermodynamic method are presented.
Go to article

Authors and Affiliations

Grażyna Grelowska
Eugeniusz Kozaczka
Download PDF Download RIS Download Bibtex

Abstract

Accidental oil spills at open sea is a common environmental problem. They lead to degradation of sea and shoreline life. In the last ten years there has been an increased interest in bioremediation using the enzymatic activity of the naturally occurring microorganisms. In this work the potential of mixed microbial cultures for biodegradation of crude oil in seawater and sand has been examined. Artificial seawater supplemented with nitrogen and phosphorus was inoculated with cultures isolated from refinery sludge. The same cultures were used for experiments in sand polluted by 5% (v/w) of crude oil. These experiments were performed in sterile and semi-natural (not sterile) conditions to see the degradation potential of isolated cultures, their growth characteristics and possible antagonisms between supplemented microorganisms and natural microflora. During the experiments the oxygen demand, number of bacteria (cfu) and optical density (OD660 ) were monitored. After 14 days of cultivation, the concentration of total petroleum hydrocarbons (TPH) in all samples was measured. All tested cultures had a potential for degradation of hydrocarbons in seawater and sand. After two weeks of experiment, loss of hydrocarbons in seawater polluted with crude oil was between 56.8% (A2 culture) and 64.4% (Al culture). The most effective culture for bioaugmentation of seawater does not have to be the best solution for bioaugmcntation of sand. In sand the best degraders in sterile and semi-natural conditions were found in the mixed cultures isolated from Corinth refinery sludge. For this culture concentration of hydrocarbons in sterile sand was 73.2% lower than in control sample and in non-sterile sand 70.5% lower than in control (sterile sand) without bioaugmentation. Finally, the addition of seawater and fertilizers to sand had also a positive influence on contaminants degradation by naturally occurring microorganisms (48%). Experiments performed with different environments (seawater and sand) and under different conditions (sterilized material and semi-natural conditions) confirmed that cultures should be tested in semi-natural conditions especially when indigenous microflora cans posse's high degradation potential. Allochtonie cultures, very active in sterile conditions, after inoculation to natural environment can even slow down the degradation.
Go to article

Authors and Affiliations

Wioletta Przystaś
Nikos Pasadakis
Nicolas Kalogerakis
Download PDF Download RIS Download Bibtex

Abstract

This experiment aimed to determine the effect of adaptive duration to saline water on behaviors, weight gain and blood biochemical parameters in growing goats. The experiment was arranged in a completely randomized design, which included four treatments with five animals per group. The goats were administered either fresh water (control) or seawater with a salinity of 1.5%, with varying durations of adaptation to seawater. The adaptive durations included an abrupt change (A0) from fresh water to seawater with a salinity of 1.5% or stepwise adaptation either 4 (A4) or 7 (A7) days of increasing saline concentrations. The results showed that dry matter intake in the non-adapted goats (A0 group) was lower than that of the control group or the adapted goats throughout the experiment (p<0.05). In contrast, water intake from drinking saline water was greater than that in the control group (p<0.05). Body weigh did not differ among the treatments; however, non-adapted goats exhibited a lower weight gain than the adapted goats (p<0.05). The goats in the A0 and A4 groups exhibited increased plasma levels of urea, AST, and ALT compared with the control and A7 groups. However, blood electrolyte levels remained unchanged and were within the normal range for goats. Therefore, it is concluded that the stepwise adaptation to seawater with a salinity of 1.5% for 21 days has no influence on productivity and health status of goats.
Go to article

