Search results

Filters

  • Journals
  • Autorzy
  • Słowa kluczowe
  • Data
  • Typ

Search results

Number of results: 71
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The formulation of a plate finite element with so called ‘physical’ shape functions is revisited. The derivation of the ‘physical’ shape functions is based on Hencky-Bollé theory of moderately thick plates. The considered finite element was assessed in the past, and the tests showed that the solution convergence was achieved in a wide range of thickness to in-plane dimensions ratios. In this paper a holistic correctness assessment is presented, which covers three criteria: the ellipticity, the consistency and the inf-sup conditions. Fulfilment of these criteria assures the existence of a unique solution, and a stable and optimal convergence to the correct solution. The algorithms of the numerical tests for each test case are presented and the tests are performed for the considered formulation. In result it is concluded that the finite element formulation passes every test and therefore is a good choice for modeling plate structural elements regardless of their thickness.

Go to article

Authors and Affiliations

W. Gilewski
M. Sitek
Download PDF Download RIS Download Bibtex

Abstract

The behaviour of energy levels and optical spectra of a charged particle (electron or hole) confined within a potential well of ellipsoidal shape is investigated as a function of the shape-anisotropy parameter. If two energy levels of the same symmetry intersect in a perturbation-theory approximation, they move apart on direct diagonalization of the appropriate Hamiltonian. The intersection of the energy levels leads to a discontinuity of the corresponding dipole-moment matrix element. The discontinuity of matrix elements is not reflected in the behaviour of transition probabilities which are continuous functions of the shape-anisotropy parameter. The profiles of a spectral line emitted or absorbed by an ensemble of ellipsoidally shaped nanoparticles with a Gaussian distribution of size are calculated and discussed.

Go to article

Authors and Affiliations

T. Kereselidze
T. Tchelidze
A. Devdariani
Download PDF Download RIS Download Bibtex

Abstract

Similarity assessment between 3D models is an important problem in many fields including medicine, biology and industry. As there is no direct method to compare 3D geometries, different model representations (shape signatures) are developed to enable shape description, indexing and clustering. Even though some of those descriptors proved to achieve high classification precision, their application is often limited. In this work, a different approach to similarity assessment of 3D CAD models was presented. Instead of focusing on one specific shape signature, 45 easy-to-extract shape signatures were considered simultaneously. The vector of those features constituted an input for 3 machine learning algorithms: the random forest classifier, the support vector classifier and the fully connected neural network. The usefulness of the proposed approach was evaluated with a dataset consisting of over 1600 CAD models belonging to 9 separate classes. Different values of hyperparameters, as well as neural network configurations, were considered. Retrieval accuracy exceeding 99% was achieved on the test dataset.

