Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The present study aims at evaluating the quality of shallow groundwater (SGW) and its suitability for irrigation purpose in the most urbanised part of Johannesburg city, South Africa. The SGW samples were collected in three consecutive years and analysed for 20 selected physicochemical parameters, and heavy metals. The results were compared with the South African water quality, and Food and Agricultural Organization irrigation water quality guidelines, and standard indices derived from laboratory outputs. The results of the study show that all physiochemical parameters and heavy metals were within the limits set by both guidelines for irrigation purposes, except for potassium (3.58 mg∙dm –3) and manganese levels (3.152 mg∙dm –3). The calculated irrigation parameter values of sodium adsorption ratio ( SAR), sodium percentage (Na%), residual sodium carbonate ( RSC), magnesium hazard ( MH), Kelly’s ratio ( KR) and permeability index ( PI) were within the permissible range of irrigation water quality standards. The findings of this study provide helpful information for decision-makers such as utilisation of the studied groundwater for irrigation uses.
Go to article

Authors and Affiliations

Simeneh S. Moges
1
ORCID: ORCID
Megersa O. Dinka
1
ORCID: ORCID

  1. University of Johannesburg, Department of Civil Engineering Science, PO Box 524, Auckland Park, 2006, Johannesburg, South Africa
Download PDF Download RIS Download Bibtex

Abstract

The aim of the study was to compare the physical-chemical quality parameters of shallow groundwater quality in peat bogs of the Łęczna-Włodawa Lake District in the context of the occurrence of selected boreal species of plant relics: dwarfbirch (Betula humilis Schrank), downy willow (Salix lapponum L. ) and swamp willow (Salix myrtylloides L. ). Analyzes of shallow groundwater quality parameters included physical-chemical parameters: reaction (pH), electrolytic conductivity(EC), dissolved organic carbon (DOC), total nitrogen (TN), ammonium nitrogen (NH4), nitrite nitrogen (NO2), nitrate nitrogen (NO3), total phosphorus (TP), phosphate (PO4), sulfate (SO2), sodium (Na), potassium (K), calcium (Ca) and mag-nesium (Mg) by certified laboratory tests.

It was found that the natural hydrochemical specification of peat bogs is characterized by fluctuations associated with the dynamics of internal metabolism of peat ecosystems without the visible impact of anthropopressure. This is confirmed by the concentration of nutrients: TNat the study sites were within a broad range of mean values: 16.92–45.31 mg·dm–3; NH4 (0.55–0.76 mg·dm–3); NO2 (0.06–4.33 mg·dm–3); and NO3 did not exceed 0.2 mg·dm–3, and concentration of TP adopted mean values in a range of 0.22–0.42 mg·dm–3.

The studied physical-chemical factors of shallow groundwater were within the habitat preferences of the studied species, but in differentiated qualitative and quantitative ways determined optimal conditions for building the population of the studied species. Particularly values of TP lower than other obtained values in a range of: 0.08–0.32 mg·dm–3; PO4 = 0.1 mg·dm–3; TN = 2.2–21.2 mg·dm–3; NH4 = 0.1–0.46 mg·dm–3; DOC = 24.6–55.9 mg·dm–3, as well as higher than average pH values in a range of: 5.34–5.95 and concentration of Ca = 5.67–28.1 mg·dm–3 and Mg = 0.56–2.41 mg·dm–3, as well as EC = 72.1–142.3 μS·cm–1 can be treated as a condition favouring proper development of the population of dwarf birch. For Salix lapponum: a reduced level of values of nitrogen fractions (TN = 3.01–18.84 mg·dm–3; NH4 = 0.1–0.41 mg·dm–3), a reduced level of values of phosphorus fractions (TP = 0.09–0.44 mg·dm–3; PO4 = 0.1–0.44 mg·dm–3), part of ions (Ca = 4.39–19.63 mg·dm–3; Mg = 0.77–3.37 mg·dm–3), pH = 5.9–6.4, EC = 124–266 μS·cm–1 and DOC = 24.1–57.5 mg·dm–3. For the equally studied Salix myrtylloides, such conditions were met by: TP = 0.1–0.41 mg·dm–3; PO4 = 0.1–0.18 mg·dm–3, DOC = 27.5–50.9 mg·dm–3, pH = 5.3–5.94 andEC = 62.2–139.3 μS·cm–1.