Bibliography

1. Al-Ramamneh D, Riek A, Gerken M (2012) Effect of water restriction on drinking behaviour and water intake in German black-head mutton sheep and Boer goats. Animal 6: 173-178.
2. Assad F, El-Sherif MMA (2002) Effect of drinking saline water and feed shortage on adaptive responses of sheep and camels. Small Rumin Res 45: 279-290.
3. Association of Official Analytical Chemists (AOAC) (1990) Official Method of Analysis, 15th ed., Virginia, USA. Association of Offi-cial Agricultural Chemists, Inc.
4. Bahman A, Rooket J, Topps J (1993) The performance of dairy cows offered drinking water of low or high salinity in a hot arid climate. Animal Science 57(1): 23-28.
5. Do Nguyen DK, Semsirmboon S, Chaiyabutr N, Thammacharoen S (2022) Effects of Low Dietary Cation and Anion Difference on Blood Gas, Renal Electrolyte, and Acid Excretions in Goats in Tropical Conditions. Animals (Basel) 12: 3444.
6. Cardoso EDA, Furtado DA, Ribeiro NL, Saraiva EP, do Nascimento JWB, de Medeiros AN, Pereira PHB (2021) Intake salinity water by creole goats in a controlled environment: ingestive behavior and physiological variables. Trop Anim Health Prod 53: 1-7.
7. Costa RG, Ribeiro NL, Nobre PT, Carvalho FFR, Medeiros AN, Martins FE (2019) Ingestive behavior and efficacy of male sheep housed in different stocking densities. Rev Bras de Zootec 46: e20180219
8. Custodio SAS, Tomaz MPP, Silva DAL, Goulart RO, Dias KM, Carvalho ER (2017) Feeding behavior of beef cattle fed different for-ages and housed in individual or collective pens. Anim Behav Biometeorol 5: 20-28.
9. Dunson WA (1974) Some aspects of salt and water balance of feral goats from arid islands. Am J Physiol 226: 662-669.
10. Eltayeb EE (2006) Effect of salinity of drinking water and dehydration on thermo regulation, blood and urine composition in nubian goats. In: M. Vet. Sc. Thesis Faculty of Veterinary Medicine, University of Khartoum, Sudan.
11. Enke N, Brinkmann L, Runa RA, Südekum KH, Tholen E, Gerken M (2022) Drinking behaviour of llamas (Lama glama) in choice tests for fresh or saline water. Small Rumin Res 216: 1-9.
12. Fahmy AA, Youssef KM, El Shaer HM (2010) Intake and nutritive value of some salt-tolerant fodder grasses for sheep under saline conditions of South Sinai, Egypt. Small Rumin Res 91:110–115.
13. Furtado DA, Carvalho Júnior SB, Souza BB, Dantas NLB, Rodrigues LR (2021) Ingestive behavior of santa inês sheep under ther-moneutrality and thermal stress upon consumption of saline water. Engenharia Agrícola, 41(1), 19-24.
14. Ítavo LCV, Souza S R M B O, Rimoli J, Ítavo C C B F, Dias AM (2008) Diurnal intake behavior of bovines in continuous or rotational grazing. Arch de Zootec 57: 43-52.
15. Jackson PGG, Cockcroft PD (2002) Clinical examination of farm animals. Blackwell Science, Oxford, UK, pp 303-305.
16. Kattnig RM, Pordomingo AJ, Schneberger AG, Duff GC, Wallance JD (1992) Influence of saline water on intake, digesta kinetics, and serum profiles of steers. J Range Manage 45: 514-518.
17. Kii WY, Dryden GM (2005) Effect of drinking saline water on food and water intake, food digestibility, and nitrogen and mineral bal-ances of rusa deer stags (Cervus timorensis russa). Anim Sci 81: 99-105.
18. López A, Arroquy J, Juárez Sequeira A, García M, Nazareno M, Coria H, Distel R (2014) Effect of protein supplementation on tropical grass hay utilization by beef steers drinking saline water. J Anim Sci 92: 2152- 2160.
19. McGregor BA (2004) Water quality and provision for goats. Australian Government. Rural Industries Research and Development Cor-poration. p 19.
20. Mdletshe ZM, Chimonyo M, Marufu MC, Nsahlai IV (2017) Effects of saline water consumption on physiological responses in Nguni goats. Small Rumin Res 153: 209-211.
21. Metwally NH (2001) Studies on some physiological and behavioural aspects in camels. M.Sc. Thesis. Monoufia University, Egypt.
22. Nguyen NA (2017) Historic drought and salinity intrusion in the Mekong Delta in 2016: Lessons learned and response solutions. Viet J Sci Technol Eng 59: 93-96.
23. Nguyen T, Truong VK, Nguyen VH, Nguyen TN, Thammacharoen S (2022a) Effects of high salinity in drinking water on behaviors, growth and renal electrolyte excretion in crossbred Boer goats under tropical conditions. Vet World 15: 834-840.
24. Nguyen T, Nguyen TN, Nguyen THN, Thammacharoen S (2022b) The effects of high saline water on physiological responses, nutrient digestibility and milk yield in lactating crossbred goats. Livest Res Rural Develop 34: 01-08.
25. Nguyen T, Truong VK, Nguyen TN, Thammacharoen S (2023) Salt tolerance threshold and physiological responses in Bach Thao goats drank diluted seawater under tropical conditions. Vet World 16: 1714-1720.
26. Runa RA, Brinkmann L, Gerken M, Riek A (2019) Adaptive capacity of Boer goats to saline drinking water. Animal 13: 2268-2276.
27. Runa RA, Gerken M, Riek A, Brinkmann L (2020) Boer goats physiology adaptation to saline drinking water. Res Vet Sci 129: 120-128.
28. Semsirmboon S, Do Nguyen DK, Chaiyabutr N, Poonyachoti S, Lutz TA, Thammacharoen S (2023) High dietary cation and anion dif-ference and high-dose ascorbic acid modify acid-base and antioxidant balance in dairy goats fed under tropical conditions. Animals (Ba-sel) 13:970
29. Tsukahara Y, Puchala R, Sahlu T, Goetch AL (2016) Effects of level of brackish water on feed intake, digestion, heat energy, and blood constituents of growing Boer and Spanish goat wethers. J Anim Sci 94: 3864-3874.
30. Van Soest PJ, Robertson JB, Lewis BA (1991) Methods for dietary fiber neutral detergent fiber and non-starch polysaccharides in rela-tion to animal nutrition. J Dairy Sci 74: 3583-3597
31. Wilson AD (1975) Influence of water salinity on sheep performance while grazing on natural grassland and saltbush pastures. Australian J Experim Agricul 15: 760-765.
32. Yousfi I, Salem HB, Aouadi D, Abidi S (2016) Effect of sodium chloride, sodium sulfate or sodium nitrite in drinking water on intake, digestion, growth rate, carcass traits and meat quality of Barbarine lamb. Small Rumin Res 143: 43-52.
33. Zoidis E, Hadjigeorgiou I (2018) Effects of drinking saline water on food and water intake, blood and urine electrolytes and biochemical and haematological parameters in goats: a preliminary study. Anim Prod Sci 58: 1822-1828.
Go to article