Go to article

Bibliography

[1] T. Funkhouser, P. Min, M. Kazhdan, J. Chen, A. Halderman, D. Dobkin, and D. Jacobs. A search engine for 3D models. ACM Transactions on Graphics (TOG), 22(1):83–105, 2003. doi: 10.1145/588272.588279.
[2] Y. Yang, H. Lin, and Y. Zhang. Content-based 3-D model retrieval: A survey. IEEE Transactions on Systems. Man and Cybernetics Part C: Applications and Reviews, 37(6), 1081–1098, 2007. doi: 10.1109/TSMCC.2007.905756.
[3] N. Iyer, S. Jayanti, K. Lou, Y. Kalyanaraman, and K. Ramani. Three-dimensional shape searching: State-of-the-art review and future trends. Computer-Aided Design, 37(5):509–530, 2005. doi: 10.1016/j.cad.2004.07.002.
[4] Z. Zhang, Z. Jiang, and X. Wang. Biased support vector machine active learning for 3D model retrieval. In: 2010 International Conference on Mechanic Automation and Control Engineering, pages 89–92, Wuhan, China, 26–28 June, 2010. doi: 10.1109/MACE.2010.5535431.
[5] H. Cheng, C. Chu, E.Wang, and Y. Kim. 3D part similarity comparison based on levels of detail in negative feature decomposition using artificial neural network. Computer-Aided Design & Applications, 4(5):619–628, 2007. doi: 10.1080/16864360.2007.10738496.
[6] B. Bustos, D.A. Keim, D. Saupe, T. Schreck, and D.V. Vranic. Feature-based similarity search in 3D object databases. ACM Computing Surveys, 37(4):345–387, 2005. doi: 10.1145/1118890.1118893.
[7] J.R. Koza, F.H. Bennett, D. Andre, and M.A. Keane. Automated design of both the topology and sizing of analog electrical circuits using genetic programming. In: J.S. Gero, F. Sudweeks, editors, Artificial Intelligence in Design ’96, pages 151–170, Springer, Dordrecht, 1996. doi: 10.1007/978-94-009-0279-4.
[8] V.B. Sunil and S.S. Pande. Automatic recognition of machining features using artificial neural networks. The International Journal of Advanced Manufacturing Technology, 41(9–10):932–947, 2009. doi: 10.1007/s00170-008-1536-z.
[9] A.C. Müller and S. Guido. Introduction to Machine Learning with Python: A Guide For Data Scientists. O’Reilly Media Inc., 2016.
[10] Z. Qin, J. Jia, and J. Qin. Content based 3D model retrieval: A survey. In: 2008 International Workshop on Content-Based Multimedia Indexing, pages 249–256, London, UK, 18–20 June, 2008. doi: 10.1109/CBMI.2008.4564954.
[11] H.J.Rea, J.R. Corney, D.E.R. Clark, J. Pritchard, M.L. Breaks, and R.A. MacLeod. Part-sourcing in a global market. Concurrent Engineering, 10(4):325–333, 2002. doi: 10.1177/a032004.
[12] J. Corney, H. Rea, D. Clark, J. Pritchard, M. Breaks and R. MacLeod. Coarse filters for shape matching. IEEE Computer Graphics and Applications, 22(3):65–74, 2002. doi: 10.1109/MCG.2002.999789.
[13] P. Cicconi, R. Raffaeli, and M. Germani. An approach to support model based definition by PMI annotations. Computer-Aided Design and Applications, 14(4):526–534, 2016. doi: 10.1080/16864360.2016.1257194.
[14] G. Cybenko, A. Bhasin, and K.D. Cohen. Pattern recognition of 3D CAD objects: towards an electronic yellow pages of mechanical parts. International Journal of Smart Engineering Systems Design, 1(1):1–13, 1997.
[15] Z. Li, X. Zhou, and W. Liu. A geometric reasoning approach to hierarchical representation for B-rep model retrieval. Computer-Aided Design, 62:190–202, 2015. doi: 10.1016/j.cad.2014.05.008.
[16] M. Kazhdan, T. Funkhouser, and S. Rusinkiewicz. Rotation invariant spherical harmonic representation of 3D shape descriptors. In: Proceedings of Eurographics Symposium on Geometry Processing, pages 156–164, 2003.
[17] M. El-Mehalawi and R.A. Miller. A database system of mechanical components based on geometric and topological similarity. Part I: representation. Computer-Aided Design, 35(1):83–94, 2003. doi: 10.1016/S0010-4485(01)00177-4.
[18] M. El-Mehalawi and R.A. Miller. A database system of mechanical components based on geometric and topological similarity. Part II: indexing, retrieval, matching, and similarity assessment. Computer-Aided Design, 35(1):95–105, 2003. doi: 10.1016/S0010-4485(01)00178-6.
[19] C.F. You and Y.L. Tsai. 3D solid model retrieval for engineering reuse based on local feature correspondence. The International Journal of Advanced Manufacturing Technology, 46(5–8):649–661, 2010. doi: 10.1007/s00170-009-2113-9.
[20] H. Kaparthi and N.C. Suresh. A neural network system for shape-based classification and coding of rotational parts. International Journal of Production Research, 29(9):1771–1784, 1991. doi: 10.1080/00207549108948048.
[21] J. Shih, C. Lee, and J.T. Wang. A new 3D model retrieval approach based on the elevation descriptor. Pattern Recognition, 40(1):283–295, 2007. doi: 10.1016/j.patcog.2006.04.034.
[22] Y. Gao, M. Wang, Z.J. Zha, Q. Tian, Q. Dai, and N. Zhang. Less is more: efficient 3-D object retrieval with query view selection. IEEE Transactions on Multimedia, 13(5):1007–1018, 2011. doi: 10.1109/TMM.2011.2160619.
[23] Z. Zhu, C. Rao, S. Bai, and L.J. Latecki. Training convolutional neural network from multidomain contour images for 3D shape retrieval. Pattern Recognition Letters, 119:41–48, 2019. doi: 10.1016/j.patrec.2017.08.028.
[24] Scikit-learn, documentation.
[25] S. Knerr, L. Personnaz, and G. Dreyfus. Single-layer learning revisited: a stepwise procedure for building and training a neural network. In: F.F. Soulie and Jeanny Herault, editors, Neurocomputing: Algorithms, Architectures and Applications, pages 41–50, Springer-Verlag, 1990.
[26] Y. Bengio. Learning Deep Architectures for AI. Foundations and Trends®in Machine Learning, 2(1):1–127, 2009. doi: 10.1561/2200000006.
[27] J. Patterson and A. Gibson. Deep Learning. A Practitioner’s Approach. O’Reilly Media Inc., 2017.
[28] M.A. Nielsen. Neural Networks and Deep Learning. Determination Press, 2015.
[29] D.P. Kingma and J.Ba. Adam: a method for stochastic optimization. In: Proceedings of 3rd International Conference for Learning Representations, San Diego, 7–9 May, 2015.
Go to article

Authors and Affiliations

Dawid Machalica
1
Marek Matyjewski
2

  1. Warsaw Institute of Aviation, Warsaw, Poland.
  2. Warsaw University of Technology, Institute of Aeronautics and Applied Mechanics, Warsaw, Poland.
Download PDF Download RIS Download Bibtex

Abstract

This research presents comprehensive assessment of the precision castings quality made in the Replicast CS process. The evaluation was

made based on quality of the surface layer, shape errors and the accuracy of the linear dimensions. Studies were carried out on the modern

equipment, among other things a Zeiss Calypso measuring machine and profilometer were used. Obtained results allowed comparing lost

wax process models and Replicast CS process.

Go to article

Authors and Affiliations

R. Biernacki
R. Haratym
M. Sieczka
J. Kwapisz
Download PDF Download RIS Download Bibtex

Abstract

In the paper an analysis of the influence of two parameters on the die wear, i.e. the shape of the die and the backpull with the specified force values has been presented. The conical and curve-profile tools have been selected to determine an influence of the die geometry on its wear, and the backpull force has been tested with the use of conical dies. The research was conducted for the drawing of copper wire by sintered carbide die with a mesh diameter of 3 mm. A fixed draw value of 30% relative gap loss was assumed. The axisymmetric numerical model of the drawing process was built and modeled in the MARC/Mentat commercial program for nonlinear and contact issues. As a result of the tests, wear of the dies according to their shape was determined. In addition, for the conical die the drawing force and the force of the metal pressure on the die using different values of the force of the contraction were calculated, as well as wear of the conical die according to the value of the applied backpull force. It has been shown that in the case of the arc die, the distribution of pressure and stress is more uniform over the entire length of the contact zone compared to the conical die. The highest stress gradients occurred in the area of the transition of the crushing part into the drawing part of the die, which caused that the use of the conical die in this area was more than twice as large as the arc die. In addition, on the example of a conical die, it was shown to what extent the depth of its wear decreases with an increase of the test pull force in the range (0-400) of Newtons.

Go to article

Authors and Affiliations

I. Nowotyńska
S. Kut
Download PDF Download RIS Download Bibtex

Abstract

In this paper, we proposed a novel design of U-slotted SIW antenna. Our antenna design is aimed to cover upper K-band and lower Ka-band spectrums, specifically from 24 GHz to 32 GHz. It has a compact square size of 5.2 x 5.2 mm2. We use a rectangular truncated corner to optimize the square radiator. The optimized rectangular truncated corner size of 2 x 0.8 mm2 gives an impedance bandwidth of 7.87 GHz. SIW cavity is constructed by using multiple metallic via-holes which are drilled in a dielectric substrate establishing. Next optimization, applying the U-shaped slot and SIW structure yield a wider impedance bandwidth of 8.89 GHz, there is about 1.02 GHz of impedance bandwidth enhancement. In addition, the SIW structure gives a higher gain of 7.63 dB and decreases the sidelobe level of -12.1 dB. Implementation of the SIW structure significantly decreases the size of antenna while keeping the antenna parameter’s performances.

