Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 8
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The paper presents numerical and experimental research on glulam delamination in a double lap connection with predominant shear stresses. Laboratory tests and wide literature survey enabled to determine timber and glue joint parameters. Cohesive zone theory, generally used for epoxy matrix and fiber reinforced composites, was adopted to modelling glue layer delamination in glulam elements. Numerical models were validated with laboratory tests.

Go to article

Authors and Affiliations

B. Kawecki
J. Podgórski
Download PDF Download RIS Download Bibtex

Abstract

To reduce the sediment transport capacity, shear stress needs to be reduced as well. The article describes work that has been done to find a way to make these reductions possible. The theoretical study and the approach proposed allowed us to obtain a general equation that determines conditions and calculates the most important parameters which support the reduction of shear stress. This describes the mechanism that erodes soils by free surface water flow.
In a similar vein, we have shown that adding a short non-prismatic channel to the entrance of a prismatic channel, which has the same geometric shape, is a very powerful way to reduce shear stress. With the idea of reducing shear stress, we have shown that the water-surface profile type plays a key role and must therefore be included in future reflections on reducing the importance of shear stress.
Additionally, the notion of efficiency was introduced that allows to evaluate the expected gain after the reduction of shear stress and adding a short non-prismatic channel.
The laws of similarity applied to free surface flows allowed us to obtain an equation with several equivalence scales and compare different geometric shapes in terms of their efficiency in the reduction of shear stress.
Go to article

Bibliography

BECZEK M., RYŻAK M., SOCHAN A., MAZUR R., POLAKOWSKI C., HESS D., BIEGANOWSKI A. 2020. Methodological aspects of using high-speed cameras to quantify soil splash phenomenon. Geoderma. Vol. 378, 14592. DOI 10.1016/j.geoderma.2020.114592.
CHAUDHRY M.H. 2008. Open-channel flow. 2nd ed. Springer Science + Business Media, LLC, New York, USA. ISBN 978-0-387-30174-7 pp. 523.
CHOW V.T. 1959. Open channel hydraulics. McGraw Hill. ISBN 07-010776-9 pp. 702.
DEY S. 2014. Fluvial hydrodynamics. Ser. GeoPlanet: Earth and Planetary Sciences. Berlin, Germany. Springer-Verl. ISBN 978- 3642190612 pp. 719.
ETTEMA R. 2000. Hydraulic modeling. Concepts and practices. ASCE Manuals and Reports on Engineering Practice. No. 97. ISBN 978- 0784404157 pp. 390.
HADDAD S., BOUHADEF M. 2019. Contribution à l’étude du phénomène de transport des sédiments par érosion des sols [Contribution to the study of the phenomenon of sediment transport by soil erosion] [online]. PhD Thesis. Algiers, Algeria.
USTHB pp. 136. [Access 10.02.2021]. Available at: http://repository.usthb.dz//xmlui/handle/123456789/8210
HADDAD S., BOUHADEF M. 2018. Contribution to runoff erosion of earthen channels. Polish Journal of Soil Science. Vol. 51. No. 2 p. 313–325. DOI 10.17951/pjss.2018.51.2.313.
HENDERSON F.M. 1966. Open channel flow. New York, USA. MacMillan Company. ISBN 978-0023535109 pp. 522.
KRAATZ D.B. 1977. Irrigation channel lining. FAO. Italy. ISBN 9251001650 pp. 199.
LANE E.W. 1953. Progress report on studies on the design of stable channels. Bureau of Reclamation. Proceedings. No. 79. New York, USA. ASIN B0007I585M pp. 31.
LANE E.W. 1955. Design of stable alluvial channels. Transactions of the American Society of Civil Engineers. Vol. 120. Iss. 1 p. 1234– 1260.
MASSÉ P. 1938. Ressaut et ligne d’eau dans les cours d’eau à pente variable [Hydraulic jump and flow profile in channels of variable slope]. Revue Générale de l’Hydraulique. Vol. 4. No. 19 p. 7–11.
POINCARÉ H. 1881. Mémoires sur les courbes définies par une équation différentielle [Memoir on the curves defined by a differential equation] [online]. Journal de Mathématiques Pures et Appli-quées. Ser. 3. Vol. 7 p. 375–422. [Access 10.02.2021]. Available at: http://sites.mathdoc.fr/JMPA/PDF/JMPA_1881_3_7_A20_0.pdf
PUGH C.A. 1985. Hydraulic model studies of fuse plug embankments [online]. Denver, CO. Bureau of Reclamation, Engineering and Research Center. Report No. REC-ERC-85-7 pp. 33. [Access 20.02.2021]. Available at: https://www.usbr.gov/tsc/techrefer-ences/rec/REC-ERC-85-7.pdf
SMERDON E.T, BEASLEY R.P. 1959. The tractive force theory applied to stability of open channels in cohesive soils [online]. Columbia, MO. University of Missouri, Missouri. USA. Agricultural Experiment Station. Research Bulletin. No. 715 pp. 36. [Access 20.02.2021]. Available at: https://mospace.umsystem.edu/xmlui/ handle/10355/58141
TROUT T.J., NEIBLING W.H. 1993. Erosion and sedimentation processes on irrigated fields. Journal of Irrigation and Drainage Engineer-ing. Vol. 119. No. 6. DOI 10.1061/(ASCE)0733-9437(1993)119:6(947).
YALIN M.S. 1971. Theory of hydraulic models. London. Macmillan Civil Engineering Hydraulics. The Macmillan Press LTD, USA. ISBN 978-0408004824 pp. 266.
Go to article

