Search results

Filters

  • Journals
  • Autorzy
  • Słowa kluczowe
  • Data
  • Typ

Search results

Number of results: 30
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

What do biological powerhouses look like? How do they work? Why does generating a single “dose of energy” demand a highly complicated process? Why do seeds age? Answers to all these questions are to be found in one of the most complex cellular organelles: the mitochondrion.
Go to article

Authors and Affiliations

Joanna Kijowska-Oberc
1
Ewelina Ratajczak
1
Hanna Fuchs
1
Aleksandra Maria Staszak
2

  1. Institute of Dendrology, Polish Academy of Sciences in Kórnik, Poland
  2. Department of Biology and Plant Ecology, University of Bialystok, Poland
Download PDF Download RIS Download Bibtex

Abstract

What strategies do plants use in trying to disperse their seeds, so as to colonize distant areas? Is it more advantageous to have tiny seeds as light as a feather, or tough and heavy acorns?
Go to article

Authors and Affiliations

Ewelina Ratajczak
1
Hanna Fuchs
1
Joanna Kijowska-Oberc
1
Jan Suszka
1
Aleksandra M. Staszak
2

  1. PAS Institute of Dendrology in Kórnik
  2. Faculty of Biology, University of Bialystok

Authors and Affiliations

Mehmet Demir Kaya
1
ORCID: ORCID
Nurgül Ergin
2

  1. Department of Field Crops, Faculty of Agriculture, Eskişehir Osmangazi University, Eskişehir, Turkey
  2. Department of Field Crops, Faculty of Agriculture and Natural Sciences, Bilecik Şeyh Edebali University, Bilecik, Turkey
Download PDF Download RIS Download Bibtex

Abstract

In this study, two species belonging to the genus Allium and distributed in Turkey are investigated. A thick cuticle is observed on the epidermis of the scapes of the species. The epicuticular layer is not evident in Allium scorodoprasum ssp. rotundum (L.) Stearn. Secretory cavities have been formed in the pith region of the species. Vascular bundles are in the form of two rings, one above and one below the sclerenchymatic ring. The cross- section of the leaf of Allium brevicaule Boiss. & Balansa is circular, unlike A. scorodoprasum ssp. rotundum. In both species, the stomata are located lower than the epidermis cells. The seeds of A. brevicaule are smaller than in A. scorodoprasum ssp. rotundum and they are polygonal shaped. The testa cells of A. brevicaule seeds have scalariform and tuberculate ornamentation. A. scorodoprasum seeds have reticulate sculpture testa. The species have sulcate pollen types. The pollen form of A. brevicaule is perprolate, and that of A. scorodoprasum ssp. rotundum is subprolate. The apertures in both species are monosulcus. In A. brevicaule, the sulcus does not extend to the poles at the proximal end. Therefore, the differences in the scape and leaf anatomy, as well as in palynology and micromorphology, can be used to distinguish Allium species.
Go to article

Authors and Affiliations

Sibel Ulcay
1
ORCID: ORCID

  1. Kırşehir Ahi Evran University, Faculty of Agriculture, Department of Field Crops, Turkey
Download PDF Download RIS Download Bibtex

Abstract

On the basis of the presented studies, it was established that seed dressing by coating protects effectively onion crops against onion fly (Hylemyia antiqua Meig.). In all seed dressing treatments, a significant decrease of number of dam- aged plants was found in comparison to the control. The highest efficacy in protection of onion against onion fly was shown in the case of insecticide Super Homai 70 DS. The effectiveness of this seed dressing reached 80.40% in the year 2001 and 85.44% in the year 2002.

Go to article

Authors and Affiliations

Romuald Górski
Małgorzata Mielcarek
Download PDF Download RIS Download Bibtex

Abstract

In view of the ecological hazards of chemicals, pot experiments were conducted to determine the efficacy of Trichoderma sp. against Macrophomina phaseolina. Greenhouse evolution of the interaction between M. phaseolina isolates and Trichoderma sp. isolates revealed a very highly significant (p = 0.0000). M. phaseolina isolate x antagonist isolate interaction for all the following parameters: preemergence damping-off, postemergence damping-off, survival, plant height, and dry weight. This interaction implies that a single isolate of antagonist can be highly effective againstan isolate of M. phaseolina, but may have only minimal effectsonotherisolatesof M. phaseolina. Therefore, isolates of antagonist should be tested against as many isolates of M. phaseolina as possible, as this will improve the chance of identifying antagonist isolates effective against several isolates of M. phaseolina.

Go to article

Authors and Affiliations

Aly A. Aly
Mohamed A. Abdel-Sattar
Moawad R. Omar
Kamel A. Abd-Elsalam
Download PDF Download RIS Download Bibtex

Abstract

Currently, Prosopis laevigata (mesquite) has been affected by the Bruchinae coleoptera pest, whic feeds on its seed and causes significant losses in production and grain storage. In the Hñähñu community El Alberto (Ixmiquilpan, Hidalgo, Mexico), the use of aqueous extracts from garlic and nettle as botanical insecticides against different pests in agricultural fields is a known practice. Herein, we assess the efficacy of the method known by locals in the protection of mesquite seeds. Two tests were conducted: 1) Insecticidal effect on adult bruchins, and 2) Seed preservation test from Bruchinae infestation, with a germination test in seeds exposed to the treatments. There are probable insecticidal effects on immature stages of Bruchinae since there were no mortality effects on their adults during the first test. Mortality on adults in the second test was 75.6% with garlic and 50% with nettle. Nettle extract had more efficacy in seed protection with an infestation rate of 4%, whereas 27.5% of the seeds exposed to garlic extract were infested. Seed germination rate was 2.38% with nettle extract, and 1.19% with garlic extract. The method known by local inhabitants requires modifications to increase its efficacy and possible use in Integrated Pest Management in the future.
Go to article

Authors and Affiliations

Mariana González-Macedo
1
Nathalie Cabirol
1
Marcelo Rojas-Oropeza
1

  1. Functional Soil Microbial Ecology and Environmental Protection Group − Department of Ecology and Natural Resources, Facultad de Ciencias − Universidad Nacional Autonoma de Mexico, Mexico
Download PDF Download RIS Download Bibtex