Go to article

Authors and Affiliations

Subuh Pramono
Eddy Triyono
Budi Basuki Subagio
Download PDF Download RIS Download Bibtex

Abstract

The paper presents an analysis of the influence of the shape of the rigid body pressed into the micro-periodic composite half-space on the examples of two punch shapes – parabolic and rectangular. The presented material is a layered body that consists of infinitely many thin alternately arranged homogenous layers. Layers of the presented composite are oblique to the boundary surface. Two cases of punch tip shape are examined – parabolic and rectangular. The presented problem has been formulated within the framework of a homogenized model with microlocal parameters and solved using the elastic potentials method and averaged boundary condition. Fourier integral transform method has been used to obtain the solution and the inverse integrals have been calculated numerically. Solutions in terms of contact pressure and maximum pressure characteristics were shown in the form of graphs.
Go to article

Bibliography

  1.  G.M.L. Gladwell, Contact Problems in the Classical Theory of Elasticity. Springer Netherlands, 1980. [Online]. Available: https://books. google.pl/books?id=Y3-Ju0WQ6msC.
  2.  J.R. Barber, “Hertzian Contact”, in Solid Mechanics and its Applications, vol. 250, Springer Verlag, 2018, pp. 29‒41, doi: 10.1007/978- 3-319-70939-0_3.
  3.  A. Sackfield and D.A. Hills, “Some useful results in the classical hertz contact problem”, J. Strain Anal. Eng. Des., vol.  18, no. 2, pp.101–105, 1983, doi: 10.1243/03093247V182101.
  4.  S.J. Chidlow and M. Teodorescu, “Two-dimensional contact mechanics problems involving inhomogeneously elastic solids split into three distinct layers”, Int. J. Eng. Sci., vol. 70, pp. 102–123, 2013, doi: 10.1016/j.ijengsci.2013.05.004.
  5.  D. Pączka, “Elastic contact problem with Coulomb friction and normal compliance in Orlicz spaces”, Nonlinear Anal. Real World Appl., vol. 45, pp. 97–115, Feb. 2019, doi: 10.1016/J.NONRWA.2018.06.009.
  6.  C. Peijian, C. Shaohua, and P. Juan, “Sliding Contact Between a Cylindrical Punch and a Graded Half-Plane With an Arbitrary Gradient Direction”, J. Appl. Mech., vol. 82, no. 4, pp.  41008–41009, Apr. 2015, doi: 10.1115/1.4029781.
  7.  K.B. Yilmaz, I. Comez, B. Yildirim, M.A. Güler, and S. El-Borgi, “Frictional receding contact problem for a graded bilayer system in- dented by a rigid punch”, Int. J. Mech. Sci., vol. 141, pp. 127–142, 2018, doi: 10.1016/j.ijmecsci.2018.03.041.
  8.  D.M. Perkowski, R. Kulchytsky-Zhyhailo, and W. Kołodziejczyk, “On axisymmetric heat conduction problem for multilayer graded coated half-space”, J. Theor. Appl. Mech., vol. 56, no. 1, pp.  147–156, 2018, doi: 10.15632/jtam-pl.56.1.147.
  9.  O. Arslan and S. Dag, “Contact mechanics problem between an orthotropic graded coating and a rigid punch of an arbitrary profile”, Int. J. Mech. Sci., vol. 135, pp. 541–554, 2018, doi: 10.1016/j.ijmecsci.2017.12.017.
  10.  T.-J. Liu, Y.-S. Wang, and Y.-M. Xing, “The axisymmetric partial slip contact problem of a graded coating”, Meccanica, vol.  47, no. 7, pp. 1673–1693, 2012, doi: 10.1007/s11012-012-9547-0.
  11.  M. Kot, J. Lackner, and L. Major, “Microscale interpretation of tribological phenomena in Ti/TiN soft-hard multilayer coatings on soft austenite steel substrates”, Bull. Pol. Acad. Sci. Tech. Sci., vol. 59, no. 3, pp. 343–355, 2011, doi: 10.2478/v10175-011-0042-x.
  12.  R. Kulchytsky-Zhyhailo, S.J. Matysiak, and D.M. Perkowski, “On displacements and stresses in a semi-infinite laminated layer: Com- parative results”, Meccanica, vol. 42, no. 2, pp.  117–126, Mar. 2007, doi: 10.1007/s11012-006-9026-6.
  13.  D.M. Perkowski, S.J. Matysiak, and R. Kulchytsky-Zhyhailo, “On contact problem of an elastic laminated half-plane with a boundary normal to layering”, Compos. Sci. Technol., vol. 67, no. 13, pp. 2683–2690, Oct. 2007, doi: 10.1016/j.compscitech.2007.02.013.
  14.  M.-J. Pindera and M.S. Lane, “Frictionless Contact of Layered Half-Planes, Part II: Numerical Results”, J. Appl. Mech., vol. 60, no. 3, pp. 640–645, 1993, doi: 10.1115/1.2900852.
  15.  C. Woźniak, “A nonstandard method of modelling of thermoelastic periodic composites”, Int. J. Eng. Sci., vol. 25, no.  5, pp. 483–498, Jan. 1987, doi: 10.1016/0020-7225%2887%2990102-9.
  16.  S. Timoshenko, “Goodier. JN, Theory of Elasticity”, New. York McGraw—Hil1, vol. 970, no. 4, pp. 279–291, 1970.
  17.  S.J. Matysiak and C.Z. Woźniak, “Micromorphic effects in a modelling of periodic multilayered elastic composites”, Int. J. Eng. Sci., vol. 25, no. 5, pp. 549–559, Jan. 1987, doi: 10.1016/0020-7225%2887%2990106-6.
  18.  A. Kaczyński and S.J. Matysiak, “Plane contact problems for a periodic two-layered elastic composite”, Ingenieur-Archiv, vol. 58, no. 2, pp. 137–147, Mar. 1988, doi: 10.1007/BF00536233.
  19.  I.N. Sneddon, “Integral transform methods”, in Methods of analysis and solutions of crack problems: Recent developments in fracture mechanics Theory and methods of solving crack problems, G.C. Sih, Ed. Dordrecht: Springer Netherlands, 1973, pp. 315–367, doi: 10.1007/978-94-017-2260-5_6.
  20.  R. Kulchytsky-Zhyhailo and W. Kolodziejczyk, “On axisymmetrical contact problem of pressure of a rigid sphere into a periodically two-layered semi-space”, Int. J. Mech. Sci., vol. 49, no. 6, pp. 704–711 2007, doi: 10.1016/j.ijmecsci.2006.10.007.
  21.  P. Sebestianiuk, D.M. Perkowski, and R. Kulchytsky- Zhyhailo, “On Contact problem for the microperiodic composite half-plane with slant layering”, Int. J. Mech. Sci., vol. 182, p. 1057342020, doi: 10.1016/j.ijmecsci.2020.105734.
  22.  P. Sebestianiuk, D.M. Perkowski, and R. Kulchytsky-Zhyhailo, “On stress analysis of load for microperiodic composite half-plane with slant lamination”, Meccanica, vol. 54, pp. 573–593 2019, doi: 10.1007/s11012-019-00970-z.
  23.  I.Y. Shtaerman, “Contact Problems of the Theory of Elasticity (FTD-MT-24-61-70)”, vol. 55, no. 6, pp. 887–901, 1970.
  24.  M. Sadowsky, “Zweidimensionale Probleme der Elastizitätstheorie”, ZAMM – J. Appl. Math. Mech./Zeitschrift für Angew. Math. und Mech., vol. 8, no. 2, pp. 107–121, 1928, doi: 10.1002/zamm.19280080203.
  25.  L.A. Galin, Contact Problems in the Theory of Elasticity. Department of Mathematics, School of Physical Sciences and Applied Mathe- matics, North Carolina State College, 1961. [Online]. Available: https://books.google.pl/books?id=9F-4QgAACAAJ.
  26.  I.S. Gradshteyn, I.M. Ryzhik, and R.H. Romer, “Tables of Integrals, Series, and Products”, Am. J. Phys., vol. 56, p. 958, 1988, doi: 10.1119/1.15756.
Go to article

