Search results

Filters

  • Journals

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Simultaneous propagation of vibrations and noise has an important role in the task of minimizing vibroacoustic hazards on the station of operator of the construction machinery. In many cases vibrations transferred by the construction are processed to noise in different points of the machine. As a result, they may increase the level of noise at the workplace. The paper presents the proposition of a simple estimation of noise and vibration propagation paths of the machine. On the basis of the analysis of hydraulic excavator an effectiveness of a proposed procedure was shown. This procedure helps to minimize the transfer of vibrations of power unit in selected frequency ranges which led to the change of overall noise level in operator’s cab about 5 dB.
Go to article

Authors and Affiliations

Zbigniew Dąbrowski
Jacek Dziurdź
Download PDF Download RIS Download Bibtex

Abstract

Independent Component Analysis (ICA) can be used for single channel audio separation, if a mixed signal is transformed into time-frequency domain and the resulting matrix of magnitude coefficients is processed by ICA. Previous works used only frequency (spectral) vectors and Kullback-Leibler distance measure for this task. New decomposition bases are proposed: time vectors and time-frequency components. The applicability of several different measures of distance of components are analysed. An algorithm for clustering of components is presented. It was tested on mixes of two and three sounds. The perceptual quality of separation obtained with the measures of distance proposed was evaluated by listening tests, indicating "beta" and "correlation" measures as the most appropriate. The "Euclidean" distance is shown to be appropriate for sounds with varying amplitudes. The perceptual effect of the amount of variance used was also evaluated.

Go to article

Authors and Affiliations

Dariusz Mika
Piotr Kleczkowski

This page uses 'cookies'. Learn more