Abstract

Salinity is one of the most significant abiotic stress factors influencing crop production, especially in arid and semi-arid regions. Plants’ response to salinity stress depends on the cultivated genotype. A pot experiment was conducted to study the impact of two concentrations of sodium chloride (4 and 6 dS∙m–1) on some physiological and production traits of 58 chickpea genotypes. A genetic variation in the response of the investigated chickpea genotypes for NaCl-induced salinity stress was noted. Studied morphophysiological traits and yield components were affected under salt stress in all genotypes tested. Plant height was observed to have the lowest rate of reduction (32%, 48%) at 4 and 6 dS∙m –1, respectively. Leaf stomatal conductance decreased as salinity increased. Salinity stress conditions affected all studied yield components, but there was a genetic variation in the response of the studied genotypes. Under no stress conditions and compared to the other genotypes, the number of pods was significantly higher in BG362 genotype. The seed number was significantly higher in ILC9076 genotype. The 100 seed weight was significantly higher in the genotype ILC2664. The mean seed yield was significantly higher in ILC9354 and the harvest index was significantly higher in ILC8617. In general, salinity stress caused the reduction of all parameters. We assume that the assessment of tolerance of chickpea ( Cicer arietinum L.) genotypes to salinity stress should be based on a complex of morpho-physiological traits and analysis of yield complement.
Go to article

Authors and Affiliations

Hayat Touchan
1
ORCID: ORCID
Oqba Basal
2
ORCID: ORCID

  1. Aleppo University, Faculty of Agriculture, Department of Field Crops, Aleppo, Syria
  2. University of Debrecen, Faculty of Agricultural and Food Sciences and Environmental Management, Department of Applied Plant Biology, Böszörményi Rd, 138/B, 4032, Debrecen, Hungary
Download PDF Download RIS Download Bibtex

Abstract

Fructification of Stratiotes aloides L. is very rarely recorded at present. In general, there are only one sex representatives in each lake basin, which simply makes generative reproduction difficult. The subfossil seeds of Stratiotes aloides have been found in five localities of biogenic accumulation in northern and central Poland.

Go to article

Authors and Affiliations

Mariusz Gałka
Download PDF Download RIS Download Bibtex

Abstract

One of the most serious seed-borne diseases of flax is anthracnose or seedling blight caused by Colletotrichum lini (West.) Toch. This disease affects flax seedlings, leaves, stems, and fruit bags. It causes reductions in linseed germination power, stand density, stem and linseed yield, fibre output and quality. During 1999-2001 experiments were carried out at the Lithuanian Institute ofAgriculture Upyte Experimental Station to test the efficacy of seven fungicides used for seed dressing against flax anthracnose and other seedborne diseases. Experimental findings indicated that 19.0% to 34.0% of flax seeds were annually infected with C. lini (West.) Toch. causing flax anthracnose. As the disease can spread through the soil, on control plots sown with untreated with fungicides seeds 33.0% to 79.5% of seedlings showed symptoms of anthracnose. Seed treatment with Sportak 45 EC used at the dose 0.8 l f1 and Maxim Star 025 FS used at the dose 1.51 t-1 gave the best control of seedling blight causal agents. Their biological efficacy was as follows: against seed anthracnose 97.3% and 96.3%, at seedling stage, 76.5% and 76.3%, at 'fir-tree' stage - 67.8% and 60.4%. Biological efficacy of the other seed treaters was lower. The highest straw yield increases resulted from seed treatment with the Maxim Star 025 FS and Sportak 45 EC - 0.5 and 0.3 t ha" or 11.0% and 6.2%, respectively. The effect of fungicides used for seed treatment on linseed yield was similar. Maxim Star 025 FS increased the yield on average by 22.1%, and Sportak 45 EC and Premis 25 FS by 13. 7% and 13.3%. The other fungicides, except for Raxil 2 WS and Rovral FLO, also had a positive effect on flax straw and linseed yield, however, in all experimental years the increases were not higher than the least significant difference.
Go to article

Authors and Affiliations

Elvyra Gruzdeviene
Zenonas Dabkevicius
Download PDF Download RIS Download Bibtex

Abstract

The aim of the presented investigations was to examine changes in the intensity of dehydrogenase and acid phosphatase activities as well as of the dynamics of selected groups of microorganisms in the soil under the cultivation of winter triticale following the application of the following seed dressings: (a.s.) flutriafol 2.5% + fludioxonil 2.5% in two doses and (a.s.) carboxin and tiuram. The experiment had a field character. The number of microorganisms (total bacteria, fungi, oligotrophic, copiotrophic and Azotobacter) was determined by the plate method on adequate agar substrates. Activity levels of the selected enzymes were defined using the spectrometrical method.

The obtained results indicate a change in the dehydrogenase and phoshatase activity in soil depending on the seed dressing applied in the experiment as well as at the date of investigations. The number of microorganisms in the soil underwent fluctuations depending on the developmental stage of triticale and the applied fungicide. The performed experiment demonstrated that counts of microorganisms in the soil underwent fluctuations depending on the developmental stage of triticale and the applied fungicide.

Go to article

Authors and Affiliations

A. Niewiadomska
Z. Sawińska
A. Wolna-Maruwka
Download PDF Download RIS Download Bibtex

Abstract

The current research aimed to use non traditional methods to control some stored grain insects. The effects of 180 millitesla (mT) magnetic field (MF) for six different exposure periods (3 min, 30 min, 1 h, 12 h, 24 h and 48 h) on mortality (%) of two stored grain insects, Tribolium casteneum adults and Trogoderma granarium larvae, reduction in F1-progeny (%), seeds germination (%) and seed components (%) after 8 months storage period were studied under laboratory conditions. According to results, the mortality (%) of tested insects increased with increasing of MF time exposure. Trogoderma granarium was more resistant than T. casteneum in which mortality reached 56 and 75%, respectively 14 days after from exposure period. Without any negative effect on seeds germination (%) the MF was very effective in protecting stored wheat from insect infestation up to 8 months compared to non-magnetic seeds which became infested after 3 months of storage. Furthermore, the germination (%) was accelerated by 6 h compared to non-magnetic seeds. The MF level caused a slight increase in the percent of total carbohydrate, crude protein and ash while slightly decrease the percent of moisture, total fats and crude fiber.

