Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Data
  • Type

Search results

Number of results: 18
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The issues of medical robots have been approached for 12 years in the Institute of Machine Tools and Production Engineering of the Technical University of Lodz. In the last two years, the scope of research related to the miniaturization of surgical tools, automated changing of these tools with the use of a tool depot designed for this purpose, equipping the robot in the sense of touch and developing the software which provides ergonomic and intuitive robot control with the use of all its functions. In the telemanipulator control, strong emphasis is placed on the intuitiveness of control, which is hard to be ensured due to the fact that the robot tool is observed by a laparoscopic camera, whose orientation and position may vary. That is the reason for developing a new algorithm. It copies the increments of the position and orientation measured in relation to the monitor coordinate system onto the robot tool movement and orientation, which are measured in relation to the camera coordinates system. In this algorithm it is necessary to solve inverse kinematics, which has a discontinuity. Avoiding the discontinuity is achieved by mapping the solution with the cosine function. It causes smooth pass through the area of discontinuity in this way avoiding the singularity.

Go to article

Authors and Affiliations

Adam Niewola
Leszek Podsędkowski
Piotr Wróblewski
Piotr Zawiasa
Marcin Zawierucha
Download PDF Download RIS Download Bibtex

Abstract

The LQR (linear quadratic regulator) control problem subject to singular system constitutes a optimization problem in which one must be find an optimal control that satisfy the singular system and simultaneously to optimize the quadratic objective functional. In this paper we establish a sufficient condition to obtain the optimal control of discounted LQR optimization problem subject to disturbanced singular system where the disturbance is time varying. The considered problem is solved by transforming the discounted LQR control problem subject to disturbanced singular system into the normal LQR control problem. Some available results in literatures of the normal LQR control problem be used to find the sufficient conditions for the existence of the optimal control for discounted LQR control problem subject to disturbanced singular system. The final result of this paper is in the form a method to find the optimal control of discounted LQR optimization problem subject to disturbanced singular system. The result shows that the disturbance is vanish with the passage of time.

Go to article

Authors and Affiliations

Lyra Yulianti
Admi Nazra
Zulakmal
Arifah Bahar
Muhafzan
Download PDF Download RIS Download Bibtex

Abstract

Nowadays, it's hard to stay togdifficult to remain Yourself. How we behave in critical situations and if fight for our identity, our specificity, depends on us. How to live, we would not seem to us that we live in? The issues taken in this article are related to the specificity of highlander, and our choices which play an important role in my life. The first part of the article describes the basic concepts, including specificity, being yourself, singularity. In the next part a signpost were shown, which „saves” described highlander specificity. The aim of the article is to show the (frequently forged) highland value in aspect of creating ourself, our attitude towards life, which involve a lot of positives. I assert that the specificity of the highland is the value of itself creation.
Go to article

Authors and Affiliations

Anna Wojtas-Rduch
Download PDF Download RIS Download Bibtex

Abstract

The paper presented the wavelet transform method for de-noising and singularity detection to soil compressive stress signal. The study results show that the reconstruction signals by the wavelet de-noising keeps the low frequency component at [0, 31.25 Hz] of the original signal and improves the high frequency property at other frequency bands. The impaction time from the start time to resonance time of the stress signals is varies with the depth of the soil. With the increase of times of compaction, the impaction time of the stress is decreasing in every layer. But the speed of reaching compacted status in each layer is different.

Go to article

Authors and Affiliations

Zhang Qing-Zhe
Yan Bing
Dai Jing-Liang
Yang Bao-Gui
Download PDF Download RIS Download Bibtex

Abstract

This article is devoted to the official forms in the inflection of chosen toponyms in Poland and the variety of dialectal singular and plural place names. The variety of place names often diverges from the rules of language use, and causes language users problems. The toponyms have peculiar, locally used inflected forms; the outside-linguistic (non-linguistic) factors that are social and local factors, play an important role in the inflection of place names. The local population often uses other forms than those recommended by official sources. I focus my attention on the genitive forms of toponyms because it is mainly here that one can see clear variations in the official and local inflection of place names. The material shows that the singular masculine toponyms have genitive endings: -a (in the official variety), -u (in the local variety), for example Biłgoraj, gen. Biłgoraja, but in the local dialect: biłgoraju. The singular feminine place names have genitive endings: -ej (in the official variety), -y||-i (in the local variety): Brzezowa, gen. Brzezowej, but Brzezowy in the local dialect. The plural toponyms have genitive endings: -ø, -ów, -i (-y), but in the local circulation the ending -ów is dominant and demonstrates a wider expansion in use. For example Brzózki, gen. Brzózek, in the local variety Brzuskuf; Budy, official gen. Bud, but Buduf; Burnie, gen. Burni, in the local dialect: Burniuf. The gathered material reflects a hesitation in the inflection of toponyms, as the linguistic customs and presented dialectal records of forms of genit ives of place names show a significantly diverse approach towards the Polish language.

Go to article

Authors and Affiliations

Iwona Nobis
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the design of digital controller for longitudinal aircraft model based on the Dynamic Contraction Method. The control task is formulated as a tracking problem of velocity and flight path angle, where decoupled output transients are accomplished in spite of incomplete information about varying parameters of the system and external disturbances. The design of digital controller based on the pseudo-continuous approach is presented, where the digital controller is the result of continuous-time controller discretization. A resulting output feedback controller has a simple form of a combination of low-order linear dynamical systems and a matrix whose entries depend nonlinearly on certain known process variables. Simulation results for an aircraft model confirm theoretical expectations.

