Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 14
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Based on real-time multi-domain communication signal analysis architecture, a high-efficiency blind carrier frequency estimation algorithm using the power spectrum symmetry of the measured modulated signal is presented. The proposed algorithm, which utilizes the moving averaged power spectrum achieved by the realtime spectrum analysis, iteratively identifies the carrier frequency in according to the power difference between the upper sideband and lower sideband, which is defined and revised by the estimated carrier frequency in each iteration. When the power difference of the two sidebands converges to the preset threshold, the carrier frequency can be obtained. For the modulation analysis, the measured signal can be coarsely compensated by the estimated result, and the residual carrier frequency error is eliminated by a following carrier synchronization loop. Compared with previous works, owing to the moving averaged power spectrum normalization and the smart iterative step variation mechanism for the two sidebands definition, the carrier frequency estimation accuracy and speed can be significantly improved without increasing the computational effort. Experimental results are included to demonstrate the outstanding performance of the proposed algorithm.

Go to article

Authors and Affiliations

Qian Wang
Xiaomei Yang
Xiao Yan
Kaiyu Qin
Download PDF Download RIS Download Bibtex

Abstract

This paper presents a new modification of the least-squares Prony’s method with reduced sampling, which allows for a significant reduction in the number of the analysed signal samples collected per unit time. The specific combination of non-uniform sampling with Prony’s method enables sampling of the analysed signals at virtually any average frequency, regardless of the Nyquist frequency, maintaining high accuracy in parameter estimation of sinusoidal signal components. This property allows using the method in measuring devices, such as for electric power quality testing equipped with low power signal processors, which in turn contributes to reducing complexity of these devices. This paper presents research on a method for selecting a sampling frequency and an analysis window length for the presented method, which provide maximum estimation accuracy for Prony’s model component parameters. This paper presents simulation tests performed in terms of the proposed method application for analysis of harmonics and interharmonics in electric power signals. Furthermore, the paper provides sensitivity analysis of the method, in terms of common interferences occurring in the actual measurement systems.

Go to article

Authors and Affiliations

Janusz Mroczka
Jarosław Zygarlicki
Download PDF Download RIS Download Bibtex

Abstract

In this paper, the author presents the possibility of using phase trajectory for detecting damage in an axial piston pump. The wear on main part of pump elements, such as the rotor and the valve plate, was investigated, and phase trajectories were determined based on vibration signal measured in three directions on the pump's body. In order to obtain a quantitative measure of the analyzed trajectory, the At_{p,i} parameter was introduced, and the relation between this parameter and the wear on the pump's parts was determined.

Go to article

Authors and Affiliations

Jerzy Stojek
Download PDF Download RIS Download Bibtex

Abstract

This study presents a possibility of detecting wear of a valve plate in multi-piston axial pump based on time-frequency analysis of measured signals. Short-time Fourier transform STFT and the generalized Wigner-Ville algorithm WVD were used for this purpose. The tests were carried out on a multi-piston axial pump with swinging plate, in which the worn valve plates were mounted. Valve plate wear was related with the formation of flow micro-channels between the pump suction hole and its pumping hole on the plate transition zone surface. The developed channels initiate flow of the operational fluid, the results of which is lack of leak-tightness between suction and pumping zones, associated with a decrease in operational pressure and drop in general efficiency.

Go to article

Authors and Affiliations

Jerzy Stojek
Download PDF Download RIS Download Bibtex

Abstract

Quantitative ultrasound has been widely used for tissue characterization. In this paper we propose a new approach for tissue compression assessment. The proposed method employs the relation between the tissue scatterers’ local spatial distribution and the resulting frequency power spectrum of the backscattered ultrasonic signal. We show that due to spatial distribution of the scatterers, the power spectrum exhibits characteristic variations. These variations can be extracted using the empirical mode decomposition and analyzed. Validation of our approach is performed by simulations and in-vitro experiments using a tissue sample under compression. The scatterers in the compressed tissue sample approach each other and consequently, the power spectrum of the backscattered signal is modified. We present how to assess this phenomenon with our method. The proposed in this paper approach is general and may provide useful information on tissue scattering properties.