Go to article

Authors and Affiliations

Doaa Mohamed Zein
Abdelkhalek Hussein
Download PDF Download RIS Download Bibtex

Abstract

Appropriate agrotechnical measures make it possible to optimise plant cultivation and obtain yields of the highest quality with an appropriate economic production index. The aim of the study was to evaluate different sowing density and row spacing on the morphological and mechanical properties of white lupine ( Lupinus albus L.) seeds. The field experiment was conducted at the Experimental Station for Variety Evaluation in Przecław (50°11'25.2" N, 21°28'55.0" E). The experiment was established at two row spacings (15 cm and 30 cm) and three sowing densities (60, 75, 90 plants per m 2). Mechanical parameters evaluated included destructive force FD (N), relative deformation DR (%) and destructive energy ED (mJ). Seed morphological properties such as weight, length and width were also assessed. Sphericity was also calculated. In the present study, improvements in the mechanical properties of the seeds were obtained by increasing the plant density per unit area of the experiment. In the case of morphological characteristics, only the weight of the analysed lupine seeds changed significantly as a result of row spacing. On the other hand, sowing density did not significantly affect morphological traits. of white lupine seeds. Apart from the spacing and sowing density of plants, the weather conditions in particular years of research were an important factor determining the properties of seeds. Determining the optimum sowing density and row spacing in the field contributes to the optimisation of the production process. Quasi-static mechanical tests are often used to obtain reasonable data on the physical properties of plant materials.
Go to article

Authors and Affiliations

Dagmara Migut
1
ORCID: ORCID
Renata E. Tobiasz-Salach
1
ORCID: ORCID
Barbara Stadnik
1
ORCID: ORCID
Piotr Kuźniar
2
ORCID: ORCID

  1. University of Rzeszow, Department of Crop Production, Zelwerowicz 4 St, Rzeszow, Poland
  2. University of Rzeszow, Department of Food and Agriculture Production Engineering, Rzeszow, Poland
Download PDF Download RIS Download Bibtex

Abstract

Rhizoctonia solani was isolated from 91 % of alder and birch seedlings with stem rot symptoms and 2-3% of seeds. Sowing of seeds to substratum infested with R. solani resulted in pre-and postemergence damping off. On leaves and stem parts of alder and birch, inoculated with 3 isolates of R. solani, necrosis spread from 0.22 to 0.52 mm/hr.
Go to article

Authors and Affiliations

Leszek B. Orlikowski
Barbara Duda
Download PDF Download RIS Download Bibtex

Abstract

The experiment was conducted in the years 2001–2003 at the Experimental Station in Złotniki. The aim of the performed investigations was to evaluate economic effectiveness of different fungicidal protection programs in winter wheat. Winter wheat of cv. Sakwa was cultivated using the following two variants of seed treatment: 1) Raxil 060 FS at the dose of 60 ml/100 kg grain, 2) Raxil 060 FS + Latitude 125 FS at the doses of 60 and 200 ml/100 kg, and five variants of fungicidal foliar protection: 1) Vista 228 SE, 2) Sportak Alpha 380 EC, 3) Sportak Alpha 380 EC + Vista 228 SE, 4) Sportak Alpha 380 EC + Vista 228 SE + Juwel 250 SC, 5) control – without protection. The use of the above plant protection products contributed to the increase of winter wheat grain yield from 0.60 t/ha to 2.07 t/ha. This increase of yield covered costs of performed chemical control. The economic analysis showed that most effective variant of winter wheat chemical protection was seed treatment with Latitude 125 FS with additional two foliar treatments with the following fungicides: Sportak Alpha 380 EC and Vista 228 SE. Irrespective of the applied seed dressing, additional application of Juwel 250 SC at the stage of early milk maturity turned out to be economically not justified.

Go to article

Authors and Affiliations

Zuzanna Sawinska
Irena Małecka
Download PDF Download RIS Download Bibtex

Abstract

Cabbage seed weevil (Ceutorhynchus assimilis Payk.) is one of the most important and dangerous pests of oilseed rape in Poland and in other European countries. In contrast to another important oilseed rape insect pest – pollen beetle (Meligethes aeneus F.), little is known about cabbage seed weevil susceptibility level to insecticide active ingredients. Therefore, the aim of this study was to determine the cabbage seed weevil susceptibility to active ingredients from different insecticide groups. Research, carried out in 2015, 2016 and 2017 revealed very high susceptibility of the pest to organophosphates and all pyrethroid active ingredients, except for tau-fluvalinate, lower susceptibility to thiacloprid and very high resistance to indoxacarb from oxadiazines. This information is a basic element for creating integrated pest management strategies for oilseed rape in Poland.
Go to article

Authors and Affiliations

Joanna Zamojska
Daria Dworzańska
Paweł Węgorek
Download PDF Download RIS Download Bibtex

Abstract

Six isolates of Trichoderma spp. (belonging to species; Trichoderma harzianum and T. longibrachiatum) were applied as seed or soil treatments to suppress damping-off of seedlings of ten cotton cultivars under greenhouse conditions. In most cases, cultivar x isolate interaction was a highly significant (p < 0.01) source of variation in the tested seedling growth parameters: incidence of disease, seedling height, and seedling dry weight. This interaction implies that a single isolate of Trichoderma can be highly effective in controlling the disease on a cotton cultivar but may have minimal efficiency in controlling the disease on another cultivar. It was also found that, in most cases, cultivar x isolate x application method was a highly significant source of variation (p < 0.01) in the tested growth parameters. Cotton cultivars showed differences in the disease reaction to the biocontrol agents. In the experiments evaluating the Trichoderma antagonists and their effect on seedling disease, a highly significant (p < 0.01) experimental treatment interaction was found. This interaction suggests that the outcome of cultivar x isolate interaction is markedly affected by the application method. Thus, the application method should be chosen to maximize the outcome of this interaction. The degree of the control of seedling disease in cotton differed according to the isolates of antagonists, the application method and cultivars.

