Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 20
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Accurate force and torque calculations are fundamental to being able to predict the operation of an electromechanical device or system. The Maxwell stress tensor and the virtual work principle are the two major theories for force and torque calculation. However, if local distributions of torque are needed to couple to structural and vibration analyses, the conventional Maxwell stress approach cannot provide this easily. A recently developed approach based on sensitivity analysis has the capability to deliver local stress and torque as well as accurate global results. In addition, this approach divides the total torque into different components which are essential to the design of electrical devices. This paper includes several numerical examples of torque calculations of different electrical machines. The results are verified by a commercial software package using the Maxwell stress based force calculation.

Go to article

Authors and Affiliations

M. Li
D. Lowther
Download PDF Download RIS Download Bibtex

Abstract

The paper presents definitions and relative measures of the system sensitivity and sensitivity of its errors. The model of a real system and model of an ideal measuring system were introduced. It allows to determine the errors of the system. The paper presents also how to use the error sensitivity analysis carried out on the models of the measuring system to the correction of the nonlinearity error of its static characteristic. The corrective function is determined as a relation between the input variable of the tested system and its chosen parameter. The use of the proposed method has been presented on the example of a phase angle modulator. The obtained results have been compared with the results of analytic calculations. The idea of a phase angle modulator is also presented.

Go to article

Authors and Affiliations

Ryszard Sroka
Download PDF Download RIS Download Bibtex

Abstract

The purpose of the present research relates to the sensitivity analysis of road vehicle comfort and handling performances with respect to suspension technological parameters. The envisaged suspension being of semi-active nature, this implies first to consider an hybrid modeling approach consisting of a 3D multibody model of the full car - an Audi A6 in our case - coupled with the electro-hydraulic model of the suspension dampers. Concerning parameter sensitivitie, the goal is to capture them for themselves - and not necessarily for optimization purpose - because their knowledge is of a great interest for the damper manufacturer.

An important issue of the research is to consider objective functions which are based on complete time integrations along a given trajectory, the goal being - for instance - to quantify the sensitivity of the carbody rms acceleration (comfort) or of the vehicle overturning character (handling) with respect to suspension parameters. On one hand, the accuracy of the various partial derivatives computation can be greatly enhanced thanks to the symbolic capabilities of our ROBOTRAN multibody program. On the other hand, the computational efficiency of the process also takes advantage of the recursive formulation of the multibody equations of motion which must be time integrated with respect to both the generalized coordinates and their partial derivatives in case of the so-called direct method underlying sensitivity analysis.

Go to article

Authors and Affiliations

Antoine Poncelet
Jean-Francois Collard
Paul Fisette
Download PDF Download RIS Download Bibtex

Abstract

The first order variation of critical loads of thin-walled columns with bisymmetric open cross-sectiondue to some variations of the stiffness and location of bracing elements is derived. The con-siderations are based on the classical linear theory of thin-walled beams with non-deformablecross-section introduced by Vlasov [1]. Both lateral braces and braces that restraint warping andtorsion of the cross-section have been taken into account. In the numerical examples dealing withI-column, the functions describing the influence of location of the braces with unit stiffness on thecritical load of torsional and flexural buckling are derived. The linear approximation of the exactrelation of the critical load due to the variation of the stiffness and location of braces is determined.

Go to article

Authors and Affiliations

P. Iwicki
Download PDF Download RIS Download Bibtex

Abstract

Hydrological models are widely used for runoff simulation throughout the world. The objective of this study is to check the performance of the HEC-HMS model for continuous runoff simulation of Gilgel Gibe watershed. It includes sensitivity analysis, calibration, and validation. The model calibration was conducted with data from the year 1991 to 2002 and validated for the year 2003 to 2013 period using daily observed stream flow near the outlet of the watershed. To check the consistency of the model, both the calibration and validation periods were divided into two phases. The sensitivity analysis of parameters showed that curve number (CN) and wave travel time (K) were the most sensitive, whereas channel storage coefficient (x) and lag time (tlag) were moderately sensitive. The model performance measured using Nash–Sutcliff Efficiency (NSE), Percentage of Bias (PBIAS), correlation coefficient (R2), root mean square error (RMSE), and Percentage Error in Peak (PEP). The respective values were 0.795, 8.225%, 0.916, 27.105 m3 s–1 and 7.789% during calibration, and 0.795, 23.015%, 0.916, 29.548 m3 s–1 and –19.698% during validation. The result indicates that the HEC-HMS model well estimated the daily runoff and peak discharge of Gilgel Gibe watershed. Hence, the model is recommended for continuous runoff simulation of Gilgel Gibe watershed. The study will be helpful for efficient water resources and watershed management for Gilgel Gibe watershed. It can also be used as a reference or an input for any future hydrological investigations in the nearby un-gauged or poorly gauged watershed.
Go to article

Authors and Affiliations

Sewmehon Sisay Fanta
1
ORCID: ORCID
Tolera Abdissa Feyissa
1
ORCID: ORCID

  1. Jimma University, Faculty of Civil and Environmental Engineering, Institute of Technology, Jimma, Ethiopia
Download PDF Download RIS Download Bibtex

Abstract

A failure analysis of Babar dam on the El Arab River was performed to highlight the impact of flood wave and velocities on the four villages downstream of the dam; Hella, Khérenne, Chebla and El Oueldja. The simulation of wave propagation along the El Arab River under several scenarios was performed by the hydraulic HEC-RAS model. This model is dedicated to the description of floods at the dam following a breach in the dike. The main factors considered in this simulation include the level of flood water, the flood hydrograph, and the typical scenario for this breach. The flood risk analysis revealed that the maximum of flood wave flow registered at the breach is (Qmax = 9253.02 m3∙s–1), and is beginning to mitigate downstream of the dam along the El Arab River where it reached at the last village with a low flow (Q = 1110.64 m3∙s–1). This simulation allowed drawing the risk map which showed the areas threatened by flood wave resulting from a total failure of the work, and consequently required a plan of security measures to moderate as much as possible the consequences of floods. A sensitivity analysis was conducted to approach the parameters of impact of the breach on the dam failure scenario. It was confirmed that these parameters as formulation time, breach width and side slope have a great influence on the dam failure scenario with the four adjustments (±20 and ±50).