Go to article

Authors and Affiliations

Michał Byra
Janusz Wójcik
Andrzej Nowicki
Download PDF Download RIS Download Bibtex

Abstract

A computer measurement system, designed and built by authors, dedicated to location and description of partial discharges (PD) in oil power transformers examined by means of the acoustic emission (AE) method is presented. The measurement system is equipped with 8 measurement channels and ensures: monitoring of signals, registration of data in real time within a band of 25–1000 kHz in laboratory and real conditions, basic and advanced analysis of recorded signals. The basic analysis carried out in the time, frequency and time-frequency domains deals with general properties of the AE signals coming from PDs. The advanced analysis, performed in the discrimination threshold domain, results in identification of signals coming from different acoustic sources as well as location of these sources in the examined transformers in terms of defined by authors descriptors and maps of these descriptors on the side walls of the tested transformer tank. Examples of typical results of laboratory tests carried out with the use of the built-in measurement system are presented.

Go to article

Authors and Affiliations

Franciszek Witos
Zbigniew Opilski
Grzegorz Szerszeń
Maciej Setkiewicz
Download PDF Download RIS Download Bibtex

Abstract

In order to understand commands given through voice by an operator, user or any human, a robot needs to focus on a single source, to acquire a clear speech sample and to recognize it. A two-step approach to the deconvolution of speech and sound mixtures in the time-domain is proposed. At first, we apply a deconvolution procedure, constrained in the sense, that the de-mixing matrix has fixed diagonal values without non-zero delay parameters. We derive an adaptive rule for the modification of the de-convolution matrix. Hence, the individual outputs extracted in the first step are eventually still self-convolved. This corruption we try to eliminate by a de-correlation process independently for every individual output channel.

Go to article

Authors and Affiliations

F.A. Okazaki
W. Kasprzak
Download PDF Download RIS Download Bibtex

Abstract

The possibility of distinguishing and assessing the influences of defects in particular pump elements by registering vibration signals at characteristic points of the pump body would be a valuable way for obtaining diagnostic information. An effective tool facilitating this task could be a well designed and identified dynamic model of the pump. When applied for a specific type of the pump, such model could additionally help to improve its construction. This paper presents model of axial piston positive displacement pump worked out by the authors. After taking the simplifying assumptions and dividing the pump into three sets of elements, it was possible to build a discrete dynamic model with 13 degrees of freedom. According to the authors' intention, the developed dynamic model of the multi-piston pump should be used for damage simulation in its individual elements. By gradual change in values of selected construction parameters of the object (for example: stiffness coefficients, damping coefficients), it is possible to perform simulation of wear in the pump. Initial verification of performance of the created model was done to examine the effect of abrasive wear on the swash plate surface. The phase trajectory runs estimated at characteristics points of the pump body were used as a useful tool to determine wear of pump elements.

Go to article

Authors and Affiliations

Waldemar Łatas
Jerzy Stojek
Download PDF Download RIS Download Bibtex

Abstract

Detonation of explosives creates strong para-seismic vibrations. Such vibrations can damage buildings or other infrastructure located in the vicinity of such detonations, and can be burdensome to people living in such areas. This paper describes the usefulness of Matching Pursuit (MP) algorithm in assessing the impact of blasting on the surrounding areas, and proves that by taking into account frequency changes over time, vibration analysis can help make much more profound and reliable predictions in this field.

Go to article

Authors and Affiliations

Anna Sołtys
Download PDF Download RIS Download Bibtex

Abstract

The human voice is one of the basic means of communication, thanks to which one also can easily convey the emotional state. This paper presents experiments on emotion recognition in human speech based on the fundamental frequency. AGH Emotional Speech Corpus was used. This database consists of audio samples of seven emotions acted by 12 different speakers (6 female and 6 male). We explored phrases of all the emotions – all together and in various combinations. Fast Fourier Transformation and magnitude spectrum analysis were applied to extract the fundamental tone out of the speech audio samples. After extraction of several statistical features of the fundamental frequency, we studied if they carry information on the emotional state of the speaker applying different AI methods. Analysis of the outcome data was conducted with classifiers: K-Nearest Neighbours with local induction, Random Forest, Bagging, JRip, and Random Subspace Method from algorithms collection for data mining WEKA. The results prove that the fundamental frequency is a prospective choice for further experiments.