Authors and Affiliations

Piotr Sebestianiuk
1
Dariusz M. Perkowski
1
Roman Kulchytsky-Zhyhailo
1

  1. Faculty of Mechanical Engineering, Białystok University of Technology, ul. Wiejska 45C, 15-351 Białystok, Poland
Download PDF Download RIS Download Bibtex

Abstract

The article presents a constitutive model for Shape Memory Alloys (SMA) along with result of dynamic simulations of SMA model. The applications of devices incorporating SMA in civil engineering focus mostly on mitigation of the seismic hazard effects in new-build and historical buildings or improvement of fatigue resilience. The unique properties of SMA, such as shape memory effect and superelasticity give promising results for such applications. The presented model includes additional phenomenon of SMA – internal loops. The paper shows the method of formulation of physical relations of SMA based on special rheological structure, which includes modified Kepes’s model. This rheological element, introduced as dual-phase plasticity body, is given in the context of martensite phase transformation. One of the advantages of such an approach is a possibility of formulation of constitutive relationships as a set of explicit differential equations. The application of the model is demonstrated on example of dynamic simulations of three dimensional finite element subjected to dynamic excitation.

Go to article

Authors and Affiliations

A. Zbiciak
K. Wasilewski
Download PDF Download RIS Download Bibtex

Abstract

The paper presents an overview of shaping of cable-stayed bridges. Historical background, basic static sketches and overview of selected bridges are included. Selected natural solutions and interesting unrealized projects were presented. Basic ideas and most important principals are discussed. The examples and sketches were given an author’s comment. Static diagrams of two pylon structures with three variants of the arrangement of cables are presented. The details important for the structure were discussed and the consequences of choosing the variant were indicated. Mono-pylon structures in asymmetric and symmetrical arrangements are shown. the solutions are discussed and the details important for the structure are indicated. An overviewof multi-pylon structures is also presented, paying attention to important details. All the discussed static diagrams were enriched with realized examples. The advantages and disadvantages of individual structural solutions are presented. The main ideas allowing to achieve the goal in the implementation of non-standard suspended structures were also indicated.
Go to article

Bibliography

[1] W. Podolny and J.B. Scalzi, “Construction and design of cable-stayed bridges”, John Wiley and Sons, Inc., New York, 1976.
[2] M. Troitski, “Cable-stayed bridges”, BSP Professional Books, 1988.
[3] K. Roik, A. Gert, and U. Weyer, “Schrägseilbrücken”, Ernst & Sohn, Verlag für Architektur und Technische Wissenschaften, Berlin, 1986.
[4] F. Leonhardt, “Bridges”, Deutsche Verlag-Anstalt, 1984.
[5] H. Svensson, “Cable-stayed bridges”, 40 Years of Experience Wordlwide, Ernst and Sohn, 2012.
[6] J. Biliszczuk, “Cable-stayed bridges”, Design and Realization, Arkady, 2005.
[7] J. Szczygieł, “Reinforced and prestressed bridges”, WKiŁ, 1972.
[8] J. Biliszczuk, “Bridges in the history of Poland”, DWE, 2017.