Go to article

Authors and Affiliations

Aissam Gaagai
ORCID: ORCID
Abderrahmane Boudoukha
ORCID: ORCID
Lahcen Benaabidate
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The Bay of Cartagena (Colombia) is a site of commercial interest owing to its privileged location for maritime opera-tions; however, the discharge of wastewaters from industrial activities and domestic sewage are affecting the water quality, and consequently, the biodiversity of coastal ecosystems. The polycyclic aromatic hydrocarbons (PAHs) are found in sedi-ments and water of main ports, causing severe damage to the ecosystem. Thus, alternatives for the treatment of the Bay of Cartagena’s water and sediments are needed. In this paper, we performed the exergetic analysis of removing PAHs from water and sediments in the Bay of Cartagena using an adsorption-based treatment process with chitosan microbeads and magnetic nanoparticles (CM-TiO2/Fe3O4). The outcomes of exergy of utilities, irreversibilities and exergy losses were calculated us-ing process data and exergy of substances. The Aspen plus V10 software provided the physical exergies, while chemical exergies were gathered from the literature. Overall exergy efficiency of 0.3% was determined for the seawater and sediment treatment facility. A sensitivity analysis was performed to identify the impact and viability of different design alternatives.
Go to article

Bibliography

BOBBO S., FEDELE L., CURCIO M., BET A., DE CARLI M., EMMI G., POLETTO F., TARABOTTI A., MENDRINOS D., MEZZASALMA G., BERNARDI A. 2019. Energetic and exergetic analysis of low global warming potential refrigerants as substitutes for R410A in ground source heat pumps. Energies. Vol. 12(18), 3538. DOI 10.3390/en12183538.
Caracol Radio 2019. Ordenan medidas para frenar contaminación en La Bahía de Cartagena [Measures are needed to stop pollution in the Bay of Cartagena] [online]. [Access 03/04/2020]. Available at: https://caracol.com.co/emisora/2019/09/02/cartagena/1567458652_644521.html.
El Tiempo 2018. La Bahía de Cartagena, un coctel tóxico [Cartagena Bay, a toxic cocktail] [online]. [Access 03.05.2020]. Available at: https://www.eltiempo.com/vida/medio-ambiente/la-bahia-de-cartagena-un-coctel-toxico-segun-estudio-298222
FLORES-CHAPARRO C.E., RODRIGUEZ-HERNANDEZ M.C., CHAZA¬RO-RUIZ L.F., ALFARO-DE LA TORRE M., HUERTA-DIAZ M.A, RANGEL-MENDEZ J.R. 2018. Chitosan-macroalgae biocompo¬sites as potential adsorbents of water- soluble hydrocarbons: Organic matter and ionic strength effects. Journal of Cleaner Production. Vol. 197 p. 633–642. DOI 10.1016/j.jclepro. 2018.06.200.
GARCÍA-PADILLA Á., MORENO-SADER K., REALPE A., ACEVEDO-MORANTES M., SOARES J.B.P. 2020. Evaluation of adsorption capacities of nanocomposites prepared from bean starch and montmorillonite. Sustainable Chemistry and Pharmacy. Vol. 17, 100292. DOI 10.1016/j.scp.2020.100292.
GU F., GENG J., LI M., CHANG J., CUI Y. 2019. Synthesis of chitosan-ignosulfonate composite as an adsorbent for dyes and metal ions removal from wastewater. ACS Omega. Vol. 4 No. 25 p. 21421–21430. DOI 10.1021/acsomega.9b03128.
HUANG Y., FULTON A.N., KELLER A.A. 2016. Simultaneous removal of PAHs and metal contaminants from water using magnetic nanoparticle adsorbents. Science of the Total Environment. Vol. 571 p. 1029–1036. DOI 10.1016/j.scitotenv.2016.07.093.
HUMEL S., SCHRITTER J, SUMETZBERGER-HASINGER M., OTTNER F., MAYER P., LOIBNER A.P. 2020. Atmospheric carbonation reduces bioaccessibility of PAHs in industrially contaminated soil. Journal of Hazardous Materials. Vol. 383, 121092. DOI 10.1016/j.jhazmat.2019.121092.
JOHNSON-RESTREPO B., OLIVERO-VERBEL J., LU S., GUETTE-FERNÁNDEZ J., BALDIRIS-AVILA R., O’BYRNE-HOYOS I., ALDOUS K.M., ADDINK R., KANNAN K. 2008. Polycyclic aromatic hydrocarbons and their hydroxylated metabolites in fish bile and sediments from coastal waters of Colombia. Environment International. Vol. 151 p. 452–459. DOI 10.1016/j.envpol.2007.04.011.
MARTINEZ D., PUERTA A., MESTRE R., PERALTA-RUIZ Y., GONZALEZ-DELGADO A. 2020. Exergy-based evaluation of crude palm oil production in North-Colombia. Australian Journal of Basic and Applied Sciences. Vol. 10(18) p. 82–88.
MERAMO-HURTADO S., ALARCÓN-SUESCA C., GONZÁLEZ-DEL¬GADO A.D. 2019a. Exergetic sensibility analysis and environmental evaluation of chitosan production from shrimp exoskeleton in Colombia. Journal of Cleaner Production. Vol. I248, 119285. DOI 10.1016/j.jclepro.2019.119285.
MERAMO-HURTADO S., MORENO-SADER K., GONZÁLEZ-DELGADO Á.D. 2019b. Computer-aided simulation and exergy analysis of TiO2 nanoparticles production via green chemistry. PeerJ. Vol. 7, e8113 p. 1–19. DOI 10.7717/peerj.8113
MERAMO-HURTADO S.I., MORENO-SADER K.A., GONZALEZ-DELGADO A.D. 2020. Design, simulation, and environmental assessment of an adsorption-based treatment process for the removal of polycyclic aromatic hydrocarbons (PAHs) from seawater and sediments in North Colombia. ACS Omega. Vol. 5. No. 21 p. 12126–12135. DOI 10.1021/acsomega.0c00394.
MERAMO-HURTADO S., PATINO-RUIZ D., COGOLLO-HERRERA K., HERRERA A., GONZALEZ-DELGADO A. 2018. Physico-chemical characterization of superficial water and sediments from Cartagena Bay. Contemporary Engineering Sciences. Vol. 11. No.32 p. 1571–1578. DOI 10.12988/ces.2018.8273.
MORENO-SADER K., MERAMO-HURTADO S.I., GONZÁLEZ-DELGADO A.D. 2019. Computer-aided environmental and exergy analysis as decision-making tools for selecting bio-oil feedstocks. Renewable and Sustainable Energy Reviews. Vol. 112 p. 42–57. DOI 10.1016/j.rser.2019.05.044.
OLIVA A.L., QUINTAS P.Y., RONDA A.C., MARCOVECCHIO J.E., ARIAS A.H. 2020. First evidence of polycyclic aromatic hydrocarbons in sediments from a marine protected area within Argentinean continental shelf. Marine Pollution Bulletin. Vol. 158, 111385. DOI 10.1016/j.marpolbul.2020.111385.
PITAKPOOLSIL W., HUNSOM M. 2014. Treatment of biodiesel wastewater by adsorption with commercial chitosan flakes: Parameter optimization and process kinetics. Journal of Environmental Management. Vol. 133 p. 284–292. DOI 10.1016/j.jenvman.2013.12.019.
QIAO Y., LYU G., SONG CH., LIANG X., ZHANG H., DONG D. 2019. Optimization of programmed temperature vaporization injection for determination of polycyclic aromatic hydro¬carbons from diesel combustion process. Energies. 12(24), 4791. DOI 10.3390/en12244791.
RESTREPO J.D. 2018. Arrastrando La Montaña Hacia El Mar: Hacia dónde van nuestros océanos [Dragging the mountain to the sea: Where our oceans go]. Cartagena. Agenda del Mar Comunicaciones. ISBN 978-958-57860-8-0 pp. 96.
SAINI J., GARG V.K., GUPTA R.K. 2020. Green synthesized SiO2 @ OPW nanocomposites for enhanced lead (II) removal from water. Arabian Journal of Chemistry. Vol. 13. No. 1 p. 2496–2507. DOI 10.1016/j.arabjc.2018.06.003.
TOUS HERAZO G., MAYO MANCEBO G., RIVERO HERNÁNDEZ J., LLAMAS CONTERAS H. 2015. Evaluación temporal de los niveles de los hidrocarburos aromáticos policíclicos en los sedimentos de La Bahía de Cartagena [Temporal evaluation of the levels of polycyclic aromatic hydrocarbons in the sediments of Cartagena Bay]. Derrotero. Revista de la Ciencia y la Investigación. Vol. 9. No. 9 p. 7–12.