Go to article

Authors and Affiliations

Asran-Amal Abdel-Mongy
Download PDF Download RIS Download Bibtex

Abstract

Seed-borne diseases of wheat such as Fusarium head blight (FHB), a fungal disease caused by several species of Fusarium, results in reduced yield and seed quality. The aim of this study was to identify the Fusarium species, the effect of Fusarium-infected seeds on germination and vigor indices and to determine the location of Fusarium spp. in seeds, as well as to investigate the pathogenicity and variability of aggressiveness of the isolates obtained from pre-basic seeds wheat fields in Iran. According to morphological and molecular characters, the species F. graminearum, F. culmorum, F. avenaceum and F. poae were identified. Among the isolates, F. graminearum was the predominant species with the highest frequency and relative density of 92.9% and 70.9%, respectively. We observed that germination and vigor indices were decreased due to increased Fusarium-infected seeds. Results indicated significant differences among cultivars and seed-borne Fusarium levels. While a higher infection level of Fusarium spp. most commonly occurred in the seed coat, only F. graminearum was observed in embryos. Our study about pathogenicity showed that 77.3% of the Fusarium spp. isolates were not pathogenic and 22.7% isolates of Fusarium spp. were pathogenic or weakly pathogenic. Our results indicated that variability in aggressiveness among isolates of a species and positive correlation may be determined by pathogenicity tests. This is the first time the location of Fusarium spp. in seeds has been identified. It is also the first time that Fusarium-infected seeds in pre-basic seeds wheat fields of Iran have been evaluated.

Go to article

Authors and Affiliations

Farshid Hassani
Leila Zare
Nima Khaledi
Download PDF Download RIS Download Bibtex

Abstract

In this study, rubber seed/shea butter oil was used to formulate core oil. The formulated core oil was characterised. D-optimal mixture design was used for multi response optimisation of the functional properties of rubber seed-shea butter coil oil. Desirable values for some responses might be obtained from a factor combination while for others responses not so desirable values. Through multiple response optimisations, a factor setting that gives the desirable values for all responses was obtained. The selected optimum mixture setting for the formulated core oil is 65.937% Rubber seed and 34.063% Shea butter oil at desirability of 0.924. Under the optimum condition the functional properties of the core oil was found to be 39.57KN/M2, 626.85KN/M2, 36.63KN/M2, 593.906KN/M2, 412.605 and 167.309s for Green Compressive Strength, Dry Compressive Strength, Green Tensile Strength, Dry Tensile Strength, Permeability and Collapsibility respectively. The optimum conditions were validated with less than 0.2% error. The functional properties of the formulated core oil was compared to the functional properties of linseed core oil. It was found that rubber seed-shea butter core oil can be used for producing cores suitable for Aluminium casting.

Go to article

Authors and Affiliations

O.S. Onyekwere
C. Odiakaose
K.A. Uyanga
Download PDF Download RIS Download Bibtex

Abstract

Light exposure is an important environmental factor which breaks seed dormancy in many plant species. Phytochromes have been identified as playing a crucial role in perception of the light signal that releases seed germination in Arabidopsis. Phototropins (Phot1, Phot2) are blue/UV-photoreceptors in plants which mediate phototropic responses, chloroplast relocation, hypocotyl growth inhibition and stomata opening. We studied germination under different light conditions in Arabidopsis Phot1-null and Phot2-null mutants and in a double phot1phot2 mutant. Germination of single phot1 and phot2 mutants in darkness was much lower than in wildtype (WT) seeds, whereas double phot1phot2 mutant lacking both functional phototropins germinated at frequency comparable to WT seeds, irrespective of light and temperature conditions. Light treatment of imbibed seeds was essential for effective germination of phot1, irrespective of low-temperature conditioning. In contrast, cold stratification promoted dark germination of phot2 seeds after imbibition in dim light. Low germination frequency of phot1 seeds under low light intensity suggests that the presence of functional Phot1 might be crucial for effective germination at these conditions. The lower germination frequency of phot2 seeds under continuous light suggests that Phot2 might be responsible for stimulating germination of seeds exposed to direct daylight. Thus, the phototropin system may cooperate with phytochromes regulating the germination competence of seeds under different environmental conditions

Go to article

Authors and Affiliations

Paweł Jedynak
Przemysław Malec
Beata Myśliwa-Kurdziel
Elżbieta Turek
Download PDF Download RIS Download Bibtex

Abstract

Poor seed set is a limiting factor in alfalfa breeding, as it slows the selection response. One strategy used to overcome this problem is to search for mutations of inflorescence morphology. Long-peduncle (lp), branched-raceme (br) and top-flowering (tf) inflorescence mutations increase the number of flowers per inflorescence, but they do not improve seed set per flower. Here we assessed pollen tube growth in styles of those inflorescence mutants and we observed embryo and endosperm development in seeds 1 to 16 days after pollination (DAP). The number of pollen tubes penetrating the style and the ovary was similar in all tested mutants and in the reference cultivar Radius. At 2 DAP, fertilized ovules were 2.7-3.9 times less numerous in certain inflorescence mutants than in the short-raceme cv. Radius. Ovule degeneration progressed at 2-4 DAP in all analyzed plants. Most ovules were not properly developed in the control cultivar (62%), nor in the forms with mutated inflorescence morphology (69-86%). The number of seeds per pod was lowest in the tf form despite its having the highest number of ovules per ovary. It appears that the number of ovules per pistil is not a crucial factor in seed set in alfalfa when fertilization efficiency is very low. Both poor fertilization and gradual ovule degeneration were factors causing poor seed set in the investigated alfalfa genotypes.