Go to article

Authors and Affiliations

Artur Serafin
ORCID: ORCID
Magdalena Pogorzelec
Urszula Bronowicka-Mielniczuk
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The objective of this work is to demonstrate for the first time the results of hydrogeochmical studies carried out in the Steinvik River catchment, in order to provide detailed information regarding the chemical composition of groundwater in the Hornsund region, SW Spitsbergen. The water chemistry in the non-glaciated Steinvik River catchment is largely controlled by hydrological processes related to thaw of the near surface permafrost. Groundwater runoff is generated from the fast flow through well-permeable active layer. Recharge from melting snow, permafrost and rain, together with short residence time of groundwater, favors the forming of low-mineralized water, reaching 41 and 50 μS/cm for surface and groundwater, respectively, with the dominance of HCO3−, Cl−, Mg2+, Ca2+ and Na+ ions. In some water samples, increased concentrations of aluminum (up to 268 μg/L ) were found. The highest concentrations of phosphate, nitrite and ammonium in water seem to be related to the presence of bird colonies. Groundwater of active layer in the studied catchment belongs to young meteoric water with the age limited to one summer season.
Go to article

Authors and Affiliations

Michał Rysiukiewicz
1
ORCID: ORCID
Henryk Marszałek
1
ORCID: ORCID
Mirosław Wąsik
1
ORCID: ORCID

  1. Department of Applied Hydrogeology, Institute of Geological Sciences, Wrocław University, Pl. Maksa Borna 9, 50-204 Wrocław, Poland
Download PDF Download RIS Download Bibtex

Abstract

The purpose of this research was to determine the groundwater intrinsic vulnerability to pollution of shallow groundwater in Wielkopolska Province, Poland and to assess the risk of pollution by nitrates. Wielkopolska is known as an area where the problem of water pollution by nitrates has existed for a long time due to intensive agriculture. DRASTIC method and its optimized version as well as four other risk evaluation methods were selected to assess the risk pollution with nitrates. The results of either method did not correlate with nitrate concentrations recorded inthe total of 1679 groundwater monitoring points. Therefore a new method of groundwater pollution risk assessment (NV-L) was proposed. The new method is based on optimized results of the DRASTIC system and the L parameter which considers not only land use types, but also the amount of nitrogen loading leached from soil as a result of fertilizer consumption, and from wet deposition. The final results of NV-L method showed that the largest part of the study area is covered by a very low class of pollution risk (30.6%). The high and very high classes occupy 11.6% of the area, mostly in the areas designated until 2012 as the Nitrate Vulnerable Zones. Validation of the results of all methods showed that the other methods than NV-L cannot be used as a basis for reliable assessment of the risk of groundwater pollution by nitrates, as they do not take into account the nitrogen load leached from the soil profile.
Go to article