Go to article

Authors and Affiliations

Maileth Cantillo-Figueroa
1
ORCID: ORCID
Kariana A. Moreno-Sader
1
ORCID: ORCID
Angel D. Gonzalez-Delgado
1
ORCID: ORCID

  1. University of Cartagena, Ave. del Consulado #Calle 30 No. 48 152, Cartagena, Bolívar, Colombia
Download PDF Download RIS Download Bibtex

Abstract

The degradation of photovoltaic modules and their subsequent loss of performance has a serious impact on the total energy generation potential. The lack of real-time information on the output power leads to additional losses since the panels may not be operating at their optimal point. To understand the behaviour, numerically simulate the characteristics and identify the optimal operating point of a photovoltaic cell, the parameters of an equivalent electrical circuit must first be identified. The aim of this work is to develop a total least-squares based algorithm which can identify those parameters from the output voltage and current measurements, taking into consideration the uncertainties on both measured quantities. This work presents a comparative study of the Ordinary Least Squares (OLS) and Total Least Squares (TLS) approaches to the estimation of the parameters of a photovoltaic cell.
Go to article

Bibliography

[1] Blaabjerg, F., & Ionel, D. M. (2015). Renewable Energy Devices and Systems – State-of-the-Art Technology, Research and Development, Challenges and Future Trends. Electric Power Components and Systems, 43(12), 1319–1328. https://doi.org/10.1080/15325008.2015.1062819
[2] Höök, M., & Tang, X. (2013). Depletion of fossil fuels and anthropogenic climate change – A review. Energy Policy, 52, 797–809. https://doi.org/10.1016/j.enpol.2012.10.046
[3] Gangopadhyay, U., Jana, S., & Das, S. (2013). State of Art of Solar Photovoltaic Technology. Conference Papers in Energy, 2013, 1–9. https://doi.org/10.1155/2013/764132
[4] Mao, M., Cui, L., Zhang, Q., Guo, K., Zhou, L.,&Huang, H. (2020). Classification and summarization of solar photovoltaic MPPT techniques: A review based on traditional and intelligent control strategies. Energy Reports, 6, 1312–1327.
[5] Ahmed, M. T., Rashel, M. R., Faisal, F.,&Tlemçani, M. (2020). Non-iterative MPPT Method:AComparative Study. International Journal of Renewable Energy Research (IJRER), 10(2), 549–557.
[6] Azmi, F. F. A., Sahraoui, B., & Muzakir, S. K. (2019). Study of ZnO nanospheres fabricated via thermal evaporation for solar cell application. Makara Journal of Technology, 23(1), 11–15.
[7] Boyd, M. T., Klein, S. A., Reindl, D. T., & Dougherty, B. P. (2011). Evaluation and validation of equivalent circuit photovoltaic solar cell performance models. Journal of Solar Energy Engineering, 133(2). https://doi.org/10.1115/1.4003584
[8] Bader, S., Ma, X., & Oelmann, B. (2020). A Comparison of One- and Two-Diode Model Parameters at Indoor Illumination Levels. IEEE Access, 8, 172057–172064. https://doi.org/10.1016/10.1109/ACCESS.2020.3025146
[9] Ciani, L., Catelani, M., Carnevale, E. A., Donati, L., & Bruzzi, M. (2015). Evaluation of the Aging Process of Dye-Sensitized Solar Cells Under Different Stress Conditions. IEEE Transactions on Instrumentation and Measurement, 64(5), 1179–1187. https://doi.org/10.1109/TIM.2014.2381352
[10] Ndiaye, A., Charki, A., Kobi, A., Kébé, C. M. F., Ndiaye, P. A., & Sambou, V. (2013). Degradations of silicon photovoltaic modules: A literature review. Solar Energy, 96, 140–151. https://doi.org/10.1016/10.1016/j.solener.2013.07.005
[11] Lay-Ekuakille, A., Ciaccioli, A., Griffo, G., Visconti, P., & Andria, G. (2018). Effects of dust on photovoltaic measurements: A comparative study. Measurement, 113, 181–188. http://dx.doi.org/10.1016/10.1016/j.measurement.2017.06.025
[12] Cristaldi, L., Faifer, M., Rossi, M., Toscani, S., Catelani, M., Ciani, L., & Lazzaroni, M. (2014). Simplified method for evaluating the effects of dust and aging on photovoltaic panels. Measurement, 54, 207–214. https://doi.org/10.1016/j.measurement.2014.03.001
[13] Carullo, A., Ferraris, F., Vallan, A., Spertino, F., & Attivissimo, F. (2014). Uncertainty analysis of degradation parameters estimated in long-term monitoring of photovoltaic plants. Measurement, 55, 641–649. https://doi.org/10.1016/j.measurement.2014.06.003
[14] Cubas, J., Pindado, S., & Victoria, M. (2014). On the analytical approach for modeling photovoltaic systems behavior. Journal of Power Sources, 247, 467–474. https://doi.org/10.1016/j.jpowsour.2013.09.008
[15] Batzelis, E. I., & Papathanassiou, S. A. (2016). A Method for the Analytical Extraction of the Single-Diode PV Model Parameters. IEEE Transactions on Sustainable Energy, 7(2), 504–512. https://doi.org/10.1109/TSTE.2015.2503435