Go to article

Authors and Affiliations

Rafał Mól
Dorota Weigt
Zbigniew Broda
Download PDF Download RIS Download Bibtex

Abstract

Our macroscopic observations and microscopic studies conducted by means of a light microscope (LM) and transmission electron microscope (TEM) concerning the reproduction biology of Colobanthus quitensis (Caryophyllaceae) growing in natural conditions in the Antarctic and in a greenhouse in Olsztyn (northern Poland) showed that this plant develops two types of bisexual flowers: opening, chasmogamous flowers and closed, cleistogamous ones. Cleistogamy was caused by a low temperature, high air humidity and strong wind. A small number of microspores differentiated in the microsporangia of C. quitensis , which is typical of cleistogamous species. Microsporocytes, and later micro − spores, formed very thick callose walls. More than twenty spheroidal, polypantoporate pollen grains differentiated in the microsporangium. They germinated on the surface of receptive cells on the dry stigma of the gynoecium or inside the microsporangium. A monosporic embryo sac of the Polygonum type differentiated in the crassinucellar ovule. During this differentiation the nucellus tissue formed and stored reserve materials. In the development of generative cells, a male germ unit (MGU) with differentiated sperm cells was observed. The smaller cell contained mainly mitochondria, and the bigger one plastids. In the process of fertilization in C. quitensis only one nucleus of the sperm cell, without cytoplasm fragments, entered the egg cell, and the proembryo developed according to the Caryophyllad type. Almost all C. quitensis ovules developed and formed perispermic seeds with a completely differentiated embryo both under natural conditions in the Antarctic and in a greenhouse in Olsztyn.
Go to article

Authors and Affiliations

Irena Giełwanowska
Anna Bochenek
Ewa Gojło
Ryszard Górecki
Wioleta Kellmann
Marta Pastorczyk
Ewa Szczuka
Download PDF Download RIS Download Bibtex

Abstract

Pantoea species (Pantoea spp.) is a diverse group of Gram-negative bacteria in the Enterobacteriaceae family that leads to devastating diseases in rice plants, thus affecting significant economic losses of rice production worldwide. Most critical rice diseases such as grain discoloration, bacterial leaf blight, stem necrosis and inhibition of seed germination have been reported to be caused by this pathogen. To date, 20 Pantoea spp. have been identified and recognized as having similar phenotypic and diverse characteristics. Detection via phenotypic and molecular-based approaches, for example the polymerase chain reaction (PCR) and multiplex PCR give us a better understanding of the diversity of Pantoea genus and helps to improve effective disease control strategies against this emergent bacterial pathogen of rice. In this review, we focused on the significance of rice diseases caused by Pantoea spp. and insights on the taxonomy and characteristics of this destructive pathogen via phenotypic and molecular identification.

Go to article

Authors and Affiliations

Mohammad Malek Faizal Azizi
Siti Izera Ismail
Md Yasin Ina-Salwany
Erneeza Mohd Hata
Dzarifah Zulperi
Download PDF Download RIS Download Bibtex

Abstract

The seed is one of the most important inputs of agricultural products and its quality and health can be affected by seed-borne fungi. Seed-borne fungal pathogens are a major threat to black cumin production and cause considerable yield losses every year worldwide. The aim of this study was to identify seed-borne fungi, the effects of natural fungal infected seeds on some seed quality indicators, and also to investigate cell wall degrading enzymes (CWDEs), pathogenicity and aggressiveness of the isolates obtained from seeds. The constituents of essential oils (EOs) from seeds of Iranian and Syrian black cumin populations were identified and their effect on [isolated] seed-borne Fusarium isolates. A total of 17 isolates were identified based on morphological and molecular characteristics of Fusarium oxysporum and F. solani species. The results of the standard germination test showed that there was a significant difference between the studied seed populations in the germination and vigor indices. Our results indicated that most of the identified isolates were in the seed coat, while a few isolates of F. oxysporum were located in embryos. The results of the pathogenicity test showed that about 42% of the isolates were pathogenic and 58% of the isolates were non-pathogenic. Different levels of pathogenicity and aggressiveness were observed for various isolates of Fusarium species. All Fusarium isolates were not capable of producing CWDEs as pathogenicity factors. Analyzing the activity of CWDEs, including cellulase, pectinase, xylanase and lipase produced by the Fusarium isolates, revealed that activity levels of CWDEs are positive and are correlated with variations in pathogenicity and aggressiveness of seed-borne fungal isolates on seeds. The EOs were identified by gas chromatography-mass spectrometry and the major constituents were identified as ρ-cymene, trans-anethole, thymoquinone, limonene, carvacrol and α-thujene. The results showed that the compounds ρ-cymene, limonene, carvacrol, thymoquinone and transanethole had antifungal effects against F. oxysporum isolate. It seems that the percentage of carvacrol and limonene composition in the EOs components can affect the presence of the seed-borne Fusarium. This is the first report on the effect of EO compositions of black cumin seed populations on seed-borne Fusarium isolated from the same seeds. The findings of this research showed that the amounts and types of constituents of EOs of black cumin seed populations are different and they can affect the abundance of seed-borne fungi and their level of pathogenicity and aggressiveness.
Go to article