Authors and Affiliations

Samir Haddad
1 2
ORCID: ORCID

  1. Houari Boumediène University of Sciences and Technology, Faculty of Civil Engineering. LEGHYD Laboratory, BP 32 Bab Ezzouar, 16111 Algiers, Algeria
  2. Akli Mohand Oulhadj University of Bouira, Rue Frères Boussendalah, 10000 Bouira, Algeria
Download PDF Download RIS Download Bibtex

Abstract

The paper presents research program of bond between glass fiber reinforced polymer bars and concrete in reference to the steel bars. Bond between the reinforcement and concrete is a crucial parameter governing a behaviour of reinforced concrete members and transferring of the internal forces from concrete to the reinforcement. The use of FRP bars as an equivalent reinforcement to steel in concrete structures has increased in recent years. The FRP bars are very different from steel, mainly due to much lower elasticity modulus and their anisotropic structure. Good performance of FRP reinforced concrete requires sufficient interfacial bond between bars and concrete. However, there are no specific standards referring to the surface preparation of these bars, that leads to variable bond behaviour of the composite reinforcement to the concrete. The objective of the study was to investigate the influence of variable parameters on the bond behaviour to concrete. The experimental program consisted of eighteen beam bond specimens varying in: bar diameter (12 mm, 16 mm, 18 mm) and type of reinforcement (GFRP sand – coated and steel bars). Although the GFRP bars indicated good bond behaviour to concrete, the average bond strength was slightly lower than that of steel reinforcement of 16mm and 18 mm, while it was higher for the GFRP bars of 12 mm diameter.

Go to article

Authors and Affiliations

D. Szczech
R. Kotynia
Download PDF Download RIS Download Bibtex

Abstract

The Nile River is the main route for inland navigation in Egypt. The vessels navigating through inland waterways generate complex physical forces that need to be studied extensively. Quantifying the effects of vessels sailing along a waterway is a complex problem because the river flow is unsteady and the river bathymetry is irregular. This paper aims to investigate the hydrodynamic effects resulting from the movement of vessels such as return currents around the vessel, the draw down of the water surface, under keel clearance, and the shear stress induced by vessels operating in the Nile River. Modeling such effects has been performed by applied the two-dimensional ADH (adaptive hydraulics) model to a river reach for different navigation channel operation scenarios. The obtained results show that the draw down heights, the water fluctuation, and the shear stress magnitude are larger when the river cross sectionals are narrow and the shallow water depths. These river sections are considered more disposed to bed erosion and it is morphologically unsafe.
The section having the narrowest width and the lowest depth was associated with the largest drawdown percentages of 98.3% and 87.3% in one-way and two-way scenarios. While the section having the widest width and the largest depth was associated with the least drawdown percentages of 48.5% and 51.9% in one-way and two-way scenarios.
The section having the narrowest width and the lowest depth was associated with the largest fluctuations of 22.0 cm and 41.9 cm in one-way and two-way scenarios. While the section having the widest width and the largest depth was associated with the least fluctuations of 0.6 cm and 1.8 cm in one-way and two-way scenarios.
The section having the narrowest width and the lowest depth was the worst section for under keel clearance of 5.0 cm and 33.3 cm in one-way and two-way scenarios. While the section having the widest width and the largest depth was the best section, where its clearance values were 183.2 cm and 155.0 cm in one-way and two-way scenarios.
It is concluded that a numerical model is a valuable tool for predicting and quantifying the hydrodynamic effects of vessels moving through a two-dimensional flow field and can be used to evaluate different scenarios that are difficult to measure in the field or a physical model. Also, it provides visualization products that help us understand the complicated forces produced by vessels moving in a navigation channel.
Go to article