[16] Hassan Ali, M., Rabhi, A., Haddad, S., & El Hajjaji, A. (2017). Real-Time Determination of Solar Cell Parameters. Journal of Electronic Materials, 46(11), 6535–6543. https://doi.org/10.1016/10.1007/s11664-017-5697-0
[17] Subudhi, B., & Pradhan, R. (2018). Bacterial Foraging Optimization Approach to Parameter Extraction of a Photovoltaic Module. IEEE Transactions on Sustainable Energy, 9(1), 381–389. https://doi.org/10.1109/TSTE.2017.2736060
[18] Long, W., Cai, S., Jiao, J., Xu, M., & Wu, T. (2020). A new hybrid algorithm based on grey wolf optimizer and cuckoo search for parameter extraction of solar photovoltaic models. Energy Conversion and Management, 203, 112243. https://doi.org/10.1016/j.enconman.2019.112243
[19] Liao, Z., Chen, Z., & Li, S. (2020). Parameters Extraction of Photovoltaic Models Using Triple- Phase Teaching-Learning-Based Optimization. IEEE Access, 8, 69937–69952. https://doi.org/10.1016/10.1109/ACCESS.2020.2984728
[20] Ibrahim, I. A., Hossain, M. J., Duck, B. C., & Fell, C. J. (2020). An AdaptiveWind-Driven Optimization Algorithm for Extracting the Parameters of a Single-Diode PV Cell Model. IEEE Transactions on Sustainable Energy, 11(2), 1054–1066. https://doi.org/10.1109/TSTE.2019.2917513
[21] Gomes, R. C. M., Vitorino, M. A., Corrêa, M. B. de R., Fernandes, D. A.,&Wang, R. (2017). Shuffled Complex Evolution on Photovoltaic Parameter Extraction:AComparative Analysis. IEEE Transactions on Sustainable Energy, 8(2), 805–815. https://doi.org/10.1109/TSTE.2016.2620941
[22] Dkhichi, F., Oukarfi, B., Fakkar, A., & Belbounaguia, N. (2014). Parameter identification of solar cell model using Levenberg–Marquardt algorithm combined with simulated annealing. Solar Energy, 110, 781–788. https://doi.org/10.1016/j.solener.2014.09.033
[23] Alam, D. F., Yousri, D. A., & Eteiba, M. B. (2015). Flower Pollination Algorithm based solar PV parameter estimation. Energy Conversion and Management, 101, 410–422. https://doi.org/10.1016/j.enconman.2015.05.074
[24] Diab, A. A. Z., Sultan, H. M., Do, T. D., Kamel, O. M., & Mossa, M. A. (2020). Coyote Optimization Algorithm for Parameters Estimation of Various Models of Solar Cells and PV Modules. IEEE Access, 8, 111102–111140. https://doi.org/10.1109/ACCESS.2020.3000770
[25] Mesbahi, O., Tlemçani, M., Janeiro, F. M., Hajjaji, A., & Kandoussi, K. (2020). A Modified Nelder– Mead Algorithm for Photovoltaic Parameters Identification. International Journal of Smart Grid – IJSmartGrid, 4(1), 28–37.
[26] Mesbahi, O., Tlemçani, M., Janeiro, F. M., Abdeloawahed, H., & Khalid, K. (2019). Estimation of Photovoltaic Panel Parameters by a Numerical Heuristic Searching Algorithm. In 2019 8th International Conference on Renewable Energy Research and Applications (ICRERA) (pp. 401-406). IEEE. https://doi.org/10.1109/ICRERA47325.2019.8996779
[27] Hutcheson, G. D. (2011). Ordinary least-squares regression. L. Moutinho and G.D. Hutcheson, The SAGE Dictionary of Quantitative Management Research, 224–228.
[28] Hadjdida, A., Bourahla, M., Ertan, H. B., & Bekhti, M. (2018). Analytical Modelling, Simulation and Comparative Study of Multi-Junction Solar Cells Efficiency. International Journal of Renewable Energy Research, 8(4), 1824–1832.
[29] Salmi, T., Bouzguenda, M., Gastli, A.,&Masmoudi, A. (2012).MATLAB / Simulink Based Modelling of Solar Photovoltaic Cell. International Journal of Renewable Energy Research (IJRER), 2(2), 213– 218.
[30] Dimova-Malinovska, D. (2010). The state-of-the-art and future development of the photovoltaic technologies – The route from crystalline to nanostructured and new emerging materials. Journal of Physics: Conference Series, 253(1). https://doi.org/10.1088/1742-6596/253/1/012007
[31] Mahmoud, Y., Xiao, W., & Zeineldin, H. H. (2012). A Simple Approach to Modeling and Simulation of Photovoltaic Modules. IEEE Transactions on Sustainable Energy, 3(1), 185–186. https://doi.org/10.1109/TSTE.2011.2170776
[32] Ishaque, K., Salam, Z., & Taheri, H. (2011). Simple, fast and accurate two-diode model for photovoltaic modules. Solar Energy Materials and Solar Cells, 95(2), 586–594. https://doi.org/10.1016/j.solmat.2010.09.023
[33] Babu, B. C., & Gurjar, S. (2014). A Novel Simplified Two-Diode Model of Photovoltaic (PV) Module. IEEE Journal of Photovoltaics, 4(4), 1156–1161. https://doi.org/10.1109/JPHOTOV.2014.2316371
[34] Nelder, J. A.,&Mead, R. (1965).Asimplex method for function minimization. The Computer Journal, 7(4), 308–313. https://doi.org/10.1093/comjnl/7.4.308
[35] Rashel, M. R., Rifat, J., Gonçalves, T., Tlemcani, M., & Melicio, R. (2017). Sensitivity Analysis Through Error Function of Crystalline-Si Photovoltaic Cell Model Integrated in a Smart Grid. International Journal of Renewable Energy Research, 7(4).
Go to article

