Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Growing awareness for occupational safety in the welding environment needs a sustainable welding system. Welding gases releases toxic tiny particles and gases that inflict severe health consequences in the weld zone are unsolicited. Some of the other main adverse effects are lung disease, hemoptysis, pulmonary inflammation, pneumoconiosis, etc. GMAW procedure has been used for welding 316L stainless steel plates of 3 mm, 5 mm, and 6 mm. Various current configurations with gas flow rate of 5 LPM, 10 LPM and 15 LPM were also used to achieve optimum butt joint performance and to reduce the production rate of fume contributing to cost-effectiveness. In this research a cost-effective fume extraction hood was fabricated for measuring Emission factor produced during welding. Various shielding gas compositions including Pure Argon, Pure CO2, 92% Ar+8% CO2 and 88% Ar+12% CO2 were used to determine the best operating parameters in the GMAW method. To satisfy the latest Permissible Exposure Limit (PEL) legislation, optimum technical parameters for efficient welding were acknowledged with the lowest emission factor. A maximum reduction of Emission factor can be achieved by using Pure Argon. The inclusion of CO2 as a shielding gas mixture gives higher emission factor when compared to Pure Argon. Very low emission factor were witnessed in this research when compared to previous investigations. Lower emission factor of 2941.17 mg /kg of electrode, 4411.76 mg/kg of electrode and 7352.94 mg/kg of electrode were obtained for pure argon as shielding gas with 150 A welding current.
Go to article

Authors and Affiliations

K.V. Satheesh Kumar
1
ORCID: ORCID
P. Selvakumar
2
ORCID: ORCID
K.R. Uvanshankar
1
ORCID: ORCID
S. Thirunavukarasu
1
ORCID: ORCID
V. Vijay Anand
1
ORCID: ORCID
D. Vishal
1
ORCID: ORCID

  1. Department of Mechanical Engineering, Kongu Engineering College, Erode- 638060, Tamilnadu, India
  2. Department of Chemistry, Vivekanandha College of Arts & Sciences for Women, Tiruchengode- 637205, Tamilnadu, India
Download PDF Download RIS Download Bibtex

Abstract

This paper presents an investigation into effect of nitrogen content of shielding gas mixture on weld geometry, microstructure and hardness of pulsed laser welded 2205 duplex stainless steel. Full penetration autogenous welding was performed on 2 mm thick plates using a low power pulsed Nd: YAG laser. light and scanning electron microscopy were used to study the resulting microstructures. It is observed that 2 mm full penetrated joint decreases to 1.8 mm by dominating nitrogen in argon-nitrogen mixture. Different morphologies of austenite phase as well as an increase of 8% of its content can be observed in pure nitrogen shielded welds. Average weld grain size in sample which is welded in nitrogen atmosphere stands at approximately 41 μm which is smaller than that of argon atmosphere which is about 51 μm. Micro-hardness test reveals that hardness values increase from 280 HV in base metal to 307 HV in weld center line and the shielding gas mixture does not significantly influence the weld hardness.

Go to article

Authors and Affiliations

E. Hajibaba Gozarganji
A. Farnia
M. Ebrahimnia

This page uses 'cookies'. Learn more