Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This research paper shows the influence of a repeated SPD (Severe Plastic Deformation) plastic forming with the DRECE technique (Dual Rolls Equal Channel Extrusion) on hardening of low carbon IF steel. The influence of number of passes through the device on change of mechanical properties, such as tensile strength TS and yield stress YS, of tested steel was tested. The developed method is based on equal channel extrusion with dual rolls and uses a repeated plastic forming to refinement of structure and improve mechanical properties of metal bands [1-2]. For the tested steel the increase of strength properties after the DRECE process was confirmed after the first pass in relation to the initial material. The biggest strain hardening is observed after the fourth pass.

Go to article

Authors and Affiliations

K. Kowalczyk
M. Jabłońska
S. Rusz
I. Bednarczyk
Download PDF Download RIS Download Bibtex

Abstract

Incremental Sheet metal Forming (ISF) Process is a suitable process which helps to produce various parts used in automotive sector by rapid prototyping. This method of producing a prototype helps industry in reducing the production cost. In ISF process, a final product is evolved through local deformation of the sheet metal made by the tool. Usually better formability is obtained when the tool makes a better contact with the sheet metal throughout the process. Improved formability elevates dimensional accuracy of the product, thus increases the market value of the product. A new tool with multiple ball ends capable of making multiple mating points over sheet metal was used in this research to enhance the efficiency of formability and surface finish. Ability of the new Multi-Point Incremental Forming Tool (MPIF) was investigated and compared to the existing Single Point Forming Tool (SPIF) based on the formability and surface finish. Forming Limit Diagram (FLD), Strain Distribution (SD) and Scanning Electron Microscope (SEM) were used to examine the formability of the sheet metal. The SEM & 3D-Surface roughness profilometer were used to observe the sheet metals surface finish. In addition to these experimental techniques a simulation results were also used to predict the stress and strain rate during forming process. The experimentation and simulation outcome shows that the MPIF provides superior formability and surface finish.
Go to article

Authors and Affiliations

K. Ramkumar
1
ORCID: ORCID
K.A. Selvarajan
2
ORCID: ORCID
C. Sathiya Narayanan
2
ORCID: ORCID
A. Bovas Herbert Bejaxhin
3
ORCID: ORCID

  1. Department Of Mechanical Engineering, Dhanalakshmi Srinivasan University, Tiruchirappalli, Tamil Nadu, India
  2. Department of Production Engineering, National Institute of Technology, Tiruchirappalli, Tamilnadu, India
  3. Department Of Mechanical Engineering, Saveetha School Of Engineering, Saveetha Institute Of Medical And Technical Sciences (Simats), Chennai

This page uses 'cookies'. Learn more