Authors and Affiliations

Oumaima Mesbahi
1 2
Mouhaydine Tlemçani
1 2
Fernando M. Janeiro
1 2 3
Abdeloawahed Hajjaji
4
Khalid Kandoussi
4

  1. University of Évora, Department of Mechatronics, R. Romão Ramalho 59, 7000-671 Évora, Portugal
  2. Instrumentation and Control Laboratory, Institute of Earth Sciences, Évora, Portugal
  3. Instituto de Telecomunicações, Lisbon, Portugal
  4. University of Chouaib Doukkali, Energy Engineering Laboratory, National School of Applied Sciences, El Jadida, Morocco
Download PDF Download RIS Download Bibtex

Abstract

The rotating machines with overhung rotors form a broad class of devices used in many types of industry. For this kind of rotor machine in the paper, there is investigated an influence of dynamic and static unbalance of a rotor, parallel and angular misalignments of shafts, and inner anisotropy of rigid couplings on system dynamic responses. The considerations are performed through a hybrid structural model of the machine rotor-shaft system, consisting of continuous beam finite elements and discrete oscillators. Numerical calculations are carried out for parameters characterizing a heavy blower applied in the mining industry. The main goal of the research is to assess the sensitivity of the imperfections mentioned above on excitation severity of rotor-shaft lateral vibrations and motion stability of the machine in question.
Go to article

Bibliography

  1. K. Nandakumar and A. Chatterjee, “Nonlinear secondary whirl of an overhung rotor”, in Proc. R. Soc. A., vol. 466, pp. 283–301, 2010, doi: 10.1098/rspa.2009.0262.
  2.  O. Cakmak and K.Y. Sanliturk, “A dynamic model of an overhung rotor with ball bearings”, in Proc. Inst. Mech. Eng., Part K: J. Multi- body Dyn., vol. 255, no. 4, pp. 310–321, 2011, doi: 10.1177/1464419311408949.
  3.  Ch. Fu, X. Ren, Y. Yang, and W. Qin, “Dynamic response analysis of an overhung rotor with interval uncertainties”, Nonlinear Dyn., vol. 89, pp. 2115–2124, 2017, doi: 10.1007/s11071-017-3573-3.
  4.  E. Chipato, A.D. Shaw, and M.I. Friswell, “Frictional effects on the Nonlinear Dynamics, of an overhung rotor”, Commun. Nonlinear Sci. Numer. Simul., vol. 78, p. 104875, 2019.
  5.  ISO 1940/1, ”Balance Quality Requirements of Rigid Rotors”, International Organization for Standardization, 2003.
  6.  K.M. Al-Hussain and I. Redmond, “Dynamic response of two rotors connected by rigid mechanical coupling with parallel misalignment”, Sound Vib., vol. 249, no. 3, pp. 483–498, 2002.
  7.  K.M. Al-Hussain, “Dynamic stability of two rigid rotors connected by a flexible coupling with angular misalignment”, J. Sound Vib., vol. 266, no. 2, pp. 217–234, 2002.
  8.  A.W. Lees, “Misalignment in rigidly coupled rotors”, J. Sound Vib., vol. 305, pp. 261–271, 2007.
  9.  I. Redmond, “Study of a misaligned flexibly coupled shaft system having nonlinear bearings and cyclic coupling stiffness – Theoretical model and analysis”, J. Sound Vib., vol. 329, pp. 700–720, 2010.
  10.  J. Didier, J.-J. Sinou and B. Faverjon, “Study of the nonlinear dynamic response of a rotor system with faults and uncertainties”, J. Sound Vib., vol. 331, pp. 671–703, 2012.
  11.  P. Pennacchi, A. Vania, and S. Chatterton, “Nonlinear effects caused by coupling misalignment in rotors equipped with journal bearings”, Mech. Syst. Signal Process., no.30, pp. 306–322, 2012.
  12.  A. Muszyńska, Ch.T. Hatch, and D.E. Bently, “Dynamics of anisotropically supported rotors”, Int. J. Rotating Mach., vol. 3, no. 2, pp. 133–142, 1997.
  13.  J. Malta, “Investigation of anisotropic rotor with different shaft orientation”, Doctoral Thesis, Darmstadt University of Technology, Department of Machinery Construction, D 17, Darmstadt, 2009.
  14.  T. Szolc, P. Tauzowski, R. Stocki, and J. Knabel, ”Damage identification in vibrating rotor-shaft systems by efficient sampling approach”, Mech. Syst. Signal Process., vol. 23, pp. 1615–1633, 2009.
  15.  T. Szolc, “On the discrete-continuous modeling of rotor systems for the analysis of coupled lateral-torsional vibrations”, Int. J. Rotating Mach., vol. 6, no. 2, pp. 135–149, 2000.
  16.  T. Szolc, K. Falkowski, M. Henzel, and P. Kurnyta-Mazurek, “The determination of parameters for a design of the stable electro-dynamic passive magnetic support of a high-speed flexible rotor”, Bull. Pol. Acad. Sci. Tech. Sci., vol. 67, no. 1, pp. 91–105, 2019.
  17.  A. Pręgowska, R. Konowrocki, and T. Szolc, “On the semi-active control method for torsional vibrations in electro-mechanical systems by means of rotary actuators with a magneto-rheological fluid”, J. Theor. Appl. Mech., vol. 51, no. 4, pp. 979–992, 2013.
  18.  R. Lasota, R. Stocki, P. Tauzowski, and T. Szolc, ”Polynomial chaos expansion method in estimating probability distribution of rotor-shaft dynamic responses”, Bull. Pol. Acad. Sci. Tech. Sci., vol. 63, no. 1, pp. 413–422, 2015.
  19.  Y. Ma, Z. Liang, M. Chen, and J. Hong, “Interval analysis of rotor dynamic response with uncertain parameters”, J. Sound Vib., vol. 332, pp. 3869–3880, 2013.
  20.  Z. Qiu and X. Wang, “Parameter perturbation method for dynamic responses of structures with uncertain-but-bounded parameters based on interval analysis”, Int. J. Solids Struct., vol. 42, pp. 4958–4970, 2005.
  21.  Ch. Fu, Y. Xu, Y. Yang, K. Lu, F. Gu, and A. Ball, “Response analysis of an accelerating unbalanced rotating system with both random and interval variables”, J. Sound Vib., vol. 466, p. 115047, 2020. https://doi.org/10.1016/j.jsv.2019.115047.
Go to article