Bibliography

ALTHAGE J. 2010. Ship-induced waves and sediment transport in Göta River, Sweden. MSc Thesis. Lund University pp. 104.

BERGER C., LEE L. 2005. Modeling of vessel effects: the selection of adaption parameters for modeling vessels in ADH [online]. Technical note IX-15. Vicksburg. Coastal and Hydraulics Laboratory, Engineer Research and Development Center pp. 8. [Access 10.07.2020]. Available at: https://apps.dtic.mil/sti/pdfs/ ADA607401.pdf

DAS S.N., DAS S.K., KARIYA J.N. 2012. Simulation of return flow in restricted navigation channel for barge-tow movements. The Open Ocean Engineering Journal. Vol. 5(1) p. 34–46. DOI 10.2174/1874835X01205010034.

ELSAYED R., NEGM A., ALI K., GHALY S. 2019. Evaluation of the existing Nile River navigation path in the reach from Aswan City to Esna Barrage. The Egyptian International Journal of Engineering Sciences and Technology. Vol. 27 p. 1–11.

HAMMACK E.A., SMITH D. S., STOCKSTILL R.L. 2008. Modeling vessel- generated currents and bed shear stresses. Technical note; TR-08-7. Vicksburg. Coastal and Hydraulics Laboratory, Engineer Re-search and Development Center. JICA 2003. Annual report 2003 [online]. Tokyo. Japan International Cooperation Agency. [Access 10.07.2020]. Available at: https://www.jica.go.jp/english/publications/reports/annual/2003/index.html

JONG DE M.P.C., ROELVINK D., REIJMERINK S.P., BREEDERVELD C. 2013. Numerical modelling of passing-ship effects in complex geomet-ries and on shallow water. In: Smart Rivers. Conference. Liege (BE), Maastricht (NL) 23–27.09.2013, Paper 95 p. 1–7. DOI 10.13140/RG.2.1.1776.3049.

MAYNORD S.T. 2003. Ship effects before and after deepening Coastal and Hydraulics Laboratory of Sabine-Neches Waterway, Port Arthur, Texas. Technical note; TR-03-15. Vicksburg. Coastal and Hydraulics Laboratory, Engineer Research and Development Center.

MOUSTAFA M.M., YEHIA W. 2017. Squat assessment for safe navigation of River Nile cruisers. Brodogradnja. Vol. 68(2) p. 1–13. DOI 10.21278/brod68201.

POKREFKE T.J., JR., BERGER R.C., RHEE J.P., MAYNORD S.T. 2003. Tow- induced backwater and secondary channel sedimentation, Upper Mississippi River System. ENV Report 41. Vicksburg. Coastal and Hydraulics Laboratory, Engineer Research and Development Center.

RACIONERO J.S. 2014. Modelling ship-generated sediment transport in the River Göta Älv [online]. MSc Thesis. Göteborg, Sweden. Chalmers University of Technology. [Access 10.07.2020]. Available at: https://publications.lib.chalmers.se/records/fulltext/203326/203326.pdf

SAMUEL M.G. 2014. Limitations of navigation through Nubaria canal, Egypt. Journal of Advanced Research. Vol. 5. No. 2 p. 147–155. DOI 10.1016/j.jare.2013.01.006.