Go to article

Authors and Affiliations

Teodora Dimitrova-Grekow
Aneta Klis
Magdalena Igras-Cybulska
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The paper is a structured, in-depth analysis of dual active bridge modeling. In the research new, profound dual active bridge converter (DAB) circuit model is presented. Contrary to already described idealized models, all critical elements including numerous parasitic components were described. The novelty is the consideration of a threshold voltage of diodes and transistors in the converter equations. Furthermore, a lossy model of leakage inductance in an AC circuit is also included. Based on the circuit equations, a small-signal dual active bridge converter model is described. That led to developing control of the input and output transfer function of the dual active bridge converter model. The comparison of the idealized model, circuit simulation (PLECS), and an experimental model was conducted methodically and confirmed the high compatibility of the introduced mathematical model with the experimental one. Proposed transfer functions can be used when designing control of systems containing multiple converters accelerating the design process, and accurately reproducing the existing systems, which was also reported in the paper.
Go to article

Authors and Affiliations

Roman Barlik
1
Piotr Grzejszczak
1
Mikołaj Koszel
1

  1. Warsaw University of Technology, Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

Preliminary results of laboratory and field tests of fibre optic rotational seismographs designed for rotational seismology are presented. In order to meet new directions of the research in this field, there is clearly a great need for suitable and extremely sensitive wideband sensors. The presented rotational seismographs based on the fibre optic gyroscopes show significant advantages over other sensor technologies when used in the seismological applications. Although the presented results are prepared for systems designed to record strong events expected by the so-called “engineering seismology”, the described system modification shows that it is possible to construct a device suitable for weak events monitoring expected by basic seismological research. The presented sensors are characterized, first and foremost, by a wide measuring range. They detect signals with amplitudes ranging from several dozen nrad/s up to even few rad/s and frequencies from 0.01 Hz to 100 Hz. The performed Allan variance analysis indicates the sensors main parameters: angle random walk in the range of 3 ∙ 10 −8 - 2 ∙ 10 −7 rad/s and bias instability in the range of 2 ∙ 10 −9 - 2 ∙ 10 −8 rad/s depending on the device. The results concerning the registration of rotational seismic events by the systems located in Książ Castle, Poland, as well as in the coalmine “Ignacy” in Rybnik, Poland were also presented and analysed.
Go to article