Authors and Affiliations

T. Nguyen
1
N. Nguyen Trong
2
N. Chaiyabutr
3
S. Thammacharoen
3

  1. Department of Agricultural Technology, College of Rural Development, Can Tho University, 3/2 street, Can Tho city 94000, Vietnam
  2. Department of Animal Science, College of Agriculture, Can Tho University, 3/2 street, Can Tho city 94000, Vietnam
  3. Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, HenriDunang street, Bangkok 10330, Thailand
Download PDF Download RIS Download Bibtex

Abstract

Dramatic population and economic growth result in increasing demand for concrete infrastructure, which leads to an increment of freshwater demand and a reduction of freshwater resources. However, freshwater is a finite resource, which means that freshwater will be used up someday in the future when freshwater demand keeps increasing while freshwater resources are limited. Therefore, replacing freshwater with seawater in concrete blending seems potentially beneficial for maintaining the freshwater resources as well as advantageous alternatives to the construction work near the sea. There have been few experimental research on the effect of blending water salt content on the mechanical and physical characteristics of concrete, particularly high-strength concrete. Therefore, a research study on the influence of salt concentration of blending water on the physical and mechanical properties of high-strength concrete is necessary. This study covered the blending water salinity, which varied from 17.5 g/L to 52.5 g/L and was determined on the physical and mechanical properties, including workability, density, compressive strength, and flexural strength. The test results indicate that the use of sea salt in blending water had a slight negative influence on both the workability and the density of high strength concrete. It also indicates that the use of sea salt in blending water had a positive influence on both the compressive strength and the flexural strength of high-strength concrete in an earlystage.
Go to article

Authors and Affiliations

R.A. Razak
1 2
ORCID: ORCID
K. Yen Ng
2
ORCID: ORCID
M.M. Al Bakri Abdullah
1 3
ORCID: ORCID
Z. Yahya
1 2
ORCID: ORCID
R. Mohamed
1
ORCID: ORCID
K. Muthusamy
4
ORCID: ORCID
W.A.W. Jusoh
5
ORCID: ORCID
M. Nabiałek
6
ORCID: ORCID
B. Jeż
7
ORCID: ORCID

  1. Universiti Malaysia Perlis, Geopolymer and Green Technology, Center of Excellence (CEGeoGTech), Kangar, Malaysia
  2. Universiti Malaysia Perlis (UniMAP), Faculty of Civil Engineering Technology, Perlis, Malaysia
  3. Universiti Malaysia Perlis (UniMAP), Faculty of Chemical Engineering Technology Perlis, Malaysia
  4. Malaysia Pahang, Faculty of Civil Engineering Technology, Universiti Pahang Malaysia
  5. Universiti Tun Hussein Onn, Faculty of Engineering Technology, Pagoh, Johor, Malaysia
  6. Częstochowa University of Technology, Faculty of Production Engineering and Materials Technology, Department of Physics, 19 Armii Krajowej Av., 42-200 Częstochowa, Poland
  7. Czestochowa University of Technology, Faculty of Mechanical Engineering and Computer Science, Department of Technology and Automation, 19c Armii Krajowej Av., 42-200 Czestochowa, Poland
Download PDF Download RIS Download Bibtex