SCHIERECK G.J. 2004. Introduction to bed, bank and shore protection. New ed. London, New York. Spon Press. ISBN 0415331773 pp. 399.

ŠVETAK J. 2001. Ship squat. Promet – Traffic – Traffico. Vol. 13. No. 4 p. 247–251.

TATE J.N., BERGER R.C., ROSS C.G. 2008. Houston–Galveston navigation channels, Texas Project Navigation Channel Sedimentation Study, phase 2. Report TR-08-8. Vicksburg. Coastal and Hydraulics Laboratory, Engineer Research and Development Center.

VERHEIJ H. 2006. Hydraulic aspects of the Montgomery Canal restoration. Report Q3967. British Waterways, WL / Delft Hydraulics.
Go to article

Authors and Affiliations

Neveen Abdel-Mageed Badawy
1
Alaa Nabil El-Hazek
1
ORCID: ORCID
Hossam Mohamed Elsersawy
2
ORCID: ORCID
Ebtesam Rezk Mohammed
2

  1. Benha University, Faculty of Engineering at Shoubra, Department of Civil Engineering, Cairo, Egypt
  2. National Water Research Center, Nile Research Institute, Fum Ismailiya Canal, P.O. Box 74, Shoubra El-Kheima, 13411, Egypt
Download PDF Download RIS Download Bibtex

Abstract

The unmanned underwater tracked bulldozer (UUTB) is an indispensable equipment for dredging and cleaning obstacles on the river bed in the flood season. The investigation on the interaction properties between the UUTB tracks and sediments provides foundation for the evaluation of operation performance when it works on the inland river bed. Based on the current worldwide research, the sediments mixed by sand, bentonite and water with sand content 0%, 10% and 20% were configured in this study to replace the real sediments on the inland river bed in China. The current pressure-sinkage model and shear stress-shear displacement model were discussed. Three different tracks were tested for the pressure-sinkage and the shear stress-shear displacement on the platform. The relationship between pressure and sinkage under sand content 0%, 10% and 20% are revealed based on the experimental results. The modulus of cohesive deformation and friction deformation of the sediments under said sand content are presented. The curves of shear stress and shear displacement are also obtained, which demonstrates the properties between the tracks and configured sediments under sand content 0%, 10% and 20%. The relationship between the tractive force and slip ratio with three different tracks under said sand content is also presented based on the quantitative analysis, which provides reference for the dynamics control and performance evaluation of UUTB on the inland river bed.