Bibliography

  1. Guéguen, P. & Astorga, A. The Torsional Response of Civil Engineering Structures during Earthguake from a Observational Point of View. Sensors 21, 342 (2021). https://doi.org/10.3390/s21020342
  2. Zembaty, Z., Bernauer, F., Igel, H. & Schreiber, K. U. Rotation Rate Sensors and Their Sensors 21, 5344 (2021). https://doi.org/10.3390/s21165344
  3. Guéguen, P., Guattari, F., Aubert, C. & LAudat. Comparing Direct Observation of Torsion with Array-Derived Rotation in Civil Engineering Structures. Sensors 21, 142 (2021). https://doi.org/10.3390/s21020142
  4. Rossi, Y. et al. Kalman Filter-Based Fusion of Collocated Acceleration, GNSS and Rotation Data for 6C Motion Sensors 21, 1543 (2021). https://doi.org/10.3390/s21041543
  5. Fuławka, K., Pytel, W. & Pałac-Walko, B. Near-Field measurement of six degrees of freedom mining-induced termios in lower siliesian coper basin. Sensors 20, 6801 (2020). https://doi.org/10.3390/s21020142
  6. Lee, W. H. K. Seismology, Rotation. in Encyclopedia of Solid Earth Geophysics; (eds. Gupta, H. ) 1–12 (Springer, Dordrecht, The Netherlands, 2019).
  7. Chin-Jen, L., Chun-Chi, L. & Lee, W.H.K. Recording Rotational and Translational Ground Motions of Two TAIGER Explosions in Northeastern Taiwan on 4 March. Bull. Seismol. Soc. Am 99(2B), 1237– 1250 (2008). https://doi.org/10.1785/0120080176
  8. Trifunac, M. D. Rotations in Structural Response. Bull. Seismol. Soc. Am 99(2B), 968–979 (2009). https://doi.org/10.1785/01200800068
  9. Grzebyk, W., Mertuszka, P. & Stolecki, L. Characteristics of the vibratory motion of a transaction and rotating character coming from mine seismic quakes. Wiadomości Górnicze 66(2), 97–103 (2015). [in Polish]
  10. Kurzych, A. T, Jaroszewicz, L. R., Kowalski, J. K. & Sakowicz, B. Investigation of rotational motion in a reinforced concrete frame construction by a fibre optic gyroscope, Opto- Electron. Rev. 28(2), 69- 73 (2020). https://doi.org/10.24425/opelre.2020.132503
  11. Zembaty, Z., Mutke, G., Nawrocki, D. & Bobra, P. Rotational Ground-Motion Records from Induced Seismic Events, Res. Let. 88(1), 13-22 (2017). https://doi.org/10.1785/0220160131
  12. Kaláb, Z., Knejzlík, J. & Lednická, M. Observation of rotational component in digital data of mining induced seismic events. Górnictwo i Geologia 7(1), 75–85 (2012).
  13. Ju, L., Blair, D. G. & Zhao, C. Detection of gravitational waves. Rep. Prog. Phys. 63, 1317–1427 (2000). https://doi.org/10.1088/0034-4885/63/9/201
  14. Teisseyre R. Why rotational seismology: confrontation between classic and asymmetric Bull. Seismol. Soc. Am. 101(4), 1683-1691 (2011). https://doi.org/10.1785/0120100078
  15. Abreu, R., Kamm, J. & Reiß, A-S. Micropolar modelling of rotational waves in Geophys. J. Int. 210, 1021-1046 (2017). https://doi.org/10.1093/gji/ggx211
  16. Hart, G. C., DiJulio, R. M. & Lew, M. Torsional response of high rise buildings ASCE, Journal of Structure Division 101(2), 397–415 (1975). https://doi.org/10.1061/JSDEAG.0003999
  17. Suryanto, W. Rotational Motions in Seismology, Theory and Application. (LMU München: Faculty of Geosciences, 2006). https://edoc.ub.uni-muenchen.de/7850/1/Suryanto_Wiwit.pdf
  18. Zerva, A. & Zhang, O. Corellation patterns in characteristic of spatially variable seismic ground motions. Earthquake Engineering & Structural Dynamics 26, 19–39 (1997).https://doi.org/10.1002/(SICI)1096-9845(199701)26:1%3C19::AID-EQE620%3E3.0.CO;2-F
  19. Jaroszewicz, L.R. et al. Review of the usefulness of various rotational seismometers with laboratory results of fibre-optic ones tested for engineering applications. Sensors 16, 2161, (2016). https://doi.org/10.3390/s16122161
  20. Sagnac, G. The light ether demonstrated by the effect of the relative wind in ether into a uniform rotation interferometer. Acad. Sci. 95, 708-710 (1913).
  21. Post, E. J. Sagnac effect. Rev. Mod. Phys. 39, 475-496 (1967). https://doi.org/10.1103/RevModPhys.39.475
  22. Lefevre, H. C., Martin, P. et al. High-dynamic-range fibre gyro with all-digital signal Proc. of SPIE 1367, 72-80 (1991). https://doi.org/10.1117/12.24730
  23. Niespodziany, S., Kurzych, A.T. & Dudek M. Detector diode circuit noise measurement and power supply method selection for the fibre optic seismograph, Opto-Electron. Rev. 29(2), 71-79 (2021). https://doi.org/10.24425/opelre.2021.135830
  24. Kurzych, A. T. et al. Measurements of rotational events generated by artificial explosions and external excita-tions using the optical fibre sensors network, Sensors 20(21), 6107 (2020). https://doi.org/10.3390/s20216107
  25. Bernauer, et al. Rotation, Strain and Translation Sensors Performance Tests with Active Seismic Sources. Sensors 21, 264 (2021). https://doi.org/10.3390/s21010264
  26. Kurzych, A. T., Jaroszewicz, L. R., Dudek, M., Sakowicz, B. & Kowalski, J. K. Towards uniformity of rotational events recording – initial data from common test engaging more than 40 sensors including a wide number of fibre-optic rotational seismometers. Opto-Electron. Rev. 29(1), 39-44 (2021). https://doi.org/10.24425/opelre.2021.135827
  27. Konno, K. & Ohmachi, T. Ground Motion characteristics estimated from spectral ratio between horizonatal and vertical components of microtermor. Bull. Seismol. Soc. Am. 88(1), 228-241 (1998). https://doi.org/10.1785/BSSA0880010228
  28. Murray-Bergquist, L., Bernauer, F. & Igel, H. Characterization of Six-Degree-of-Freedom Sensors for Building Health Sensors 21, 3732 (2021). https://doi.org/10.3390/s21113732
  29. IEEE Standard Specification Format Guide and Test Procedure for Single-Axis Interferometric Fibre Optic Gyros. IEEE-SA Standards Boards 952 (1997). https://doi.org/10.1109/IEEESTD.1998.86153
  30. Allan Variance: Noise Analysis for Gyroscopes. Applications Note AN5087 Rev.0.2/2015. Freescale Semisconductor Inc. (2015). https://telesens.co/wp- content/uploads/2017/05/AllanVariance5087-1.pdf
  31. Di Virgilio, A. D. et al. Sensitivity limit investigation of a Sagnac gyroscope through linear regression analysis. Eur. Phys. J. C 81, 400 (2021). https://doi.org/10.1140/epjc/s10052-021-09199-1
Go to article