Go to article

Authors and Affiliations

Krzysztof Żółtowski
1
ORCID: ORCID

  1. Gdansk University of Technology, Faculty of Civil and Environmental Engineering, ul. Gabriela Narutowicza 11/12, 80-233 Gdansk, Poland
Download PDF Download RIS Download Bibtex

Abstract

The processing of cartographic data demands human involvement. Up-to-date algorithms try to automate a part of this process. The goal is to obtain a digital model, or additional information about shape and topology of input geometric objects. A topological skeleton is one of the most important tools in the branch of science called shape analysis. It represents topological and geometrical characteristics of input data. Its plot depends on using algorithms such as medial axis, skeletonization, erosion, thinning, area collapse and many others. Area collapse, also known as dimension change, replaces input data with lower-dimensional geometric objects like, for example, a polygon with a polygonal chain, a line segment with a point. The goal of this paper is to introduce a new algorithm for the automatic calculation of polygonal chains representing a 2D polygon. The output is entirely contained within the area of the input polygon, and it has a linear plot without branches. The computational process is automatic and repeatable. The requirements of input data are discussed. The author analyzes results based on the method of computing ends of output polygonal chains. Additional methods to improve results are explored. The algorithm was tested on real-world cartographic data received from BDOT/GESUT databases, and on point clouds from laser scanning. An implementation for computing hatching of embankment is described.
Go to article

Authors and Affiliations

Michał Mateusz Buczek
Download PDF Download RIS Download Bibtex

Abstract

In this paper an alternative procedure to vibro-acoustics study of beam-type structures is presented. With this procedure, it is possible to determine the resonant modes, the bending wave propagation velocity through the study of the radiated acoustic field and their temporal evolution in the frequency range selected. As regards the purely experimental aspect, it is worth noting that the exciter device is an actuator similar to is the one employed in distributed modes loudspeakers; the test signal used is a pseudo random sequence, in particular, an MLS (Maximum Length Sequence), facilitates post processing. The study case was applied to two beam-type structures made of a sandstone material called Bateig. The experimental results of the modal response and the bending propagation velocity are compared with well-established analytical solution: Euler-Bernoulli and Timoshenko models, and numerical models: Finite Element Method – FEM, showing a good agreement.
Go to article

Authors and Affiliations

Jeniffer Torres-Romero
William Cardenas
Jesus Carbajo
Segovia Eulogio Enrique G.
Ramis-Soriano Jaime
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the measurement of vibrational properties of sundatang soundboard. Sundatang is a plucked stringed traditional musical instrument that is popular among the Kadazandusun communities in Sabah, Malaysia. The vibrational properties of the soundboard are measured using CADA-X impact hammering system in a condition where the instrument is without any string. There are two types of sundatang used in this study; one made from acacia and the other from vitex wood. In this measurement, frequency response functions (FRFs) and modal parameters of the top plate and back plate of this instrument are obtained. It is found that in free edge, fundamental frequency of both plates of acacia sundatang is greater than the vitex sundatang in a range of 112 Hz to 230 Hz. However, in clamped edge (attached to its ribs), it was modified to a lower frequency and closer to each other in the range of 55 Hz to 59 Hz. Another finding is the detection of the excitation of similar mode shape at different resonance frequencies. This phenomenon is termed as Different State of Mode (DSM) which is observed may be because the number of testing points is not enough. Findings of this study provide important information to the study of quality development of this instrument

Go to article

Authors and Affiliations

Ronald Yusri Batahong
Jedol Dayou
Semyung Wang
Jongsuh Lee
Download PDF Download RIS Download Bibtex

Abstract

There is a considerable increase in the use of noise barriers in recent years. Noise barriers as a control noise solution can increase the insertion loss to protect receivers. This paper presents the results of an investigation about the acoustic efficiency of primitive root sequence diffuser (PRD) on an environmental single T-shape barrier design. A 2D boundary element method (BEM) is used to predict the insertion loss of the tested barriers. The results of rigid and with a different sequence diffuser coverage are also predicted for comparison. Employing PRD on the top surface of T-shape barrier has been found to improve the performance of barriers in comparison with the use of rigid and QRD coverage at the examined receiver locations. It has been found that decreasing the design frequency of PRD shifts the frequency effects towards lower frequencies, and therefore the overall A-weighted insertion loss is improved. It was also found that using wire mesh with reasonably efficient resistivity on the top surface of PRD improves the efficiency of the reactive barriers; however utilizing wire meshes with flow resistivity higher than the specific acoustic impedance of air on the PRD top of a diffuser barrier significantly reduces the performance of the barrier within the frequency bandwidth of the diffuser. The performance of a PRD covered T-shape barrier at 200 Hz was found to be higher than that of its equivalent QRD barriers in both the far field and in areas close to the ground. The amount of improvement compared made by PRD barrier compared with its equivalent rigid barrier at far field is about 2 to 3 dB, while this improvement relative to the barrier model "QR4" can reach up to 4-6 dB.

Go to article

Authors and Affiliations

Mohammad Monazzam
Mahdiyeh Naderzadeh
Parvin Nassiri
Samaneh Fard
Download PDF Download RIS Download Bibtex

Abstract

An optical tomograph in which a tested object is illuminated from five directions has been presented in the paper. The measurements of luminous intensity after changing into discrete signals (0 or 1) in the detectors equipped with 64 optical sensors were subjected to reconstruction by means of the matrix algorithm. Detailed description of the measuring sensor, as well as the principles of operation of the electronic system, has been given in the paper. Optical phenomena occurring at the phase boundary while transmitted through the sensor wall and phenomena inside the measuring space have also been taken into account. The method of the sensor calibration has been analysed and a way of technical solution of the problem under consideration has been discussed. The elaborated method has been tested using objects of the known shape and dimensions. It was found that reconstruction of the shapes of moving bubbles and determination of their main parameters is also possible with a reasonable accuracy.

Go to article

Authors and Affiliations

Mariusz R. Rząsa
Download PDF Download RIS Download Bibtex

Abstract

In this paper, the influence of Mo addition on the structure and mechanical properties of the NiCoMnIn alloys have been studied. Series of polycrystalline NiCoMnIn alloys containing from 0 to 5 mas.% of Mo were produced by the arc melting technique. For the alloys containing Mo, two-phase microstructure was observed. Mo-rich precipitates were distributed randomly in the matrix. The relative volume fraction of the precipitates depends on the Mo content. The numbers of the Mo rich precipitates increases with the Mo contents. The structures of the phases were determined by the TEM. The mechanical properties of the alloys are strongly affected by Mo addition contents. Brittleness of the alloys increases with the Mo contents.