Go to article

Bibliography

  1.  C.B. Yang, M. Dong, L. Gu, Q. Li, X.D. Gao, “Study on soil thrust of crawler plate considering the shape of shoe thorn”, J. Beijing Inst. Technol. 35(11), 1118‒1121 (2015).
  2.  C.B. Yang, Research on the adhesion characteristics and optimization of high-speed track and soft ground, Beijing Institute of Technology, 2015.
  3.  X. Lü, Q. Zhou, and B. Fang, “Hydrodynamic performance of distributed pump-jet propulsion system for underwater vehicle,” J. Hydrodyn. 26(4), 523–530 (2014).
  4.  A. Yasui, K.Sunobe, and T. Murata “Development of underwater bulldozer systems”, J. Terramech. 10(4), 13‒20 (1973).
  5.  G. Yamauchi, K. Nagatani, T. Hashimoto, and K. Fujino, “Slip-compensated odometry for tracked vehicle on loose and weak slope”, J. Hydrodyn. 4(2), 2197‒4225 (2017).
  6.  F. Xu, Q.H. Rao, and W.B. Ma, “Predicting the sinkage of a moving tracked mining vehicle using a new rheological formulation for soft deep-sea sediment”, J. Hydrodyn. 36, 230‒237 (2018).
  7.  S. Hong, J.S. Choi, H.W. Kim, M.C. Won, S.C. Shin, J.S. Rhee, and H.N. Par, “A path tracking control algorithm for underwater mining vehicles”, J. Mech. Sci. Technol. 23(8), 2030‒2037 (2009).
  8.  S.M. Yoon, S. Hong, S.J. Park, J.S. Choi, H.W. Kim, and T.K. Yeu, “Track velocity control of crawler type underwater mining robot through shallow-water test”, J. Mech. Sci. Technol. 26(10), 3291‒3298 (2012).
  9.  K. Herzog, E. Schulte, M.A. Atmanand, and W. Schwarz, “Slip Control System for a Deep-Sea Mining Machine”, IEEE Trans. Autom. Sci. Eng. 4(2), 282‒286 (2007).
  10.  H. Grebe and E.S. Schulte, Determination of soil parameters based on the operational data of a ground operated tracked vehicle, pp. 149‒156, International Society of Offshore and Polar Engineers, 2005.
  11.  E. Schulte and W. Schwarz, “Simulation of Tracked Vehicle Performance on Deep Sea Soil Based on Soil Mechanical Laboratory Measurements in Bentonite Soil”, in Proceedings of The Eighth ISOPE Ocean Mining Symposium, 2009, pp. 276‒284.
  12.  L.Q. Song, “Geotechnical Properties of Oceanic Sediments in Polymetallic Nodules Belts”, Acta Oceanol. Sin., 19(2), 57‒67 (2000).
  13.  X.L. Chen, J.Z. Lu, T.W. Cui, L.Q. Tian, L.Q. Chen, and W.J. Zhao, “Coupling remote sensing retrieval with numerical simulation for SPM study—Taking Bohai Sea in China as a case”, Int. J. Appl. Earth Obs. Geoinf. 12(2), 203‒211 (2010).
  14.  S.J. Liu, C. Liu, and Y. Dai, “Research and development of deep-sea mining equipment”, Chin. J. Mech. Eng. 50(2), 8‒18 (2014).
  15.  Y. Dai and S.J. Liu, “Dynamic analysis of integrated linkage operation mode of deep-sea mining system”, J. Huazhong Univ. Sci. Tech.- Natural Sci. 40(S2), 39‒43 (2012).
  16.  Y. Dai and S.J. Liu, “Theoretical design and dynamic simulation of new mining paths of tracked miner on deep seafloor”, J. Cent. South Univ. 20(04), 918‒923 (2013).
  17.  Y. Dai and S.J. Liu, “Dynamic Analysis of the Seafloor Pilot Miner Based on Single-Body Vehicle Model and Discretized Track-Terrain Interaction Model”, China Ocean Eng. 24(01), 145‒160 (2010).
  18.  Y. Dai, H. Liu, T. Zhang, and S.J. Liu, “A study on the driving performance of seabed crawler mining vehicle”, Chinese Sci. Technol. Paper 10(10), 1203‒1208 (2015).
  19.  L. Li and S.L. Li, “Simulation of deep-sea surface Marine mud and study on surface mechanical properties”, Eng. Mech. 27(11), 213‒220 (2010).
  20.  M. Wang, X. Wang, and Y. Sun, “Tractive performance evaluation of seafloor tracked trencher based on laboratory mechanical measurements”, Int. J. Nav. Archit. Ocean Eng. 8(2), 177‒187 (2016).
  21.  M. Wang, X. Wang, and Y. Sun, “Traction Potential Analysis of Self-Propelled Seafloor Trencher Based on Mechanical Measurements in Bentonite Soil”, J. Harbin Inst. Technol. 24(1), 71‒80 (2017).
  22.  C. Yang, G. Yang, and Z. Liu, “A method for deducing pressure–sinkage of tracked vehicle in rough terrain considering moisture and sinkage speed”, J. Terramech. 79, 99‒113 (2018).
  23.  P. Siemaszko and Z. Meyer, “Static load test cure analysis based on soil field investigations”, Bull. Pol. Ac.: Tech. 67(2), 329‒337 (2019).
  24.  A. Sawicki, J. Mierczynski, and W. Swidzinski, “Basic set of experiments for determination of mechanical properties of sand”, Bull. Pol. Ac.: Tech. 62(1), 129‒137 (2014).