Bibliography

  1. Air quality monitoring, www.powietrze.gios.gov.pl, access on 04.2021
  2. Al-Adamat, R., Foster, I. & Baban, S.M.J. (2003). Groundwater vulnerability mapping for the Basaltic aquifer of the Azraq basin of Jordan using GIS, remote sensing and DRASTIC, Applied Geography, 23, 4, pp. 303-324.
  3. Alam, F., Umar, R., Ahmed, S. & Dar, F. A. (2014). A new model (DRASTIC-LU) for evaluating groundwater vulnerability in parts of central Ganga Plain, India. Arabian Journal of Geosciences. DOI:10.1007/s12517-012-0796-y
  4. Aller, L., Bennett, T., Lehr, J.H., Petty, R.J. & Hackett, G. (1987). DRASTIC: a standardized system for evaluating ground water pollution potential using hydrogeologic settings. EPA-600/2-87-035, EPA, Washington, DC.
  5. Babiker, I.S., Mohammed, M.A.A., Hiyama, T. & Kato, K. (2005). A GIS – based DRASTIC model for assessing aquifer vulnerability in Kakamigahara Heights. Gifu Prefecture central Japan. Science of the Total Environment, 345, pp. 127-140.
  6. Bojarczuk, A., Jelonkiewicz, E., Jelonkiewicz, Ł. & Lenart-Boroń, A. (2019). Changes in the quality of shallow groundwater in agriculturally used catchment in the Wiśnickie Foothills (Southern Poland), Archives of Environmental Protection, 45, 1, pp. 19–25. DOI:10.24425/aep.2019.126420
  7. Central Hydrogeological Data Bank, Groundwater Bodies characteristics, Major Groundwater Reservoirs, www.pgi.gov.pl, access on 03.2021
  8. Corine Land Cover, 2018, https://clc.gios.gov.pl, access on 04.2021
  9. Dąbrowski, S., Przybyłek, J. & Górski, J. (2007). Warta lowland subregion, [in] Paczyński, B.  Sadurski, A., (Eds), Regional hydrogeology of Poland, Państwowy Instytut Geologiczny, Warsaw. (in Polish)
  10. Dąbrowski, S., Rynarzewski, W., Straburzyńska–Janiszewska, R., Janiszewska, B. & Pawlak, A. (2009). Identification of groundwater level changes due to anthropopression in the Warta water region, Biuletyn Państwowego Instytutu Geologicznego, 436, pp. 77-86. (in Polish)
  11. Digital Elevation Model, resolution 100100 m, www.gugik.gov.pl, access on 03.2021
  12. Dragon, K. & Górski, J. (2015). Identification of groundwater chemistry origins in a regional aquifer system (Wielkopolska region, Poland). Environ Earth Sci. 73: pp. 2153–2167. DOI:10.1007/s12665-014-3567-0
  13. Dragon, K. (2013). Groundwater nitrate pollution in the recharge zone of a regional Quaternary flow system (Wielkopolska region, Poland). Environ Earth Sci. 68: pp. 2099–2109. DOI:10.1007/s12665-012-1895-5
  14. Duda, R., Witczak, S. & Żurek, A. (2011). Groundwater Vulnerability Map of Poland in scale 1:500 000. Ministry of the Environment. Cracow.
  15. Fiszer, J. & Derkowska-Sitarz, M. (2010). Forecast of development of depression cone and water inflows to Brown Coal Mine Konin including designed open pits Tomisławice and Ościsłowo, Biuletyn Państwowego Instytutu Geologicznego, 442: pp. 37-41. (in Polish)
  16. Galon, R. (1961). Morphology of the Noteć - Warta (or Toruń - Eberswalde) ice marginal streamway. Geographical Studies, Polish Academy of Sciences. Institute of Geography; no. 29, IGiPZ PAN; Wydaw. Geologiczne, Warsaw.
  17. Hydrogeological Map of Poland in the scale 1:50 000, Uppermost Aquifer, Vulnerability and Quality; Hydrogeological Map of Poland in the scale of 1:50 000, Uppermost Aquifer, Hydrodynamics and Occurrence, Geological Map of Poland in the scale 1:50 000, www.geoportal.pgi.gov.pl, access on 04.2021
  18. Jamorska, I. (2015). Conditions for the occurrence of groundwater in southern Kujawy Region, Przegląd Geologiczny, 63, 10/1: pp. 756-761. (in Polish)
  19. Krogulec, E. (2004). Vulnerability Assessment of Groundwater Pollution in the River Valley on the Basis of Hydrodynamic Evidences. Wydawnictwo UW, Warszawa, Poland. (in Polish)
  20. Krogulec, E. (2011). Intrinsic and specific vulnerability of groundwater in a river valley. Biuletyn Państwowego Instytutu Geologicznego 445, 337–344. (in Polish)
  21. Ławniczak, A.E., Zbierska, J., Nowak, B., Achtenberg, K., Grześkowiak, A. & Kanas, K. (2016). Impact of agriculture and land use on nitrate contamination in groundwater and running waters in central-west Poland. Environ Monit. Assess., 188, 172. DOI:10.1007/s10661-016-5167-9
  22. Local database, NUTS 5, https://stat.gov.pl, access on 04.2021
  23. Map of soil types on a scale of 1:500 000 (updated 2005-2010), www.iung.pl, access on 05.2021
  24. Margat, J. (1968). Groundwater Vulnerability Maps, Conception-Estimation-Mapping; EEC Institut Europeen de l’ Eau: Paris, 1968.
  25. Martínez-Bastida, J.J., Arauzo, M. & Valladolid, M. (2010) Intrinsic and specific vulnerability of groundwater in central Spain: the risk of nitrate pollution. Hydrogeology Journal, 18, pp. 681–698.
  26. Monitoring Data Base – MONBADA, gios.gov.pl, access on 04.2021