Authors and Affiliations

Leszek R. Jaroszewicz
1
ORCID: ORCID
Michał Dudek
1
ORCID: ORCID
Anna T. Kurzych
1
ORCID: ORCID
Krzysztof P. Teisseyre
2
ORCID: ORCID

  1. Institute of Applied Physics, Military University of Technology, 2 gen. S. Kaliskiego St., Warszawa, 00-908, Poland
  2. Institute of Geophysics, Polish Academy of Sciences, 64 Ks. Janusza St., Warszawa, 01-452, Poland
Download PDF Download RIS Download Bibtex

Abstract

Heart rate is constantly changing under the influence of many control signals, as manifested by heart rate variability (HRV). HRV is a nonstationary, irregularly sampled signal, the spectrum of which reveals distinct bands of high, low, very low and ultra-low frequencies (HF, LF, VLF, ULF). VLF and ULF components are the least understood, and their analysis requires HRV records lasting many hours. Moreover, there are still no well-established methods for the reliable extraction of these components. The aim of this work was to select, implement and compare methods which can solve this problem. The performance of multiband filtering (MBF), empirical mode decomposition and the short-time Fourier transform was tested, using synthetic HRV as the ground truth for methods evaluation as well as real data of three patients selected from 25 polysomnographic records with a clear HF component in their spectrograms. The study provided new insights into the components of long-term HRV, including the character of its amplitude and frequency modulation obtained with the Hilbert transform. In addition, the reliability of the extracted HF, LF, VLF and ULF waveforms was demonstrated, and MBF turned out to be the most accurate method, though the signal is strongly nonstationary. The possibility of isolating such waveforms is of great importance both in physiology and pathophysiology, as well as in the automation of medical diagnostics based on HRV.
Go to article

