Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Prolonged exposure to UV radiation, and ever-increasing life expectancy, mean that an increasing proportion of the population suffers from clouding of the intraocular lens. Nowadays, the performance of intraocular implantation procedures is commonplace. Unfortunately, with the increasing number of operations, the number of postoperative complications is also increasing. One way to avoid complications may be to use an intraocular implant that has been immersed in a solution containing silver nanoparticles. As part of the study, four selected intraocular implants – that are available on the ophthalmic market – were tested. In order to investigate the effect of silver particles on the optical properties of the implants, tests were carried out using a UV-VIS spectrophotometer. Two series of implants were tested: before and after immersion in a silver solution. The implants were immersed for a period of 7 days. It was found that the presence of silver particles does not have a negative impact on the translucency of the implants.
Go to article

Authors and Affiliations

K. Jeż
1
ORCID: ORCID
M. Gacek
1
ORCID: ORCID
M. Nabiałek
1
ORCID: ORCID
L. Toth
2
ORCID: ORCID
M. Pike-Biegunski
3

  1. Czestochowa University of Technology, Faculty of Production Engineering and Materials Technology, Department of Physics, 19 Armii Krajowej Str., 42-200 Częstochowa, Poland
  2. Óbuda University, Bánki Donát Faculty of Mechanical and Safety Engineering, Material Science Department, 1081, Népszínház 8, Budapest, Hungary
  3. Nano Koloid sp. z o. o, Hoża 62/37, 00-682 Warszawa, Poland
Download PDF Download RIS Download Bibtex

Abstract

In this study, Ag-impregnated silica aerogel composites were fabricated via wet impregnation. In this approach, silver salt was reduced with ethylene glycol in the presence of polyvinylpyrrolidone (PVP) at reaction temperature 80°C. PVP was used as a capping agent to protect the Ag nanoparticles (NPs) from agglomeration. Wet impregnation was used to synthesize the Ag/SiO2 composite by combining the reduction of AgNO3 with a silica aerogel slurry. Experimental results showed that the AgNO3 concentration and PVP: AgNO3 ratio had an active influence on the growth of Ag NPs on silica surfaces. The X-ray diffraction (XRD) patterns of the composite material showed no imprints of impurities or parasitic materials except for Ag and SiO2. Scanning electron microscopy (SEM) images revealed that the Ag NPs were well impregnated into the porous silica aerogel structure. It was found that SiO2 aerogel surfaces were homogeneously surrounded by the Ag NPs.
Go to article

Authors and Affiliations

Pratik S. Kapadnis
1
Kyungsun Kim
1
Hyung-Ho Park
2
Haejin Hwang
1
ORCID: ORCID

  1. Inha university, Department of Materials Science and Engineering, Incheon 22212, Republic of Korea
  2. Yonsei University, Department of Materials Science and Engineering, Seoul 03722, Republic of Korea
Download PDF Download RIS Download Bibtex

Abstract

Since silver nanoparticles (AgNPs) are used as nanofungicides and nanopesticides in agriculture, the toxicity of AgNPs as well as AgNO3 must be determined. Besides this, we evaluated the combined effects of salicylic acid (SA) and nitric oxide (NO) on responses of Phlomis tuberosa plants to Ag-induced stress. The results of growth parameters together with measurement of malondialdehyde (MDA) indicated that exposure to 1000 mg L–1 of AgNPs or AgNO3 exerted more toxicity, which was closely associated with the over– accumulation of ROS and the reduction of photochemical functioning. However, SNP (NO) and SA addition successfully alleviated adverse impact of AgNPs on Phlomis seedlings. Maximum amelioration of Ag-induced stress was found by combined treatments of SA+NO. Phlomis plants primed with SA+NO exhibited higher synthesis of chlorophyll b and carotenoid pigments to ameliorate AgNP-induced adverse effects on chlorophyll fluorescence parameters. SA+NO led to high levels of proline under both AgNPs and AgNO3 treatments. A further increase in antioxidants (phenolic compounds) was observed in NO-primed plants under AgNPs- induced stress, which was attendant with the high level of CAT and APX activities. Increase in total Ag translocation into shoot organs and cell survival were also enhanced by SA+NO under AgNPs stress. We concluded that SA+NO mitigated the inhibitory effects of AgNPs stress on the photosynthetic apparatus by increasing the phenolic compounds and carotenoids as well as by regulating accumulation of Ag, ROS and antioxidants. The present findings provide important knowledge to design strategies that minimize the negative impact of AgNPs and AgNO3 on crops.
Go to article

Authors and Affiliations

Elham Ghasemifar
1
Ghader Habibi
1
Golamreza Bakhshi-Khaniki
1

  1. Department of Biology, Payame Noor University (PNU), PO BOX 19395-3697 Tehran, Iran

This page uses 'cookies'. Learn more