  27. Napolitano, P. & Fabbri, A.G. (1996). Single-parameter sensitivity analysis for aquifer vulnerability assessment using DRASTIC and SINTACS, Application of Geographic Information Systems in Hydrology and Water Resources Management (Proceedings of the Vienna Conference), IAHS Publ. no. 235, pp. 559–566.
  28. NUTS 5 = LAU: Local Administrative Units, https://ec.europa.eu/, access on 05.2021
  29. Perrin, J., Pochon, A., Jeannin P.Y. & Zwahlen, F. (2004). Vulnerability assessment in karstic areas: validation by field experiments. Environmental Geology, 46:237–245. DOI:10.1007/s00254-004-0986-3
  30. Regulation of the Council of Ministers of February 14, 2020 on the adoption of the "Action Program to reduce water pollution with nitrates from agricultural sources and to prevent further pollution". Journal of Laws 2020. 243, www.isap.sejm.gov.pl, access on 07.2021. (in Polish)
  31. Regulation of the Director of Regional Water Management Authority in Poznań of July 12, 2012 on the determination of waters in the Warta water region, within the boundaries of the Wielkopolska Province, sensitive to pollution with nitrogen compounds from agricultural sources and particularly vulnerable areas, from which the outflow of nitrogen from agricultural sources to these waters should be limited. Journal of Laws of the Wielkopolska Province 2012.3143; https://poznan.wody.gov.pl/; access on 05.2021. (in Polish)
  32. Regulation of the Minister of the Environment of December 23, 2002 on the criteria for determining waters sensitive to pollution with nitrogen compounds with agricultural sources (2002). Journal of Laws 2002. 241. 2093, www.isap.sejm.gov.pl, access on 04.2021. (in Polish)
  33. Report on the implementation of Directive 91/676/EEC in the years 2016 – 2020 (2021). Ministry of Maritime Economy and Inland Navigation, https://www.gov.pl/attachment/b0a430f6-0555-4b0c-ab82-70d46ae1ffbc, access on 07.2021. (in Polish)
  34. Saha, D. & Alam, F. (2014). Groundwater vulnerability assessment using DRASTIC and Pesticide DRASTIC models in intensive agriculture area of the Gangetic plains, India. Environmental Monitoring and Assessment. DOI: 10.1007/s10661-014-4041-x
  35. Sarkar, M. & Pal, S.C. (2021). Application of DRASTIC and Modified DRASTIC models for modeling groundwater vulnerability of Malda District in West Bengal. J. of the Indian Society of Remote Sensing, 49(5), pp. 1201–1219. DOI: 10.1007/s12524-020-01176-7
  36. Secunda, S., Collin, M. L. & Melloul, A. J. (1998). Groundwater vulnerability assessment using a composite model combining DRASTIC with extensive agricultural land use in Israel’s Sharon region. Journal of Environmental Management. DOI: 10.1006/jema.1998.0221
  37. Shirazi, S.M., Imran, H.M. & Akib, S. (2012). GIS-based DRASTIC method for groundwater vulnerability assessment: a review, Journal of Risk Research, 15:8, 991-1011, DOI:10.1080/13669877.2012.686053
  38. Stewart, B.A., Viets, F.G. Jr. & Hutchinson, G.L. (1968). Agriculture’s effect on nitrate pollution of groundwater. J. Soil Water Conserv. 23, pp. 13–15.
  39. Szczepański, J. & Straburzyńska – Janiszewska, R. (2011). Forecast of the extent of the depression for the coal open pit Mąkoszyn – Grochowiska KWB „Konin” S.A., Biuletyn Państwowego Instytutu Geologicznego 445: 671-684. (in Polish)
  40. Voudouris, K., Mandrali, P. & Kazakis, N. (2018). Preventing groundwater pollution using vulnerability and risk mapping: the case of the Florina Basin, NW Greece. Geosciences 8(4), 129. DOI:10.3390/geosciences8040129
  41. Voutchkova, D.D., Schullehner, J., Rasmussen, P. & Hansen, B. (2021). A high-resolution nitrate vulnerability assessment of sandy aquifers (DRASTIC-N). Journal of Environmental Management 277, 11133.0.
  42. Vrba, J. & Zaporozec, A. (1994). Guidebook on mapping groundwater vulnerability. International Association of Hydrogeologists (International Contributions to Hydrogeology 16). Verlag Heinz Heise, Hannover.
  43. Wiatkowski, M., Wiatkowska, B., Gruss, Ł., Rosik-Dulewska, C., Tomczyk, P., Chłopek, D. (2021) Assessment of the possibility of implementing small retention reservoirs in terms of the need to increase water resources, Archives of Environmental Protection, 47, 1, pp. 80–100, DOI 10.24425/aep.2021.136451
  44. Wrzesiński, D. & Perz, A. (2016). Features of the river runoff regime in the Warta catchment area. Bad. Fizjograf., R. 7, Ser. A – Geogr. Fiz. (A67), PTPN, Poznań, pp. 289–304. (in Polish)
  45. Yang, J., Tang, Z., Jiao, T. & Muhammad, A.M. (2017). Combining AHP and genetic algorithms approaches to modify DRASTIC model to assess groundwater vulnerability: a case study from Jianghan Plain, China. Environ Earth Sci., 76, 426 (2017). DOI:10.1007/s12665-017-6759-6 .
Go to article

Authors and Affiliations

Sebastian Zabłocki
1
Sadżide Murat-Błażejewska
2
Joanna Alicja Trzeciak
1
Ryszard Błażejewski
2

  1. University of Warsaw, Poland
  2. Poznan University of Life Sciences, Poland

This page uses 'cookies'. Learn more