Go to article

Authors and Affiliations

K. Prusik
E. Matyja
M. Wąsik
M. Zubko
Download PDF Download RIS Download Bibtex

Abstract

Usually porous metals are known as relatively excellent characteristic such as large surface area, light, lower heat capacity, high toughness and permeability for exhaust gas filter, hydrogen reformer catalyst support. The Ni alloys have high corrosion resistance, heat resistance and chemical stability for high temperature applications. In this study, the Ni-based porous metals have been developed with Hastelloy powder by gas atomization and water atomization in order to find the effects of powder shape on porous metal. Each Hastelloy powder is pressed on disk shape of 2 mm thickness with 12 tons using uniaxial press machine. The specimens are sintered at various temperatures in high vacuum condition. The pore properties were evaluated using Porometer and microstructures were observed with SEM.

Go to article

Authors and Affiliations

Yu-Jeong Yi
Min-Jeong Lee
Hyeon-Ju Kim
Sangsun Yang
Manho Park
Byoung-Kee Kim
Jung-Yeul Yun
Download PDF Download RIS Download Bibtex

Abstract

Cardiovascular system diseases are the major causes of mortality in the world. The most important and widely used tool for assessing the heart state is echocardiography (also abbreviated as ECHO). ECHO images are used e.g. for location of any damage of heart tissues, in calculation of cardiac tissue displacement at any arbitrary point and to derive useful heart parameters like size and shape, cardiac output, ejection fraction, pumping capacity. In this paper, a robust algorithm for heart shape estimation (segmentation) in ECHO images is proposed. It is based on the recently introduced variant of the level set method called level set without edges. This variant takes advantage of the intensity value of area information instead of module of gradient which is typically used. Such approach guarantees stability and correctness of algorithm working on the border between object and background with small absolute value of image gradient. To reassure meaningful results, the image segmentation is proceeded with automatic Region of Interest (ROI) calculation. The main idea of ROI calculations is to receive a triangle-like part of the acquired ECHO image, using linear Hough transform, thresholding and simple mathematics. Additionally, in order to improve the images quality, an anisotropic diffusion filter, before ROI calculation, was used. The proposed method has been tested on real echocardiographic image sequences. Derived results confirm the effectiveness of the presented method.

Go to article

Authors and Affiliations

Andrzej Skalski
Paweł Turcza
Download PDF Download RIS Download Bibtex

Abstract

This paper presents a piecewise line generalization algorithm (PG) based on shape characteristic analysis. An adaptive threshold algorithm is used to detect all corners, from which key points are selected. The line is divided into some segments by the key points and generalized piecewise with the Li-Openshaw algorithm. To analyze the performance, line features with different complexity are used. The experimental results compared with the DP algorithm and the Li-Openshaw algorithm show that the PG has better performance in keeping the shape characteristic with higher position accuracy.

Go to article

Authors and Affiliations

Hongshan Nie
Zhijian Huang
Download PDF Download RIS Download Bibtex

Abstract

The agglomeration of particles is a process that modifies the physical properties of a product originally manufactured as a powder. During milk powder agglomeration of fluidized bed, resulting agglomerates are sufficiently porous to improve the solubility of the final product but, at the same time, their rigidity decreases and agglomerates can be destroyed during packing. The porosity and rigidity properties depend on both the volume and shape characteristics of the agglomerates. This paper presents a three-dimensional reconstruction technique based on a laser displacement sensor (LDS) applied to characterize milk agglomerates. This technique allows three-dimensional scanning to estimate particle volume and extract shape parameters such as: sphericity, elongation and flatness ratio, shape factor and aspect ratio. This technique was implemented using a mechatronic device with two degrees of freedom. The device is composed of an angular positioning system to rotate the agglomerate and a linear positioning system to displace the LDS. Experimental result allows agglomerates classification according to shape parameters

Go to article

Authors and Affiliations

J. P. Zavala De Paz
E. Castillo Castañeda
J. Soto Herrera
C. Turchiuli
Download PDF Download RIS Download Bibtex

Abstract

Shape memory alloys are characterised by interesting properties, i.e. shape memory effect and pseudoelasticity, which enable their increasing application. Thermomechanical aspects of martensitic and reverse transformations in TiNi shape memory alloy subjected to tension tests were investigated. The stress-strain characteristics obtained during the tests were completed by the temperature characteristics. The temperature changes were calculated on the basis of thermograms determined by an infrared camera. Taking advantages from the infrared technique, the temperature distributions on the specimen’s surface were found. Heterogeneous temperature distributions, related to the nucleation and development of the new martensite phase, were registered and analysed. A significant temperature increase, up to 30 K, was registered during the martensitic transformation. The similar effects of the heterogeneous temperature distribution were observed during unloading, while the reverse transformation, martensite into austenite took place, accompanied by significant temperature decrease.

Go to article

Authors and Affiliations

E.A. Pieczyska
S.P. Gadaj
W.K. Nowacki
H. Tobushi
Download PDF Download RIS Download Bibtex

Abstract

The paper describes the influence of graphite shape, size and amount to electrical properties of different cast irons. Experiments of electrical resistivity measurements were conducted during solidification of four different melts in different time intervals from melt treatment by inoculation and nodularization. Metallographic analyses were made in order to determine the shape, size, distribution and amount of graphite and correlate results with electrical resistivity measurements. It was found out that nodular graphite is giving the lowest electrical resistivity and is decreased during solidification. Electrical resistivity of lamellar cast iron is increased during solidification since lamellas interrupt metal matrix severely There is no significant difference in resistivity of vermicular cast iron from nodular cast iron. Smaller size of graphite and lower amount of graphite and higher amount of metal matrix also decrease resistivity.

Go to article

Authors and Affiliations

M. Petrič
P. Mrvar
P. Kastelic
Download PDF Download RIS Download Bibtex

Abstract

Cu-Al-based high temperature shape memory alloys are preferred commonly due to their cheap costs and shape memory properties. In recent years, studies have been conducted on developing and producing a new type of Cu-Al based shape memory alloy. In this study, the CuAl-Cr alloy system, which has never been produced before, is investigated. After production, the SEMEDX measurements were made in order to determine the phases in the Cu84–xAl12Crx+4 (x = 0, 4, 6) (weight %) alloy system; and precipitate phases together with martensite phases were detected in the alloys. The confirmations of these phases were made via x-ray measurements. The same phases were observed by XRD diffractogram of the alloys as well. The values of transformation temperature of alloys were determined with Differential Scanning Calorimetry (DSC) at 20°C/min heating rate. According to the DSC results, the transformation temperature of the alloys varies between 320°C and 350°C. This reveals that the alloys show high temperature shape memory characteristics.