Authors and Affiliations

Tomasz Szolc
1
ORCID: ORCID
Robert Konowrocki
1
ORCID: ORCID

  1. Institute of Fundamental Technological Research of the Polish Academy of Sciences, ul. Pawińskiego 5B, 02-106 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

This paper discusses the different methods used for calculating first- and second-order sensitivity: the direct differentiation method, the adjoint variables method, and the hybrid method. The solutions obtained allow determining the sensitivity of dynamic characteristics such as eigenvalues and eigenvectors, natural frequencies, and nondimensional damping ratios. The methods were applied for analyzing systems with viscoelastic damping elements, whose behavior can be described by classical and fractional rheological models. However, the derived formulas are general and can also be applied to systems with damping elements described by other models. Their advantage is a compact and easy to code form. The paper also presents a comparison of the computational costs of the discussed methods. The correctness of all the proposed methods has been illustrated with numerical examples.
Go to article

Bibliography

[1] M. Zhang and R. Schmidt. Sensitivity analysis of an auto-correlation-function-based damage index and its application in structural damage detection. Journal of Sound and Vibration, 333(26):7352–7363, 2014. doi: 10.1016/j.jsv.2014.08.020.
[2] T.W. Kim and J.H. Kim. Eigensensitivity based optima distribution of a viscoelastic damping layer for a flexible beam. Journal of Sound and Vibration, 273(1-2):201–218, 2004. doi: 0.1016/S0022-460X(03)00479-6.
[3] F. van Keulen, R.T. Haftka, and N.H. Kim. Review of options for structural design sensitivity analysis. Part 1: Linear systems. Computer Methods in Applied Mechanics and Engineering, 194(30-33):3213–3243, 2005. doi: 0.1016/j.cma.2005.02.002.
[4] D.A. Tortorelli and P. Michaleris. Design sensitivity analysis: Overview and review. Inverse Problems in Engineering, 1(1):71–105, 1994, doi: 10.1080/174159794088027573.
[5] R.L. Fox and M.P. Kapoor. Rates of change of eigenvalues and eigenvectors. AIAA Journal, 6(12):2426–2429, 1968. doi: 10.2514/3.5008.
[6] S. Adhikari and M.I. Friswell. Eigenderivative analysis of asymmetric non-conservative systems. International Journal for Numerical Methods in Engineering, 51(6):709–733, 2001. doi: 10.1002/NME.186.
[7] R.B. Nelson. Simplified calculation of eigenvector derivatives. AIAA Journal, 14(9):1201–1205, 1976. doi: 10.2514/3.7211.
[8] M.I. Friswell and S. Adhikari. Derivatives of complex eigenvectors using Nelson’s method. AIAA Journal, 38(12):2355–2357, 2000. doi: 10.2514/2.907.
[9] S. Adhikari and M.I. Friswell. Calculation of eigenrelation derivatives for nonviscously damped systems using Nelson’s method. AIAA Journal, 44(8):1799–1806, 2006. doi: 10.2514/1.20049.
[10] L. Li, Y. Hu, X. Wang, and L. Ling. Eigensensitivity analysis of damped systems with distinct and repeated eigenvalues. Finite Elements in Analysis and Design, 72:21–34, 2013. doi: 10.1016/j.finel.2013.04.006.
[11] L. Li, Y. Hu, and X. Wang. A study on design sensitivity analysis for general nonlinear eigenproblems. Mechanical Systems and Signal Processing, 34(1-2):88–105, 2013. doi: 10.1016/j.ymssp.2012.08.011.
[12] T.H. Lee. An adjoint variable method for structural design sensitivity analysis of a distinct eigenvalue problem. KSME International Journal, 13(6):470–476, 1999. doi: 10.1007/BF02947716.
[13] T.H. Lee. Adjoint method for design sensitivity analysis of multiple eigenvalues and associated eigenvectors. AIAA Journal, 45(8):1998–2004, 2007. doi: 10.2514/1.25347.
[14] S. He, Y. Shi, E. Jonsson, and J.R.R.A. Martins. Eigenvalue problem derivatives computation for a complex matrix using the adjoint method. Mechanical Systems and Signal Processing, 185:109717, 2023. doi: 10.1016/j.ymssp.2022.109717.
[15] R. Lewandowski and M. Łasecka-Plura. Design sensitivity analysis of structures with viscoelastic dampers. Computers and Structures, 164:95–107, 2016. doi: 10.1016/j.compstruc.2015.11.011.
[16] Z. Ding, L. Li, G. Zou, and J. Kong. Design sensitivity analysis for transient response of non-viscously damped systems based on direct differentiate method. Mechanical Systems and Signal Processing, 121:322–342, 2019. doi: 10.1016/j.ymssp.2018.11.031.
[17] Z. Ding, J. Shi, Q. Gao, Q. Huang, and W.H. Liao. Design sensitivity analysis for transient responses of viscoelastically damped systems using model order reduction techniques. Structural and Multidisciplinary Optimization, 64:1501–1526, 2021. doi: 10.1007/s00158-021-02937-9.
[18] R. Haftka. Second-order sensitivity derivatives in structural analysis. AIAA Journal, 20(12):1765–1766, 1982. doi: 10.2514/3.8020.
[19] M.S. Jankovic. Exact nth derivatives of eigenvalues and eigenvectors. Journal of Guidance, Control, and Dynamics, 17(1):136–144, 1994. doi: 10.2514/3.21170.
[20] J.Y. Ding, Z.K. Pan, and L.Q. Chen. Second-order sensitivity analysis of multibody systems described by differential/algebraic equations: adjoint variable approach. International Journal of Computer Mathematics, 85(6):899–913, 2008. doi: 10.1080/00207160701519020.
[21] M. Martinez-Agirre and M.J. Elejabarrieta. Higher order eigensensitivities-based numerical method for the harmonic analysis of viscoelastically damped structures. International Journal for Numerical Methods in Engineering, 88(12):1280–1296, 2011. doi: 10.1002/nme.3222.
[22] H. Kim and M. Cho. Study on the design sensitivity analysis based on complex variable in eigenvalue problem. Finite Elements in Analysis and Design, 45:892–900, 2009. doi: 10.1016/j.finel.2009.07.002.
[23] A. Bilbao, R. Aviles, J. Aguirrebeitia, and I.F. Bustos. Eigensensitivity-based optimal damper location in variable geometry trusses. AIAA Journal, 47(3):576–591, 2009. doi: 10.2514/1.37353.
[24] R.M. Lin, J.E. Mottershead, and T.Y. Ng. A state-of-the-art review on theory and engineering applications of eigenvalue and eigenvector derivatives. Mechanical Systems and Signal Processing, 138:106536, 2020. doi: 10.1016/j.ymssp.2019.106536.
[25] R. Lewandowski, A. Bartkowiak, and H. Maciejewski. Dynamic analysis of frames with viscoelastic dampers: a comparison of dampers models. Structural Engineering and Mechanics, 41(1):113–137, 2012. doi: 10.12989/sem.2012.41.1.113.
[26] S.W. Park. Analytical modeling of viscoelastic dampers for structural and vibration control. International Journal of Solids and Structures, 38(44-45):8065–8092, 2001. doi: 10.1016/S0020-7683(01)00026-9.
[27] R. Lewandowski. Sensitivity analysis of structures with viscoelastic dampers using the adjoint variable method. Civil-Comp Proceedings, 106, 2014.
[28] J.S. Arora and J.B. Cardoso. Variational principle for shape design sensitivity analysis. AIAA Journal, 30(2):538–547, 1992. doi: 10.2514/3.10949.
[29] Z. Pawlak and R. Lewandowski. The continuation method for the eigenvalue problem of structures with viscoelastic dampers. Computers and Structures, 125:53–61, 2013. doi: 10.1016/j.compstruc.2013.04.021.
[30] R. Lewandowski and M. Baum. Dynamic characteristics of multilayered beams with viscoelastic layers described by the fractional Zener model. Archive of Applied Mechanics, 85(12):1793–1814, 2015. doi: 10.1007/s00419-015-1019-2.
[31] R. Lewandowski, P. Litewka and P. Wielentejczyk. Free vibrations of laminate plates with viscoelastic layers using the refined zig-zag theory – Part 1: Theoretical background. Composite Structures, 278:114547, 2021. doi: 10.1016/j.compstruct.2021.114547.
[32] M. Kamiński, A. Lenartowicz, M. Guminiak, and M. Przychodzki. Selected problems of random free vibrations of rectangular thin plates with viscoelastic dampers. Materials, 15(19): 6811, 2022. doi: 10.3390/ma15196811.
Go to article