Bibliography


Abdel-Razik A.A. 1970. The parasitism of white Sclerotium cepivorum Berk, the incitant of white rot of onion. Ph.D. thesis, Faculty of Agriculture, Assiut University, Assiut, Egypt.
Adams R.P. 2017. Identification of Essential Oil Components by GAS Chromatography/ Massspectrometry. 5th ed. Gruver, TX USA, Texensis, 698 pp.
Ahamad Bustamam M.S., Hadithon K.A., Mediani A., Abas F., Rukayadi Y., Lajis N., Shaari K., Ismail I.S. 2017. Stability study of Algerian Nigella sativa seeds stored under different conditions. Journal of Analytical Methods in Chemistry 2017: 1–12. DOI: https://doi.org/10.1155/2017/7891434
Ahmad A., Husain A., Mujeeb M., Khan S.A., Najmi A.K., Siddique N.A., Damanhouri Z.A., Anwar F. 2013. A review on therapeutic potential of Nigella sativa: A miracle herb. Asian Pacific Journal of Tropical Biomedicine 3: 337–352. DOI: https://doi.org/10.1016/S2221-1691(13)60075-1
Ahmadian A., Shiri Y., Froozandeh M. 2015. Study of germination and seedling growth of black cumin (Nigella sativa L.) treated by hydro and osmopriming under salt stress conditions. Cercetari Agronomice in Moldova 2: 69–78.
Al-Sman M.K., Abo-Elyousr K.A.M., Eraky A., El-Zawahry A. 2019. Efficiency of Pseudomonas spp. based formulation for controlling root rot disease of black cumin under greenhouse and field conditions. Archives of Phytopathology and Plant Protection 52: 1313–1325. DOI: https://doi.org/10.1080/03235408.2019.1707384
Amatulli M.T., Spadaro D., Gullino M.L., Garibaldi A. 2010. Molecular identification of Fusarium spp. associated with bakanae disease of rice in Italy and assessment of their pathogenicity. Plant Pathology 59: 839–844. DOI: https://doi.org/10.1111/j.1365-3059.2010.02319.x
Anonymous 2019. Agricultural Statistics. Volume 2. Ministry of Jihad-e-Agriculture, Programing and Economic, Statistics and Information Technology Office, 425 pp. (in Persian)
Browne R.A., Cooke B.M. 2005. A comparative assessment of potential components of partial disease resistance to Fusarium head blight using a detached leaf assay of wheat, barley and oats. European Journal of Plant Pathology 112: 247–258. DOI: https://doi.org/10.1007/s10658-005-2077-z
Chaieb K., Kouidhi B., Jrah H., Mahdouani K., Bakhrouf A. 2011. Antibacterial activity of Thymoquinone, an active principle of Nigella sativa and its potency to prevent bacterial biofilm formation. BMC Complementary Medicine and Therapies 1: 29. DOI: https://doi.org/10.1186/1472-6882-11-29
Cho Y., Kim K.H., Rota M.L., Scott D., Santopietro G., Callihan M., Mitchell T.K., Lawrenc C.B. 2009. Identification of novel virulence factors associated with signal transduction pathways in Alternaria brassicicola. Molecular Microbiology 72: 1316–1333. DOI: https://doi.org/10.1111/j.1365-2958.2009.06689.x
Chutia M., Deka Bhuyan P., Pathak M.G., Sarma T.C., Boruah P. 2009. Antifungal activity and chemical composition of Citrus reticulata Blanco essential oil against phytopathogens from
North East India. LWT-Food. Science and Technology 42: 777–780. DOI: https://doi.org/10.1016/j.lwt.2008.09.015
Colowich S.P. 1995. Methods in Enzymology. Academic Prees Inc., London.
Dambolena J., Lopez A., Canepa M., Theumer M., Zygadlo J. 2008. Rubinstein, H. Inhibitory effect of cyclic terpenes (limonene, menthol, menthone and thymol) on Fusarium verticillioides MRC 826 growth and fumonisin B1 biosynthesis. Toxicon 51: 37–44. DOI: https://doi.org/10.1016/j.toxicon.2007.07.005
Delgado-Ortiz J.C., Ochoa-Fuentes Y.M., Cerna-Chávez E., Beltrán-Beache M., Rodríguez-Guerra R., Aguirre-Uribe L.A., Vázquez-Martínezc O. 2016. Fusarium species associated with basal rot of garlic in North. Central Mexico and its pathogenicity. Revista Argentina de Microbiología 48: 222–228. DOI: https://doi.org/10.1016/j.ram.2016.04.003
Elwakil M.A., Ghoneem K. 1999. Detection and location of seed-borne fungi of black cumin and their transmission in seedlings. Pakistan Journal of Biological Sciences 2: 559–564. DOI: 10.3923/pjbs.1999.559.564
Fatima S., Khot Y.C. 2015. Studies on fungal population of cumin (Nigella sativa L.) from different parts of Marathwada. Journal of Multidisciplinary Research 2: 25–31.
Gerige S.J., Yadav M.K.G., Rao M., Ramanjaneyulu. 2009. GC-MS analysis of Nigella sativa seeds and antimicrobial activity of its volatile oil. Brazilian Archives of Biology and Technology 52: 1189–1192. DOI: https://doi.org/10.1590/S1516-89132009000500016
Ghiyasi M., Moghaddam S.S., Amirnia R., Damalas C.A. 2019. Chemical priming with salt and urea improves germination and seedling growth of black cumin (Nigella sativa L.) under osmotic stress. Journal of Plant Growth Regulation 38: 1170–1178. DOI: https://doi.org/10.1007/s00344-019-09922-z
Gibson D.M., King B.C., Hayes M.L., Bergstrom G.C. 2011. Plant pathogens as a source of diverse enzymes for lignocellulose digestion. Current Opinion in Microbiology 14: 264–270. DOI: https://doi.org/10.1016/j.mib.2011.04.002
Hassani F., Zare L., Khaledi N. 2019. Evaluation of germination and vigor indices associated with fusarium-infected seeds in pre-basic seeds wheat fields. Journal of Plant Protection Research 59: 69–85. DOI: https://doi.org/10.24425/jppr.2019.126037
Huang Y., Zhao J., Zhou L., Wang J., Gong Y., Chen X., Guo Z., Qi Wang Q., Jiang W. 2010. Antifungal activity of the essential oil of Illicium verum fruit and its main component trans-anethole. Molecules 15: 7558–7569. DOI: https://doi.org/10.3390/molecules15117558
Hubballi M., Sornakili A., Anand S.N.T., Raguchander T. 2011. Virulence of Alternaria alternata infecting noni associated with production of cell wall degrading enzymes. Journal of Plant Protection Research 51: 87–92. DOI: https://doi.org/10.2478/v10045-011-0016-x
Isah T. 2019. Stress and defense responses in plant secondary metabolites production. Biological Research 52: 39. DOI: https://doi.org/10.1186/s40659-019-0246-3