Abstract

A laboratory study was performed to study the effects of various operating factors, viz. adsorbent dose, contact time, solution pH, stirring speed, initial concentration and temperature on the adsorption of triphenyltin chloride (TPT) onto coal fly ash supported nZnO (CFAZ). The adsorption capacity increases with increase in the adsorbent amount, contact time, pH, stirring speed and initial TPT concentration, and decrease with increase in the solution temperature. The adsorption data have been analyzed by Langmuir, Freundlich, Temkin and Dubinin-Radushkevich (D-R) adsorption models to determine the mechanistic parameters associated with the adsorption process while the kinetic data were analyzed by pseudo first-order, pseudo second-order, Elovich, fractional power and intraparticle diffusivity kinetic models. The thermodynamic parameters of the process were also determined. The results of this study show that 0.5 g of CFAZ was able to remove up to 99.60% of TPT from contaminated natural seawater at 60 min contact time, stirring speed of 200 rpm and at a pH of 8. It was also found that the equilibrium and kinetic data fitted better to Freundlich and pseudo second-order models, respectively. It can therefore be concluded that CFAZ can be effectively used for shipyard process wastewater treatment

Go to article

Authors and Affiliations

Olushola S. Ayanda
Olalekan S. Fatoki
Folahan A. Adekola
Bhekumusa J. Ximba
Olatunbosun S. Akinsoji
Leslie F. Petrik
Download PDF Download RIS Download Bibtex

Abstract

The scattering of plane steady-state sound waves from a viscous fluid-filled thin cylindrical shell weak- ened by a long linear slit and submerged in an ideal fluid is studied. For the description of vibrations of elastic objects the Kirchhoff-Love shell-theory approximation is used. An exact solution of this problem is obtained in the form of series with cylindrical harmonics. The numerical analysis is carried out for a steel shell filled with oil and immersed in seawater. The modules and phases of the scattering amplitudes versus the dimensionless wavenumber of the incident sound wave as well as directivity patterns of the scattered field are investigated taking into consideration the orientation of the slit on the elastic shell surface. The plots obtained show a considerable influence of the slit and viscous fluid filler on the diffraction process.
Go to article

Authors and Affiliations

Olexa Piddubniak
Nadia Piddubniak
Download PDF Download RIS Download Bibtex

Abstract

The paper discusses the current prognoses of aquaculture development worldwide putting an emphasis on its effect on the environment and the issue of the protection of water reservoirs in different countries. Water consumption in diversified aquaculture systems is presented herein as well as the characteristics of the mechanical and biological water treatment methods in fish farms, with particular attention paid to the recirculating water systems. New aquaculture technologies using post-production waters are presented. The paper provides a discussion on the contribution of aquaculture to the global greenhouse gas emissions and the means of limiting this emission. The effect of climate change on aquatic ecosystems is presented in the context of the changes of the aquaculture production profile. The paper includes a brief presentation of the methods of mitigating the changes with respect to contamination of aquatic ecosystems as well as climate change. Reducing the water footprint can be achieved through selective breeding, species diversification and implementation of more technologically advanced aquaculture systems such as: integrated multi-trophic aquaculture, aquaponics and recirculation systems in aquaculture. The need for certification of fish farms with water recirculation systems is justified in the paper. The issues addressed herein are summarised and the main areas for extending the research promoting preservation of aquatic ecosystems in aquaculture are presented.
Go to article

Authors and Affiliations

Jacek Wróbel
1
ORCID: ORCID
Małgorzata Gałczyńska
1
ORCID: ORCID
Adam Tański
2
ORCID: ORCID
Agata Korzelecka-Orkisz
2
ORCID: ORCID
Krzysztof Formicki
2
ORCID: ORCID

  1. West Pomeranian University of Technology, Faculty of Environmental Management and Agriculture, Department of Bioengineering, Juliusza Słowackiego St, 17, 71-434 Szczecin, Poland
  2. West Pomeranian University of Technology, Department of Hydrobiology, Ichthyology and Biotechnology of Reproduction, Szczecin, Poland

This page uses 'cookies'. Learn more