Authors and Affiliations

Magdalena Łasecka-Plura
1
ORCID: ORCID

  1. Poznan University of Technology, Institute of Structural Analysis, Poznan, Poland
Download PDF Download RIS Download Bibtex

Abstract

The area of environmental protection concern minimises the impact that technical objects have on the environment. Usually the most effective way of protecting the environment is to influence the source of the problem. For this reason studies are conducted to modify the construction of machines, power machines in particular, so as to minimise their impact on the environment.

In the case of environmental protection from noise it is most convenient to carry out measurements in an anechoic chamber. Unfortunately, this is possible only in very limited circumstances. In all other cases measurements are performed using an engineering method or the survey method, both of which are described in the standards and by taking into account the so-called environmental corrections. The obtained results are burdened with greater error than those of measurements in an anechoic chamber. Therefore, it would seem advantageous to develop a method of obtaining similar and reliable results as those in an anechoic chamber, but in a reverberant field. The authors decided to use numerical modelling for this purpose.

The main objective of this work is a comprehensive analysis of the numerical model of a laboratory designed for acoustic tests of selected power machines. The geometry of a room comprising an area of analysis is easy to design. The main difficulty in modelling the phenomena occurring in the analysed area can be the lack of knowing the boundary conditions. Therefore, the authors made an attempt to analyse the sensitivity of various acoustic parameters in a room in order to change these boundary conditions depending on the sound absorption coefficient

Go to article

Authors and Affiliations

Katarzyna Suder-Dębska
Ireneusz Czajka
Mateusz Czechowski
Download PDF Download RIS Download Bibtex

Abstract

This work deals with the inverse problem associated to 3D crack identification inside a conductive material using eddy current measurements. In order to accelerate the time-consuming direct optimization, the reconstruction is provided by the minimization of a last-square functional of the data-model misfit using space mapping (SM) methodology. This technique enables to shift the optimization burden from a time consuming and accurate model to the less precise but faster coarse surrogate model. In this work, the finite element method (FEM) is used as a fine model while the model based on the volume integral method (VIM) serves as a coarse model. The application of the proposed method to the shape reconstruction allows to shorten the evaluation time that is required to provide the proper parameter estimation of surface defects.

Go to article

Authors and Affiliations

Piotr Putek
Guillaume Crevecoeur
Marian Slodička
Konstanty Gawrylczyk
Roger van Keer
Luc Dupré
Download PDF Download RIS Download Bibtex

Abstract

This paper describes multiple electric field control methods for foil coils in high-voltage coreless linear actuators and their sensitivity to misalignment. The investigated field control methods consist of resistive, refractive, capacitive and geometrical solutions for mitigating electric stress at edges and corners of foil coils. These field control methods are evaluated using 2-D boundary element and finite element methods. A comparison is presented between the field control methods and their ability to mitigate electric stress in coreless linear actuators. Furthermore, the sensitivity to misalignment of the field control methods is investigated.
Go to article

Authors and Affiliations

T.A. van Beek
J.W. Jansen
E.A. Lomonova
Download PDF Download RIS Download Bibtex

Abstract

Anisotropic rotor configurations influenced by the presence of a large number of geometrical parameters in a permanent magnet assisted synchronous reluctance (PMASR) motor pose design challenges in obtaining a robust geometry satisfying the requirements of reduced torque ripple and high torque density. Therefore, the purpose of this work is to perform detailed geometrical sensitivity analysis of a 36 slot/4 pole permanent magnet assisted synchronous reluctance (PMASR) motor using h-indexing and level sensitivity analysis in order to specify a guideline for designers to prioritize the design variables for optimization. Systematic multi-level design optimization for multiple objectives is implemented by an NSGA-II algorithm aided by the finite element analysis tool, hardware prototyping and experimental validation. The optimized designs also exhibit better structural and thermal characteristics.