Bibliography

[1] Chylinski, M., & M., Szmajda, M. (2018). Statistical methods for analysing deceleration and acceleration capacity of the heart rate. In Hunek, W., & Paszkiel, S. (Eds.). Advances in Intelligent Systems and Computing: Vol. 720. Biomedical Engineering and Neuroscience. (pp. 85–97). Springer. https://doi.org/10.1007/978-3-319-75025-5_9
[2] Siecinski, S.,Kostka, P. S.,&Tkacz, E. J. (2020). Heart rate variability analysis on electrocardiograms, seismocardiograms and gyrocardiograms on healthy volunteers. Sensors, 20(16), 4522. https://doi.org/ 10.3390/s20164522
[3] Acharya, R. U., Joseph, P. K., Kannathal, N., Choo, M. L., & Suri, J. S. (2006). Heart rate variability: A review. Medical and Biological Engineering and Computing, 44(12), 1031–1051. https://doi.org/10.1007/s11517-006-0119-0
[4] Shaffer, F., & Ginsberg, J. P. (2017). An overview of heart rate variability metrics and norms. Frontiers in Public Health, 5, 258. https://doi.org/10.3389/fpubh.2017.00258
[5] Goldoozian L. S., Zahedi, E., & Zarzoso, V. (2017). Time-varying assessment of heart rate variability parameters using respiratory information. Computers in Biology and Medicine, 89, 355–367. https://doi.org/10.1016/j.compbiomed.2017.07.022
[6] Boardman, A., Schlindwein, F. S., Rocha, A. P., & Leite, A. (2002). A study on the optimum order of autoregressive models for heart rate variability. Physiological Measurement, 23(2), 325–336. https://doi.org/10.1088/0967-3334/23/2/308
[7] Karim, N., Hasan, J. A., & Ali, S. S. (2011). Heart rate variability – A review. Australian Journal of Basic and Applied Sciences, 7(1), 71–77.
[8] Stein, P. K., & Pu, Y. (2012). Heart rate variability, sleep and sleep disorders. Sleep Medicine Reviews, 16(1), 47–66. https://doi.org/10.1016/j.smrv.2011.02.005
[9] Bernardi, L., Valle, F., Coca, M., Calciati, A., & Sleight, P. (1996). Physical activity influences heart rate variability and very-low-frequency components in Holter electrocardiograms. Cardiovascular Research, 32(2), 234–237. https://doi.org/10.1016/0008-6363(96)00081-8
[10] Aoki, K., Stephens, D. P., & Johnson, J. M. (2001). Diurnal variation in cutaneous vasodilator and vasoconstrictor systems during heat stress. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 281(2), 591–595. https://doi.org/10.1152/ajpregu.2001.281.2.R591
[11] Fleisher, L. A., Frank, S. M., Sessler, D. I., Cheng, C., Matsukawa, T., & Vannier, C. A. (1996). Thermoregulation and heart rate variability. Clinical Science, 90(2), 97–103. https://doi.org/10.1042/cs0900097
[12] Akselrod. S., Gordon, D., Ubel. F. A., Shannon, D. C., Barger, A. C., & Cohen, R. J. (1981). Power spectrum analysis of heart rate fluctuation: A quantitative probe of beat-to-beat cardiovascular control. Science, 213(4504), 220–222. https://doi.org/10.1126/science.6166045
[13] Porter, G. A., Jr., & Rivkees, S. A. (2001). Ontogeny of humoral heart rate regulation in the embryonic mouse. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 281(2), 401–407. https://doi.org/10.1152/ajpregu.2001.281.2.r401
[14] Stampfer, H. G., & Dimmitt, S. B. (2013). Variations in circadian heart rate in psychiatric disorders: Theoretical and practical implications. ChronoPhysiology and Therapy, 3, 41–50. https://doi.org/10.2147/CPT.S43623
[15] Jelinek, H. F., Huang, Z. Q., Khandoker, A. H., Chang, D., & Kiat, H. (2013). Cardiac rehabilitation outcomes following a 6-week program of PCI and CABG patients. Frontiers in Physiology, 4, 302. https://doi.org/10.3389/fphys.2013.00302
[16] Li, H., Kwong, S., Yang, L., Huang, D., & Xiao, D. (2011). Hilbert-Huang transform for analysis of heart rate variability in cardiac health. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 8(6), 1557–1567. https://doi.org/10.1109/TCBB.2011.43
[17] Task Force of the European Society of Cardiology and the North American Society of Pacing Electrophysiology. (1996). Heart rate variability: Standards of measurement, physiological interpretation, and clinical use. Circulation, 93(5), 1043–1065. https://doi.org/10.1161/01.CIR.93.5.1043