Islam N.F., Borthakur S.K. 2012. Screening of mycota associated with Aijung rice seed and their effects on seed germination and seedling vigour. Plant Pathology and Quarantine 2: 75–85. DOI: https://doi.org/10.5943/ppq/2/1/11
ISTA. 1986. International Seed Testing Association.1986. Handbook on Seed Sampling. ISTA, Zurich, Switzerland, 61 pp.
ISTA. 2013. International Seed Testing Association. 2013. The germination test. In: “International Rules for Seed Testing”. ISTA, Bassersdorf, Switzerland, 56 pp.
Karakaya A, Erzurum K. 2002. Wilt disease of Nigella sativa in Turkey. Journal of Turkish Phytopathology 31: 43–47.
Khaledi N., Hassani F. 2018. Antifungal activity of the essential oil of Bunium persicum and its constituents on growth and pathogenesis of Colletotrichum lindemuthianum. Journal of Plant Protection Research 58: 431–441. DOI: https://doi.org/10.24425/jppr.2018.124646
Khaledi N., Taheri P., Falahati-Rastegar M. 2017. Identification, virulence factors characterization and analysis virulence together with aggressiveness of Fusarium spp., causing wheat head blight in Iran. European Journal of Plant Pathology 147: 897–918. DOI: https://doi.org/10.1007/s10658-016-1059-7
Khanna S., Gauri A. 1993. Regulation, purification, and properties of xylanase from Cellulomonas fimi. Enzyme and Microbial Technology 15: 990–995. DOI: https://doi.org/10.1016/0141-0229(93)90177-4
Kikot G.E., Hours R.A., Alconada T.M. 2009. Contribution of cell wall degrading enzymes to pathogenesis of Fusarium graminearum: A review. Journal of Basic Microbiology 49: 231–241. DOI: https://doi.org/10.1002/jobm.200800231
Kordali S., Cakir A., Ozer H., Cakmakci R., Kesdek M., Mete E. 2008. Antifungal, phytotoxic and insecticidal properties of essential oil isolated from Turkish Origanum acutidens and its three components, carvacrol, thymol and p-cymene. Bioresource Technology 99: 8788–8795. DOI: https://doi.org/10.1016/j.biortech.2008.04.048
Lannou C. 2012. Variation and selection of quantitative traits in plant pathogens. Annual Review of Phytopathology 50: 319–338. DOI: https://doi.org/10.1146/annurev-phyto-081211-173031
Leslie J.F., Summerell B.A. 2006. The Fusarium Laboratory Manual. 1st ed. Blackwell Publishing Ltd; Oxford, London.
MacMillan J.D., Voughin R.H. 1964. Purification and properties of a polyglacturonic acid-transeliminase produced by Clastridium multiformentans. Biochemistry 3: 564–572.
Maden S., Singh D., Mathur S.B., Neergard P. 1975. Detection and location of seed borne inoculum of Ascochyta rabei and its transmission in chickpea. Seed Science and Technology 3: 667–671.
Mahapatra S.S., Arya A., Kesarwani A., Verma O. 2019. Influence on oilseeds and legume seed physiology under insect pest and pathogenic infestation. Journal of Pharmacognosy and Phytochemistry 8: 671–676. DOI: http://dx.doi.org/10.3329/bjar.v39i2.20429
Mahmoudvand H., Sepahvand A., Jahanbakhsh S., Ezatpour B., Mousavi S.A.A. 2014. Evaluation of antifungal activities of the essential oil and various extracts of Nigella sativa and its main component, thymoquinone against pathogenic dermatophyte strains. Journal of Medical Mycology 24: 155–161. DOI: https://doi.org/10.1016/j.mycmed.2014.06.048
Marei G.I.K., Rasoul M.A.A., Abdelgaleil S.A. 2012. Comparative antifungal activities and biochemical effects of monoterpenes on plant pathogenic fungi. Pesticide Biochemistry and Physiology 103: 56–61. DOI: https://doi.org/10.1016/j.pestbp.2012.03.004
Michielse C.B., Rep M. 2009. Pathogen profile update: Fusarium oxysporum. Molecular Plant Pathology 10: 311–324. DOI: https://doi.org/10.1111/j.1364-3703.2009.00538.x
Miller G.L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry 31: 426–428. DOI: https://doi.org/10.1021/ac60147a030
Minooeian Haghighi M.H., Khosravi A.R. 2013. Inhibition and destruction effects of Cuminum cyminum, Ziziphora clinopodioides and Nigella sativa essences on Aspergillus cells. Journal of Babol University of Medical Sciences 15: 25–35.
Mishra P.K., Fox R.T.V., Culham A. 2003. Development of a PCR based assay for rapid and reliable identification of pathogenic Fusaria. FEMS Microbiology Letters 218: 329–332. DOI: https://doi.org/10.1111/j.1574-6968.2003.tb11537.x
Mohamed A.S.K., Kamal A.A.M., Amal E., Aida E. 2017. Isolation, identification and biomanagement of root rot of black cumin (Nigella sativa) using selected bacterial antagonists. International Journal of Phytopathology 6: 47–56. DOI: https://doi.org/10.1080/03235408.2019.1707384
Mohammadnejad Ganji S.M., Moradi H., Ghanbari A., Akbarzadeh M. 2017. Quantity and quality of secondary metabolites in lavender plant under the influence of ecological factors. Nova Biologica Reperta 4: 166–172. DOI: https://doi.org/10.21859/acadpub.nbr.4.2.166
Mojab F., Nikavar B., Javidnia K., Roodgar Amoli M.A. 2003. Chemical composition of essential oil and black seed oil. Journal of Medicinal Plants 6: 21–26.
Müller M.E.H., Steier I., Köppen R., Siegel D., Proske M., Korn U., Koch M. 2012. Cocultivation of phytopathogenic Fusarium and Alternaria strains affects fungal growth and mycotoxin production. Journal of Applied Microbiology 113: 874–887. DOI: https://doi.org/10.1111/j.1365-2672.2012.05388.x
Nautiyal P.C. 2009. Seed and seedling vigor traits in groundnut (Arachis hypogaea L.). Seed Science and Technology 37: 721–735. DOI: https://doi.org/10.15258/sst.2009.37.3.19
Noda J., Brito N., Gonzalez C. 2010. The Botrytis cinerea xylanase Xyn11A contributes to virulence with its necrotizing activity, not with its catalytic activity. BMC Plant Biology 10: 38. DOI: https://doi.org/10.1186/1471-2229-10-38
Ortega L.M., Kikot G.E., Astoreca A.L., Alconada T.M. 2013. Screening of Fusarium graminearum isolates for enzymes extracellular and deoxynivalenol production. Journal of Mycology 2013: 1–7. DOI: https://doi.org/10.1155/2013/358140