Go to article

Authors and Affiliations

V.S. Nagarajan
V. Kamaraj
S. Sivaramakrishnan
Download PDF Download RIS Download Bibtex

Abstract

In this paper, the sensitivity analysis of the elliptic filters realized by using biquadratic structures was carried out. The influence

of spread the structure parameter values on the shape of the frequency characteristic of the filter transmittance modulus was analyzed. The analysis was limited to the case of even order low-pass filter. Defining the proper class of the sensitivity coefficients, the changes influence of individual structure parameters on the deviation of basic parameter values of the characteristic was considered. The considerations were illustrated by the numerical example.

Go to article

Authors and Affiliations

M. Pasko
T. Adrikowski
Download PDF Download RIS Download Bibtex

Abstract

China has been building an ecological compensation system to eliminate the contradiction between economic development and ecological protection. Aiming at conflicts of interest in the implementation of an ecological compensation policy for China’s mineral resource development, this study established a tripartite evolutionary game model to simulate the ecological compensation scenario and determined the evolutionary stable strategy (ESS) under different scenarios; it uses numerical simulation to analyse the strategy evolution process of stakeholders and the influence of parameter changes on each strategy. The results show that there is an optimal ESS for ecological compensation for mineral resource development, which condition is C1 < Ti + F1, P < F2, C2 < R1 + R2. The initial cooperation intentions of stakeholders directly affected the final stable state. Local governments are most affected by the input cost, and mining enterprises are most affected by the supervision of the central government. Punishment can effectively restrain the behavior of local governments and mining enterprises and promote the implementation of ecological compensation systems. In addition, the higher supervision cost of the central government, the longer time it will take for the stakeholders to reach the stable state. Finally, reducing the payment amount for ecological compensation will not affect the trend in environmental improvement; in contrast, it is conducive to the preservation of enterprises’ strength, economic development and ecological environment protection. The main findings of this study can help secure coordinate between the stakeholders in conflict and jointly formulate appropriate ecological compensation policy.
Go to article

Authors and Affiliations

Yiqiao Wang
1
ORCID: ORCID
Yongtao Gao
1
Guoqing Li
1
Yu Zhou
1
Jianhui Li
2

  1. School of Civil and Resource Engineering, University of Science and Technology Beijing, China
  2. Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, China
Download PDF Download RIS Download Bibtex

Abstract

Groundwater is a vital resource for domestic, agricultural, industrial activities and ecosystem services. Despite its multi-ple purposes, the resource is under significant threat owing to increasing contamination from anthropogenic activities and climate change. Hence, in order to ensure the reliability and sustainable use of groundwater for the present and future gener-ations, effective management of groundwater (quality and quantity) is highly important. This can be achieved by identifying areas more vulnerable to contamination and implementing protective measures. The present study aims at assessing the vul-nerability of groundwater using GIS-based DRASTIC index in the Quaternary catchment (A21C) within Limpopo River Basin. The vulnerability index varied from 87 to 207. About 53.6% (408 km2) of the catchment area also exhibited high risk of groundwater contamination mostly in central, north-eastern and western part of the sub-catchment. The medium and low vulnerability classes cover only 18.1% (137.5 km2) and 21.7% (165.1 km2) of the study area, respectively. The shallow groundwater at the Doornfontein Campus belongs to very high vulnerability area. The sensitivity analysis indicates that depth to water level, recharge, aquifer media, soil and topography are the important contributors to vulnerability assessment. The correlation analysis performed to validate the final vulnerability map shows a moderate positive correlation, indicating the model’s applicability to the urbanised environment. The study indicates an area that is highly vulnerable to pollution, and hence protective measures are necessary for sustainable management of the groundwater resource in the study area. The result of this study can also be further improved and verified by using other vulnerability assessment models.
Go to article

Authors and Affiliations

Simeneh S. Moges
1
ORCID: ORCID
Megersa O. Dinka
1
ORCID: ORCID

  1. University of Johannesburg, Faculty of Engineering and the Built Environment, Department of Civil Engineering Sciences, PO Box 524, Auckland Park, 2006 Johannesburg, South Africa
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a detailed theoretical background for coordinate measurement uncertainty evaluation by means of Type B evaluation method, taking into account information on accuracy of a coordinate measuring system given with the formula for maximum permissible errors of length measurement and verification test results. A proposal for evaluation of the verification test results is made. A measurement model based on the point-plane distance equation is presented. A detailed analysis of the partial derivatives (sensitivity factors in an uncertainty budget) of the measurement model is presented. The analyses of measurement uncertainty for different geometrical characteristicswere conducted using this measurement model. Examples of uncertainty evaluation for geometrical deviations are presented: position of a point related to a datum plane and flatness in the case of convex or concave surfaces. The examples include detailed uncertainty budgets.

Go to article

Authors and Affiliations

Wojciech Płowucha
Download PDF Download RIS Download Bibtex

Abstract

The paper considers parametric optimization problems for the steel bar structures formulated as nonlinear programming ones with variable unknown cross-sectional sizes of the structural members, as well as initial prestressing forces introduced into the specified redundant members of the structure. The system of constraints covers load-bearing capacity constraints for all the design sections of the structural members subjected to all the design load combinations at ultimate limit state, as well as displacement constraints for the specified nodes of the bar system, subjected to all design load combinations at serviceability limit state. The method of the objective function gradient projection onto the active constraints surface with simultaneous correction of the constraints violations has been used to solve the parametric optimization problem. A numerical technique to determine the optimal number of the redundant members to introduce the initial prestressing forces has been offered for high-order statically indeterminate bar structures. It reduces the dimension for the design variable vector of unknown initial prestressing forces for considered optimization problems.

Go to article

Authors and Affiliations

Vitalina Yurchenko
Ivan Peleshko
Download PDF Download RIS Download Bibtex

Abstract

In order to investigate the progressive collapse performance of steel open-web sandwich plate structure, the sensitivity index and the importance coefficient of the bars are analyzed by the alternate path method. The condition that the model has perimeter supports with different parameters shows the result that: the redundancy index of structure increases at the structural edge, and the redundancy index will be reduced to changing degrees at the middle structure, when the stiffness of higher ribs increases. The redundancy index has little change, when the stiffness of lower ribs or shear keys increases. The sensitivity index of the shear keys dropped significantly, but the sensitivity index of the higher ribs and lower ribs increase, when the span to depth ratio increases. The sensitivity index of the higher ribs in L1 line increases significantly, when the span to depth ratio declines. So it is advisable to strengthen the higher ribs to avoid excessive sensitivity of ribs, when the span to depth ratio declines.

Go to article

Authors and Affiliations

Weiyi Zeng
Jie Luo
Jianchun Xiao

This page uses 'cookies'. Learn more