[18] Wen, F., & He, F.-T. (2011). An efficient method of addressing ectopic beats: new insight into data preprocessing of heart rate variability analysis. Journal of Zhejiang University Science B, 12, 976–982. https://doi.org/10.1631/jzus.b1000392
[19] Mendez, M. O., Bianchi, A. M., Matteucci, M., Cerutti, S., & Penzel, T. (2009). Sleep apnea screening by autoregressive models from a single ECG lead. IEEE Transactions on Biomedical Engineering, 56(12), 2838–2850. https://doi.org/10.1109/tbme.2009.2029563
[20] Penzel, T., Kantelhardt, J. W., Grote, L., Peter, J. H., & Bunde, A. (2003). Comparison of detrended fluctuation analysis and spectral analysis for heart rate variability in sleep and sleep apnea. IEEE Transactions on Biomedical Engineering, 50(10), 1143–1151. https://doi.org/10.1109/TBME.2003.817636
[21] Chan, H. L., Chou, W. S., Chen, S. W., Fang, S. C., Liou, C. S., & Hwang, Y. S. (2005). Continuous and online analysis of heart rate variability. Journal of Medical Engineering and Technology, 29(5), 227–234. https://doi.org/10.1080/03091900512331332587
[22] Kudrynski, K., & Strumillo, P. (2015). Real-time estimation of the spectral parameters of heart rate variability. Biocybernetics and Biomedical Engineering, 35(4), 304–316. https://doi.org/10.1016/ j.bbe.2015.05.002
[23] Echeverria, J. C., Crowe, J. A., Woolfson, M. S., & Hayes-Gill, B. R. (2001). Application of empirical mode decomposition to heart rate variability analysis. Medical and Biological Engineering and Computing, 39(4), 471–479. https://doi.org/10.1007/bf02345370
[24] Billman, G. E. (2011). Heart rate variability – A historical perspective. Frontiers in Physiology, 2, 86. https://doi.org/10.3389/fphys.2011.00086
[25] Romano, M., Faiella, G., Clemente, F., Iuppariello, L., Bifulco, P., & Cesarelli, M. (2016). Analysis of foetal heart rate variability components by means of empirical mode decomposition. IFMBE Proceedings, 57, 71–74. https://doi.org/10.1007/978-3-319-32703-7_15
[26] Montano, N., Porta, A., Cogliati, C., Costantino, G., Tobaldini, E., Casali, K. R., & Iellamo, F. (2009). Heart rate variability explored in the frequency domain: A tool to investigate the link between heart and behavior. Neuroscience and Biobehavioral Reviews, 33(2), 71–80. https://doi.org/10.1016/j.neubiorev.2008.07.006
[27] Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., Yen, N.-C., Tung, C. C., & Liu, H. H. (1998). The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis. Proceedings of the Royal Society of London A, 454(1971), 903–995. https://doi.org/10.1098/rspa.1998.0193
[28] Chen, M., He, A., Feng, K., Liu, G., & Wang, Q. (2019). Empirical mode decomposition as a novel approach to study heart rate variability in congestive heart failure assessment. Entropy, 21(12), 1169. https://doi.org/10.3390/e21121169
[29] Balocchi, R., Menicucci, D., Santarcangelo, E., Sebastiani, L., Gemignani, A., Ghelarducci, B., & Varanini, M. (2004). Deriving the respiratory sinus arrhythmia from the heartbeat time series using empirical mode decomposition. Chaos, Solitons & Fractals, 20(1), 171–177. https://doi.org/10.1016/S0960-0779(03)00441-7
[30] Ortiz, M. R., Bojorges, E. R., Aguilar, S. D., Echeverria, J. C., Gonzalez-Camarena, R., Carrasco, S., Gaitan, M. J., & Martinez, A. (2005). Analysis of high frequency fetal heart rate variability using empirical mode decomposition. Computers in Cardiology, France, 675–678. https://doi.org/10.1109/ CIC.2005.1588192
[31] Helong, L., Yang, L., & Daren, H. (2008). Application of Hilbert-Huang transform to heart rate variability analysis. 2nd International Conference on Bioinformatics and Biomedical Engineering, China, 648–651. https://doi.org/10.1109/ICBBE.2008.158
[32] Neto, E. P. S., Custaud, M. A., Cejka, J. C., Abry, P., Frutoso, J., Gharib, C., & Flandrin, P. (2004). Assessment of cardiovascular autonomic control by the empirical mode decomposition. Methods of Information in Medicine, 43(1), 60–65. https://doi.org/10.1055/s-0038-1633836
[33] Ihlen, E. A. F. (2009). A comparison of two Hilbert spectral analyses of heart rate variability. Medical & Biological Engineering & Computing, 47(10), 1035–1044. https://doi.org/10.1007/ s11517-009-0500-x
