Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The main problem of tunnelling with use of TBM in highly dense urban areas is to assign the range of subsiding trough and the impact of tunnelling works on existing buildings and underground or road infrastructure. The paper presents the results of settlements calculations over twin tube metro tunnel using analytical, empirical methods. The tunnel external diameter is 6,5 m ; the overburden vary from 5 m to 8 m ; the distance between tunnel axis is 14 m. Because of quaternary soils and high water table level the TBM type EBP was chosen as the method of tunnel construction. At the length of 502 m of tunnel the monitoring system was carried out in 22 cross sections. The results of settlements monitoring were compared with the values of analytical calculations.

Go to article

Authors and Affiliations

A. Siemińska-Lewandowska
R. Kuszyk
Download PDF Download RIS Download Bibtex

Abstract

The impact of TBM EPB tunnelling was assessed with respect to the observed values of settlements as the results of extensive monitoring system of the subsoil and ground surface. The aim of the analysis using empirical methods was to determine the real scale of impact and to determine the formula for the asymmetric subsidence trough observed during the passage of two TBMs in quaternary cohesive soils. Based on field measurements, authors propose the polynomial formulation for the depth and shape of the asymmetric subsidence trough prediction over twin tube TBM tunnel.
Go to article

Authors and Affiliations

Rafał Kuszyk
1
ORCID: ORCID
Anna Siemińska-Lewandowska
2
ORCID: ORCID

  1. Ph.D., Warsaw University of Technology, Faculty of Civil Engineering, Al. Armii Ludowej 16, 00-637 Warsaw, Poland
  2. Prof., DSc., PhD., Eng., Warsaw University of Technology, Faculty of Civil Engineering, Al. Armii Ludowej 16, 00-637 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

The presence of soft soil of river and organic genesis in the basement of road embankments creates problems related to their high deformability. Difficult to assess water permeability, affecting the course of the consolidation and settlement process, requires field studies, such as dilatometer tests. In engineering practice, there are many factors that can affect the basement consolidation process, but they are not simply applied to theoretical models. In many cases, only the observational method allows the selected computational approach to be applied to a specific engineering problem. For this reason, it is one of the approaches strongly emphasized by Eurocode 7. The article presents an example of the application of a temporary load from heavy construction traffic to the consolidation of soft soil under service roads with verification of the subsoil parameters using the dilatometer tests. A horizontal layer of weak soil, loaded with a vertical external load caused by temporary traffic, was assumed for the calculations. For such an arrangement, the classical solution of uniaxial Terzaghi’s consolidation with the water flow in the vertical direction was applied. A computational analysis of the consolidation time and maximum settlement values was performed.
Go to article

Authors and Affiliations

Grzegorz Bartnik
1
ORCID: ORCID
Rafał Kuszyk
1
ORCID: ORCID
Małgorzata Superczyńska
1
ORCID: ORCID

  1. Warsaw University of Technology, Faculty of Civil Engineering, Al. Armii Ludowej 16, 00-637 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

Prediction of soft soil sub-grades settlement has been a big challenge for geotechnical engineers that are responsible for the design of roadbed embankment. The characteristics of low strength, poor permeability, high water contents, and high compressibility are dominant in soft soils, which result in a huge settlement in the case of long-term loading. The settlement prediction in soft soil subgrades of Jiehui Expressway A1, Guangdong, China, is the focus of this study. For this purpose, the necessary data of settlement is collected throughout the project execution. The numerical analysis is conducted by using the Richards model based on Linear Least Squares Iteration (LLS-I) method to calculate and predict the expected settlement. The traditional settlement prediction methods, including the hyperbolic method, exponential curve method, and pearl curve method, are applied on field settlement data of soft soil subgrades of Jiehui Expressway A1. The results show that the Richards model based on Linear Least Squares Iteration (LLS-I) method has high precision, and it has proven to be a better option for settlement prediction of soft soil sub-grades. The model analysis indicates that the mean absolute percentage error (MAPE) can be minimized as compared to other soft soil sub-grades settlement prediction methods. Hence, Richards's model-based LLS-I method has a capability for simulation and settlement prediction of soft soil subgrades.
Go to article

Authors and Affiliations

Muhammad Nadeem
1
Muhammad Akbar
2
Pan Huali
3
Li Xiaoqing
1
Ou Guoqiang
3
Azka Amin
4

  1. Graduate Student School of Civil Engineering and Mechanics, HUST, Wuhan, China
  2. PhD, Research Scholar, Department of Geotechnical Engineering Institute of Mountain Hazards and Environment, Chinese Academy of Science, Chengdu, China
  3. Prof, PhD., Eng., Department of Geotechnical Engineering Institute of Mountain Hazards and Environment, Chinese Academy of Science, Chengdu, China
  4. Assistant Professor, Department of Business Administration Iqra University, Main Campus, Karachi, Pakistan

This page uses 'cookies'. Learn more