  25.  C. Janarthanan, K.Gopkumar, V.Sundaramoorthi, N.R. Ramesh, and G.A. Ramadass, “Influence of Grouser Geometrical Parameters of Deep-Sea Crawler Vehicle on Soft Clays”, J. Hydrodyn. 47:899‒912 (2018).
  26.  H. Mao, F. Kumi, and Q. Li, “Combining X-ray computed tomography with relevant techniques for analysing soil-root dynamics-an overview”, Acta Agric. Scand. Sect. B – Soil Plant Sci. 66(1), 1‒19 (2015).
  27.  T. Kato and M. Kamichika, “Determination of a crop coefficient for evapotranspiration in a sparse sorghum field”, Irrig. Drain., 55(2), 165‒175 (2010).
  28.  S. Hong, H.W. Kim, T. Yue, J.S. Choi, T.H. Lee, and J.K. Lee, “Technologies for Safe and Sustainable Mining of Deep-Seabed Minerals”, J. Hydrodyn. 65:95‒143 (2019).
  29.  Z.Y. Zuo, X.G. Li, C. Xu, “Responses of barley Albina and Xantha mutants deficient in magnesium chelatase to soil salinity”, Plant Soil Environ. 63(8), 348‒354 (2017).
  30.  C.L. Qi, Q.H. Rao, Q. Liu, and W.B. Ma, “Traction rheological properties of simulative soil for deep-sea sediment”, J. Hydrodyn. 37:61‒71 (2019).
  31.  B. Ali Abubaker, H.F. Yan, and L. Hong, “Enhancement of Depleted Loam Soil as Well as Cucumber Productivity Utilizing Biochar Under Water Stress”, Commun. Soil Sci. Plant Anal. 50(1), 49‒64 (2019).
  32.  W. Wei, Y. Xu, and S. Li, “Developing suppressive soil for root diseases of soybean with continuous long-term cropping of soybean in black soil of Northeast China”, Acta Agric. Scand. Sect. B – Soil Plant Sci. 65(3), 7 (2015).
  33.  J.Z. Li, S.J. Liu, and Y. Dai, “Effect of grouser height on tractive performance of tracked mining vehicle”, J. Hydrodyn. 39:2459‒2466 (2017).
  34.  D. Knez and A. Calicki, “Looking for a new source of natural proppants in Poland”, Bull. Pol. Ac.: Tech. 66(1), 3‒8 (2018).
  35.  M. Mitew-Czajewska, “Parametric study of deep excavation in clays”, Bull. Pol. Ac.: Tech. 66(5), 747‒754 (2018).
  36.  J. Liu, X.M. Liu, and J.M. Xie, “Influence of copper on transport and dissipation of lambda-cyhalothrin and cypermethrin in soils”, Pedosphere 23(3), 395‒401 (2013).
  37.  L.L. Chu, Y.H. Kang, and S.Q. Wan, “Effect of different water application intensity and irrigation amount treatments of microirrigation on soil-leaching coastal saline soils of North China”, J. Integr. Agric. 15(9), 2123‒2131 (2016).
  38.  J.Y. Wong, Theory of Ground Vehicles. John Wiley & Sons Inc, 2001.
  39.  J.Y. Wong, Terramechanics and Off-road Engineering. Elsevier, 2010.
  40.  J.Y. Wong, M. Garber, and J. Preston-Thomas, “Theoretical prediction and experimental substantiation of the ground pressure distribution and tractive performance of tracked vehicles”, Proc. Inst. Mech. Eng. Part D-J. Automob. Eng. (4), 265‒285 (1988).
  41.  E. Schulte, R. Handschuh, and W. Schwarz, “Transferability of soil mechanical parameters to traction potential calculation of a tracked vehicle”, in Proceedings of the Fifth Ocean Mining Symposium, 2003, pp. 123‒131.
  42.  Z. Janosi and B. Hanamoto, “Analytical determination of drawbar pull as a function of slip on tracked vehicles in deformable soils”, 1st Intern. Conference on Terrain-Vehicles Systems, 1961, pp. 1131‒1152.
  43.  M. Wang, C. Wu, and T. Ge, “Calibration and validation of tractive performance for seafloor tracked trencher”, J. Terramech. 66, 13‒25 (2016).
  44.  M. Wang, X.Y. Wang, Y.H. Sun, and Z.M. Gu, “Tractive performance evaluation of seafloor tracked trencher based on laboratory mechanical measurements”, Int. J. Nav. Archit. Ocean Eng. 8, 177‒187 (2016).
  45.  M.G. Bekker, Theory of land locomotion: the mechanics of vehicle mobility, pp. 221‒262, The University of Michigan Press, 1956.
  46.  M.G. Bekker, Theory of Land Locomotion, University of Michigan Press, 1962.
  47.  M.G. Bekker, Introduction to Terrain-vehicle Systems, University of Michigan Press, 1969.
  48.  A.R. Reece, “Principles of soil-vehicle mechanics”, Proc. Inst. Mech. Eng. Automob. Div. 180(1), 45‒66 (1965).
  49.  Y. Xu, H.Y. Wu, and L.B. Zuo, “Influence of shale tooth height of tracked vehicle on traction performance and its parameter determination”, Trans. Chinese Soc. Agric. Eng. 28(11), 68‒74 (2012).
Go to article