Ozdemir N., Kantekin-Erdogan M.N., Tat T., Tekin A. 2018. Effect of black cumin oil on the oxidative stability and sensory characteristics of mayonnaise. Journal of Food Science and Technology 55: 1562-1568. DOI: https://doi.org/10.1007/s13197-018-3075-4
Paccanaro M.C., Sella L., Castiglioni C., Giacomello F., Martínez-Rocha A.L., D’Ovidio R., Schäfer W., Favaron F. 2017. Synergistic effect of different plant cell wall-degrading enzymes is important for virulence of Fusarium graminearum. Molecular Plant-Microbe Interactions 30: 886–895. DOI: https://doi.org/10.1094/MPMI-07-17-0179-R
Papastylianou P., Bakogianni N.N., Travlos I., Roussis I. 2018. Sensitivity of seed germination to salt stress in black cumin (Nigella sativa L.). Notulae Botanicae Horti Agrobotanici Cluj-Napoca 46: 202–205. DOI: https://doi.org/10.15835/nbha46110861
Pareek V., Varma R. 2015. Fusarium solani a dominant seed borne pathogen in seeds of cluster bean grown in Rajasthan. Bioscience Biotechnology Research Communications 8: 29–34.
Pathak N., Zaidi R.K. 2013. Studies on seed-borne fungi of wheat in seed health testing programme. Archives of Phytopathology and Plant Protection 46: 389–401. DOI: https://doi.org/10.1080/03235408.2012.741978
Rezaee S., Gharanjik S., Mojerlou S. 2018. Identification of Fusarium solani f. sp. cucurbitae races using morphological and molecular approaches. Journal of Crop Protection 7: 161–170.
Plodpai P., Chuenchitt S., Petcharat V., Chakthong S., Voravuthikunchai S.P. 2013. Anti-Rhizoctonia solani activity by Desmos chinensis extracts and its mechanism of action. Crop Protection 43: 65–71. DOI: https://doi.org/10.1016/j.cropro.2012.09.004
Pritsch C., Muehlbauer G.J., Bushnell W.R., Somers D.A., Vance C.P. 2000. Fungal development and induction of defense response genes during early infection of wheat spikes by Fusarium graminearum. Molecular Plant-Microbe Interactions 13: 159–169. DOI: https://doi.org/10.1094/MPMI.2000.13.2.159
Purahong W., Alkadri D., Nipoti P., Pisi A, Lemmens M., Prodi A. 2012. Validation of a modified Petri-dish test to quantify aggressiveness of Fusarium graminearum in durum wheat. European Journal of Plant Pathology 132: 381–391. DOI: https://doi.org/10.1007/s10658-011-9883-2
Rahmouni A., Saidi R., Khaddor M., Pinto E., Joaquim Carlos Gomes E.D.S., Maouni A. 2019. Chemical composition and antifungal activity of five essential oils and their major components against Fusarium oxysporum f. sp. albedinis of Moroccan palm tree. Euro-Mediterranean Journal for Environmental Integration 4: 27. DOI: https://doi.org/10.1007/s41207-019-0117-x
Rammanee K., Hongpattarakere T. 2011. Effects of tropical citrus essential oils on growth, aflatoxin production, and ultrastructure alterations of Aspergillus flavus and Aspergillus parasiticus. Food and Bioprocess Technology 4: 1050–1059. DOI: https://doi.org/10.1007/s11947-010-0507-1
Sacristan S., García-Arenal F. 2008. The evolution of virulence and pathogenicity in plant pathogen populations. Molecular Plant Pathology 9: 369–384. DOI: https://doi.org/10.1111/j.1364-3703.2007.00460.x
Singh J., Shikha S.S., Sinha A., Bose B. 2011. Studies on seed mycoflora of wheat ( Triticum aestivum L.) treated with potassium nitrate and its effect on germination during storage. Research Journal of Seed Science 4: 148–156. DOI: https://doi.org/10.3923/rjss.2011.148.156
Singh P., Shukla R., Prakash B., Kumar A., Singh S., Mishra P.K., Dubey N.K. 2010. Chemical profile, antifungal, antiaflatoxigenic and antioxidant activity of Citrus maxima Burm, and Citrus sinensis (L.) Osbeck essential oils and their cyclic monoterpene, DL-limonene. Food and Chemical Toxicology 48: 1734–1740. DOI: https://doi.org/10.1016/j.fct.2010.04.001
Sitara U., Niaz I., Naseem J., Sultana N. 2008. Antifungal effect of essential oils on in vitro growth of pathogenic fungi. Pakistan Journal of Botany 40: 409–414.
Suwandi S., Akino S., Kondo N. 2018. Enhanced virulence of Fusarium species associated with spear rot of oil palm following recovery from osmotic stress. Mycology 9: 20–28. DOI: https://doi.org/10.1080/21501203.2017.1336497
Thompson D.P. 1989. Fungitoxic activity of essential oil components on food storage fungi. Mycologia 81 (1): 151–153. DOI: https://doi.org/10.2307/3759462
Underwood W. 2012. The plant cell wall: A dynamic barrier against pathogen invasion. Frontiers in Plant Science 85: 1–6. DOI: https://doi.org/10.3389/fpls.2012.00085
Upasani M.L., Limaye B.M., Gurjar G.S., Kasibhatla S.M., Joshi R.R., Kadoo N.Y., Gupta V.S. 2017. Chickpea-Fusarium oxysporum interaction transcriptome reveals differential modulation of plant defense strategies. Scientific Reports 7: 7746. DOI: https://doi.org/10.1038/s41598-017-07114-x
Van Hung P., Chi P.T.L., Phi N.T.L. 2013. Comparison of antifungal activities of Vietnamese citrus essential oils. Natural Product Research 27: 506–508. DOI: https://doi.org/10.1080/14786419.2012.706293
Wajs A., Bonikowski R., Kalemba D. 2008. Composition of essential oil from seeds of Nigella sativa L. cultivated in Poland. Flavour and Fragrance Journal 23: 126–132. DOI: https://doi.org/10.1002/ffj.1866
Wanyoike W.M., Kang Z., Buchenauer H. 2002. Importance of cell wall degrading enzymes produced by Fusarium graminearum during infection of wheat head. European Journal of Plant Pathology 108: 803–810. DOI: https://doi.org/10.1023/A:1020847216155
Wood T.M., Bhat M. 1988. Methods for measuring cellulase activities. Methods Enzymol 160: 87–112. DOI: https://doi.org/10.1016/0076-6879(88)60109-1
Go to article

Authors and Affiliations

Nima Khaledi
1
Farshid Hassani
1

  1. Seed and Plant Certification and Registration Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran

This page uses 'cookies'. Learn more