Go to article

Authors and Affiliations

Z. Deniz Çirak
M. Kök
Y. Aydoğdu
Download PDF Download RIS Download Bibtex

Abstract

At the current stage of diagnostics and therapy, it is necessary to perform a geometric evaluation of facial skull bone structures basing upon virtually reconstructed objects or replicated objects with reverse engineering. The objective hereof is an analysis of imaging precision for cranial bone structures basing upon spiral tomography and in relation to the reference model with the use of laser scanning. Evaluated was the precision of skull reconstruction in 3D printing, and it was compared with the real object, topography model and reference model. The performed investigations allowed identifying the CT imaging accuracy for cranial bone structures the development of and 3D models as well as replicating its shape in printed models. The execution of the project permits one to determine the uncertainty of components in the following procedures: CT imaging, development of numerical models and 3D printing of objects, which allows one to determine the complex uncertainty in medical applications.

Go to article

Bibliography

[1] D. Mitsouras, P. Liacouras, A. Imanzadeh, A.A. Giannopoulos, T. Cai, K.K. Kumamaru, and V.B. Ho. Medical 3D printing for the radiologist. RadioGraphics, 35(7):1965–1988, 2015. doi: 10.1148/rg.2015140320.
[2] F. Paulsen and J. Wasche. Sobotta Atlas of Human Anatomy, General anatomy and musculoskeletal system. Vol. 1, 2013.
[3] G.B. Kim, S. Lee, H. Kim, D.H. Yang, Y.H. Kim, Y.S. Kyung, and S.U. Kwon. Threedimensional printing: basic principles and applications in medicine and radiology. Korean Journal of Radiology, 17(2):182–197, 2016. doi: 10.3348/kjr.2016.17.2.182.
[4] J.W. Choi and N. Kim. Clinical application of three-dimensional printing technology in craniofacial plastic surgery. Archives of Plastic Surgery, 42(3):267–277, 2015. doi: 10.5999/aps.2015.42.3.267.
[5] J.E. Loster, M.A. Osiewicz, M. Groch, W. Ryniewicz, and A. Wieczorek. The prevalence of TMD in Polish young adults. Journal of Prosthodontics, 26(4):284–288, 2017. doi: 10.1111/jopr.12414.
[6] A.S. Soliman, L. Burns, A. Owrangi, Y. Lee,W.Y. Song, G. Stanisz, and B.P. Chugh. A realistic phantom for validating MRI-based synthetic CT images of the human skull. Medical Physics, 44:4687–4694, 2017. doi: 10.1002/mp.12428.
[7] F. Heckel, S. Zidowitz, T. Neumuth, M. Tittmann, M. Pirlich, and M. Hofer. Influence of image quality on semi-automatic 3D reconstructions of the lateral skull base for cochlear implantation. In CURAC, 129–134, 2016.
[8] G. Budzik, T. Dziubek, and P. Turek. Basic factors affecting the quality of tomographic images. Problems of Applied Sciences, 3:77–84, 2015. (in Polish)
[9] S. Singare, C. Shenggui and N. Li. The Benefit of 3D Printing in Medical Field: Example Frontal Defect Reconstruction. Journal of Material Sciences & Engineering, 6(2):335, 2017. doi: 10.4172/2169-0022.1000335.
[10] A. Ryniewicz, K. Ostrowska, R. Knapik, W. Ryniewicz, M. Krawczyk, J. Sładek, and Ł. Bojko. Evaluation of mapping of selected geometrical parameters in computer tomography using standards. Przegląd Elektrotechniczny, 91(6):88–91, 2015. (in Polish) doi: 10.15199/48.2015.06.17.
[11] R. Kaye, T. Goldstein, D. Zeltsman, D.A. Grande, and L.P. Smith. Three dimensional printing: a review on the utility within medicine and otolaryngology. International Journal of Pediatric Otorhinolaryngology, 89:145-148, 2016. doi: 10.1016/j.ijporl.2016.08.007.
[12] G.T. Grant and P.C. Liacouras. Craniofacial Applications of 3D Printing. In: 3D Printing in Medicine: A Practical Guide for Medical Professionals. Rybicki, Frank J., Grant, Gerald T. (Eds.), Springer, Cham, Switzerland, pp. 43–50, 2017. doi: 10.1007/978-3-319-61924-8_5.
[13] T. Cai, F.J. Rybicki, A.A. Giannopoulos, K. Schultz, K.K. Kumamaru, P. Liacouras, and D. Mitsouras. The residual STL volume as a metric to evaluate accuracy and reproducibility of anatomic models for 3D printing: application in the validation of 3D-printable models of maxillofacial bone from reduced radiation dose CT images. 3D Printing in Medicine, 1(1):2, 2015. doi: 10.1186/s41205-015-0003-3.
[14] T.Y. Hsieh, B. Cervenka, R. Dedhia, E.B. Strong, and T. Steele. Assessment of a patient- specific, 3-dimensionally printed endoscopic sinus and skull base surgical model. JAMA Otolaryngology–Head & Neck Surgery, 144(7):574-579, 2018. doi: 10.1001/jamaoto.2018.0473.
[15] Y.W. Chen, C.T. Shih, C.Y. Cheng, and Y.C. Lin. The development of skull prosthesis through active contour model. Journal of Medical Systems, 41:164, 2017. doi: 10.1007/s10916-017-0808-2.
[16] J.S. Naftulin, E.Y. Kimchi, and S.S. Cash. Streamlined, inexpensive 3D printing of the brain and skull. PLoS One, 10(8):e0136198, 2015. doi: 10.1371/journal.pone.0136198.
[17] A. Ryniewicz, K. Ostrowska, Ł. Bojko, and J. Sładek. Application of non-contact measurement methods for the evaluation of mapping the shape of solids of revolution. Przegląd Eletrotechniczny, 91(5):21–24, 2015. (in Polish). doi: 10.15199/48.2015.05.06.
[18] V. Favier, N. Zemiti, O.C. Mora, G. Subsol, G. Captier, R. Lebrun. and B. Gilles. Geometric and mechanical evaluation of 3D-printing materials for skull base anatomical education and endoscopic surgery simulation – A first step to create reliable customized simulators. PloS One, 12(12): e0189486, 2017. doi: 10.1371/journal.pone.0189486.
[19] M.P. Chae,W.M. Rozen, P.G. McMenamin, M.W. Findlay, R.T. Spychal, and D.J. Hunter-Smith. Emerging applications of bedside 3D printing in plastic surgery. Frontiers in Surgery, 2:25, 2015. doi: 10.3389/fsurg.2015.00025.
[20] J.A. Sładek. Coordinate Metrology. Accuracy of Systems and Measurements. Springer, 2015.
[21] ISO 15530-3:2011: Geometrical product specifications (GPS) – Coordinate measuring machines (CMM): Technique for determining the uncertainty of measurement – Part 3: Use of calibrated workpieces or measurement standards.
[22] A. Marro, T. Bandukwala, and W. Mak. Three-dimensional printing and medical imaging: a review of the methods and applications. Current Problems in Diagnostic Radiology, 45(1): 2–9, 2016. doi: 10.1067/j.cpradiol.2015.07.009.
[23] A. Ryniewicz. Evaluation of the accuracy of the surface shape mapping of elements of biobearings in in vivo and in vitro tests. Scientific Works of the Warsaw University of Technology. Mechanics, 248:3–169, 2013. (in Polish).
[24] B.M. Mendez, M.V. Chiodo, and P.A. Patel. Customized “In-Office” three-dimensional printing for virtual surgical planning in craniofacial surgery. The Journal of Craniofacial Surgery, 26(5):1584–1586, 2015. doi: 10.1097/SCS.0000000000001768.
[25] J.J. de Lima Moreno, G.S. Liedke, R. Soler, H.E.D. da Silveira, and H.L.D. da Silveira. Imaging factors impacting on accuracy and radiation dose in 3D printing. Journal of Maxillofacial and Oral Surgery, 17(4):582–587, 2018. doi: 10.1007/s12663-018-1098-z.
[26] S.W. Park, J.W. Choi, K.S. Koh and T.S. Oh. Mirror-imaged rapid prototype skull model and pre-molded synthetic scaffold to achieve optimal orbital cavity reconstruction. Journal of Oral and Maxillofacial Surgery, 73(8):1540–1553, 2015. doi: 10.1016/j.joms.2015.03.025.
[27] K.M. Day, P.M. Phillips, and L.A. Sargent. Correction of a posttraumatic orbital deformity using three-dimensional modeling. Virtual surgical planning with computer-assisted design, and three-dimensional printing of custom implants. Craniomaxillofacial Trauma and Reconstruction, 11(01):078–082, 2018. doi: 10.1055/s-0037-1601432.
[28] Y.C. Lin, C.Y. Cheng, Y.W. Cheng, and C.T. Shih. Skull repair using active contour models. Procedia Manufacturing, 11: 2164–2169, 2017. doi: 10.1016/j.promfg.2017.07.362.
[29] J.N. Winer, F.J. Verstraete, D.D. Cissell, S. Lucero, K.A. Athanasiou and B. Arzi. The application of 3-dimensional printing for preoperative planning in oral and maxillofacial surgery in dogs and cats. Veterinary Surgery, 46(7):942–951, 2017. doi: 10.1111/vsu.12683.
[30] J.Y. Lim, N. Kim, J.C. Park, S.K. Yoo, D.A. Shin, and K.W. Shim. Exploring for the optimal structural design for the 3D-printing technology for cranial reconstruction: a biomechanical and histological study comparison of solid vs. porous structure. Child’s Nervous System, 33(9):1553–1562, 2017. doi: 10.1007/s00381-017-3486-y.
[31] W. Shui, M. Zhou, S. Chen, Z. Pan, Q. Deng, Y. Yao, H. Pan, T. He, and X. Wang. The production of digital and printed resources from multiple modalities using visualization and three-dimensional printing techniques. International Journal of Computer Assisted Radiology and Surgery, 12(1):13–23, 2017. doi: 10.1007/s11548-016-1461-9.
Go to article