Authors and Affiliations

Yong Li
1
Dingchang He
1
Qiaorui Si
2

  1. Automotive Engineering Research Institute, Jiangsu University, Zhenjiang, 212013, P. R. China
  2. Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang, 212013, P. R. China
Download PDF Download RIS Download Bibtex

Abstract

The article concerns modern, flexible adhesive joints, which might be used in timber construction. The article discusses the test results carried out for timber elements joints using polymeric adhesives produced by Sika®. The scope of the tests includes the analysis of strength criteria, tests of polymer adhesion to the timber with a pull-off method, tests of polymer layer shearing between timber elements as well as examination of bending of timber elements joined with polymer. The conclusions indicate the types of these polymers which are recommended for the creation of polymeric joints of timber-polymeric type in timber constructions.

Go to article

Authors and Affiliations

Klaudia Śliwa-Wieczorek
Bogusław Zając
Tomasz Kozik
Download PDF Download RIS Download Bibtex

Abstract

The paste content in the self-compacting concrete is about 40% in unit volume. The rheological properties of paste directly determine the properties of self-compacting concrete. In this paper, the effect of silica fume (2, 3, 4, and 5%), limestone powder (5, 10 and 15%), and the viscosity modified admixture (2, 3, 4, 5, 6, and 7%) on the rheological properties were investigated. The effect of admixtures on shear thickening response was discussed based on the modified Bingham model. The results indicate that yield stress and plastic viscosity increased with increased silica fume and viscosity modified admixture replacement. The paste’s yield stress increases and then decreases with limestone powder replacement. The critical shear stress and minimum plastic viscosity are improved by silica fume and viscosity modifying admixture. The critical shear stress first increases and decreases as the limestone powder replacement increases. A reduction in the shear thickening response of paste was observed with silica fume and viscosity modified admixture replacement increase.
Go to article

Authors and Affiliations

He Liu
1
ORCID: ORCID
Guangchao Duan
1
ORCID: ORCID
Jingyi Zhang
2
ORCID: ORCID
Yanhai Yang
1
ORCID: ORCID

  1. Shenyang Jianzhu University, School of Transportation and Geometics Engineering, No. 25 Hunnan Zhong Road, Hunnan District, 110168 Shenyang, China
  2. Shenyang Urban Construction University, School of Civil Engineering, No. 380 Bai Ta Road, Hunnan District, 110167 Shenyang, China
Download PDF Download RIS Download Bibtex

Abstract

In the paper the results of experimental investigations concerning flat slabs made from reinforced lightweight concrete with sintered fly ash aggregate CERTYD were presented. In the research program 6 models made in a natural scale were included. The main variable parameter was slab longitudinal reinforcement ratio. The aim of investigation was the experimental verification of efficiency of double-headed studs as punching shear reinforcement. In the existing technical approvals such kind of reinforcement was allowed only in normal concrete slabs. It was demonstrated that double-headed studs can be an effective transverse reinforcement of lightweight aggregate concrete slabs. The use of double-headed studs resulted in increase in the ultimate load from 19% to 44%, depending on the slab reinforcement ratio which ranged from 0.5% to 1.2%. The comparative analysis showed that the Eurocode 2 provisions were conservative in relation to the experimental results, which were on average 42% higher than the theoretical ones however with a very low 7% coefficient of variation.

Go to article

Authors and Affiliations

M. Gołdyn
Ł. Krawczyk
W. Ryżyński
T. Urban

This page uses 'cookies'. Learn more