[34] Eleuteri, A., Fisher, A. C., Groves, D., & Dewhurst, C. J. (2012). An efficient time-varying filter for detrending and bandwidth limiting the heart rate variability tachogram without resampling: MATLAB open-source code and internet web-based implementation. Computational and Mathematical Methods in Medicine, 2012, Article 578785. https://doi.org/10.1155/2012/578785
[35] Fisher, A. C., Eleuteri, A., Groves, D., & Dewhurst, C. J. (2012). The Ornstein–Uhlenbeck third-order Gaussian process (OUGP) applied directly to the un-resampled heart rate variability (HRV) tachogram for detrending and low-pass filtering. Medical and Biological Engineering and Computing, 50(7), 737–742. https://doi.org/10.1007/s11517-012-0928-2
[36] Varanini, M., Macerata, A., Emdin, M., & Marchesi, C. (1994). Non linear filtering for the estimation of the respiratory component in heart rate. Computers in Cardiology, USA, 565–568. https://doi.org/10.1109/CIC.1994.470129
[37] Estévez, M., Machado, C., Leisman, G., Estévez-Hernández, T., Arias-Morales, A., Machado, A., & Montes-Brown, J. (2016). Spectral analysis of heart rate variability. International Journal on Disability and Human Development, 15(1), 5–17. https://doi.org/10.1515/ijdhd-2014-0025
[38] McCraty, R., & Shaffer, F. (2015). Heart rate variability: New perspectives on physiological mechanisms, assessment of self-regulatory capacity, and health risk. Global Advances in Health and Medicine, 4(1), 46–61. https://doi.org/10.7453/gahmj.2014.073
[39] Nunan, D., Sandercock, G. R. H., & Brodie, D. A. (2010). A quantitative systematic review of normal values for short-term heart rate variability in healthy adults. Pacing and Clinical Electrophysiology, 33(11), 1407–1417. https://doi.org/10.1111/j.1540-8159.2010.02841.x
[40] Goldberger, A., Amaral, L., Glass, L., Hausdorff, J., Ivanov, P. C., Mark, R., Mietus, J. E., Moody, G. B., Peng, C. K.,&Stanley, H. E. (2000). PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation, 101(23), 215–220. https://doi.org/10.1161/01.cir.101.23.e215
[41] Terzano, M. G., Parrino, L., Sherieri, A., Chervin, R., Chokroverty, S., Guilleminault, C., Hirshkowitz, M., Mahowald, M., Moldofsky, H., Rosa, A., Thomas, R., & Walters, A. (2001). Atlas, rules, and recording techniques for the scoring of cyclic alternating pattern (CAP) in human sleep. Sleep Medicine, 2(6), 537–553. https://doi.org/10.1016/s1389-9457(01)00149-6
[42] Jun, S., Szmajda, M., Khoma, V., Khoma, Y., Sabodashko, D., Kochan, O., & Wang, J. (2020). Comparison of methods for correcting outliers in ECG-based biometric identification. Metrology and Measurement Systems, 27(3), 387–398. https://doi.org/10.24425/mms.2020.132784
[43] Hsu, M.-K., Sheu, J.-C., & Hsue, C. (2011). Overcoming the negative frequencies: instantaneous frequency and amplitude estimation using osculating circle method. Journal of Marine Science and Technology, 19(5), 514–521. https://doi.org/10.6119/JMST.201110_19(5).0007
[44] Bayly E. J. (1968). Spectral analysis of pulse frequency modulation in the nervous systems. IEEE Transactions on Biomedical Engineering, 15(4), 257–265. https://doi.org/10.1109/TBME.1968.4502576
[45] Mateo, J., & Laguna, P. (1996). New heart rate variability time-domain signal construction from the beat occurrence time and the IPFM model. Computers in Cardiology, USA, 185–188. https://doi.org/10.1109/CIC.1996.542504
[46] de Boer, R. W., Karemaker, J. M., & Strackee, J. (1985). Spectrum of a series of point events, generated by the integral pulse frequency modulation model. Medical and Biological Engineering and Computing, 23(2), 138–142. https://doi.org/10.1007/BF02456750
[47] Nakao, M., Norimatsu, M., Mizutani, Y., & Yamamoto, M. (1997). Spectral distortion properties of the integral pulse frequency modulation model. IEEE Transactions on Biomedical Engineering, 44(5), 419–426. https://doi.org/10.1109/10.568918


Go to article

Authors and Affiliations

Krzysztof Adamczyk
1
Adam G. Polak
1

  1. Department of Electronic and Photonic Metrology, Wrocław University of Science and Technology, B. Prusa Str. 53/55, 50-317 Wrocław, Poland

This page uses 'cookies'. Learn more