Authors and Affiliations

Andrzej Ryniewicz
1 2
Wojciech Ryniewicz
3
Stanisław Wyrąbek
1
Łukasz Bojko
4

  1. Cracow University of Technology, Faculty of Mechanical Engineering, Poland.
  2. State University of Applied Science, Nowy Sącz, Poland.
  3. Jagiellonian University Medical College, Faculty of Medicine, Dental Institute, Department of Dental Prosthodontics, Cracow, Poland.
  4. AGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics, Department of Machine Design and Technology, Cracow, Poland.
Download PDF Download RIS Download Bibtex

Abstract

The structural system of a multiple strip-shaped pillar-roof is common in underground mine exploitation, and research on its mechanics and micro/macroeconomics is meaningful for utilizing strip-shaped pillar resources. A general model of the structural system of a multiple strip-shaped pillar-roof was established, the deformation mechanism of the model was analysed by material mechanics, and the deflection curve equations of the model were obtained. Based on the stress strain constitutive relation of the strip pillar and cusp catastrophe theory, the nonlinear dynamic instability mechanism of the structural system of a multiple strip-shaped pillar-roof was analysed, and the expressions of the pillar width for maintaining the stability of different types of structural systems were derived. The benefits of different structural systems were calculated using micro/macroeconomic theory, the type of the structural system was determined, and different recovery schemes were obtained. Theoretical application research was applied to a large manganese mine, and the results demonstrate that no pillar recovery was needed in 2016, a 9-m wide artificial pillar could be built to replace a pillar in 2017, and the construction of 14-m wide artificial pillars can be conducted in 2018.

Go to article

Authors and Affiliations

Qingfa Chen
Shiwei Wu
Fuyu Zhao

This page uses 'cookies'. Learn more