Go to article

Authors and Affiliations

Roman Czyba
Lukasz Stajer
Download PDF Download RIS Download Bibtex

Abstract

The dynamic development of science requires constant improvement of approaches to modeling physical processes and phenomena. Practically all scientific problems can be described by systems of differential equations. Many scientific problems are described by systems of differential equations of a special class, which belong to the group of so-called singularly perturbed differential equations. Mathematical models of processes described by such differential equations contain a small parameter near the highest derivatives, and it was the presence of this small factor that led to the creation of a large mathematical theory. The work proposes a developed algorithm for constructing uniform asymptotics of solutions to systems of singularly perturbed differential equations.
Go to article

Authors and Affiliations

Valentyn Sobchuk
1
ORCID: ORCID
Iryna Zelenska
1
ORCID: ORCID
Oleksandr Laptiev
1
ORCID: ORCID

  1. Taras Shevchenko National University of Kyiv, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

In this paper we present and discuss a new class of singular fractional systems in a multidimensional state space described by the Roesser continuous-time models. The necessary and sufficient conditions for the asymptotic stability and admissibility by the use of linear matrix inequalities are established. All the obtained results are simulated by some numerical examples to show the applicability and accuracy of our approach.
Go to article

Authors and Affiliations

Kamel Benyettou
1
Djillali Bouagada
1
ORCID: ORCID

  1. Department of Mathematics and Computer Science, ACSY Team-Laboratory of Pure and Applied Mathematics, Abdelhamid Ibn Badis University Mostaganem, P.O.Box 227/118 University of Mostaganem, 27000 Mostaganem, Algeria
Download PDF Download RIS Download Bibtex

Abstract

In this work, we present optimal control formulation and numerical algorithm for fractional order discrete time singular system (DTSS) for fixed terminal state and fixed terminal time endpoint condition. The performance index (PI) is in quadratic form, and the system dynamics is in the sense of Riemann-Liouville fractional derivative (RLFD). A coordinate transformation is used to convert the fractional-order DTSS into its equivalent non-singular form, and then the optimal control problem (OCP) is formulated. The Hamiltonian technique is used to derive the necessary conditions. A solution algorithm is presented for solving the OCP. To validate the formulation and the solution algorithm, an example for fixed terminal state and fixed terminal time case is presented.
Go to article

Bibliography

[1] G.W. Leibniz and C.I. Gerhardt: Mathematische Schriften. Hildesheim, G. Olms, 1962.
[2] I. Podlubny: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. 1st edition, 198. San Diego, Academic Press, 1998.
[3] J.A. Tenreiro Machado et al.: Some applications of fractional calculus in engineering. Mathematical Problems in Engineering, 2010, (2009), p. e639801, DOI: 10.1155/2010/639801.
[4] T. Yuvapriya, P. Lakshmi, and S. Rajendiran: Vibration control and performance analysis of full car active suspension system using fractional order terminal sliding mode controller. Archives of Control Sciences, 30(2), (2020), 295–324, DOI: 10.24425/ACS.2020.133501.
[5] D.S. Naidu: Optimal Control Systems. 1st edition, CRC Press, 2018.
[6] O.P. Agrawal: A general formulation and solution scheme for fractional optimal Control problems. Nonlinear Dynamics, 38(1), (2004), 323–337, DOI: 10.1007/s11071-004-3764-6.
[7] T. Chiranjeevi and R.K. Biswas: Formulation of optimal control problems of fractional dynamic systems with control constraints. Journal of Advanced Research in Dynamical and Control Systems, 10(3), (2018), 201–212.
[8] R.K. Biswas and S. Sen: Fractional optimal control problems with specified final time. Journal of Computational and Nonlinear Dynamics, 6(021009), (2010), DOI: 10.1115/1.4002508.
[9] R.K. Biswas and S. Sen: Free final time fractional optimal control problems. Journal of the Franklin Institute, 351(2), (2014), 941–951, DOI: 10.1016/j.jfranklin.2013.09.024.
[10] R.K. Biswas and S. Sen: Numerical method for solving fractional optimal control problems. In: Proceedings of the ASME IDETC/CIE Conference, (2010), 1205–120, DOI: 10.1115/DETC2009-87008.
[11] C. Tricaud and Y. Chen: An approximate method for numerically solving fractional order optimal control problems of general form. Computers & Mathematics with Applications, 59(5), (2010), 1644–1655, DOI: 10.1016/j.camwa.2009.08.006.
[12] Y. Ding, Z. Wang, and H. Ye: Optimal control of a fractional-order HIVimmune system with memory. IEEE Transactions on Control Systems Technology, 20(3), (2012), 763–769, DOI: 10.1109/TCST.2011.2153203.
[13] T. Chiranjeevi and R.K. Biswas: Closed-form solution of optimal control problem of a fractional order system. Journal of King Saud University – Science, 31(4), (2019), 1042–1047, DOI: 10.1016/j.jksus.2019.02.010.
[14] R. Dehghan and M. Keyanpour: A semidefinite programming approach for solving fractional optimal control problems. Optimization, 66(7), (2017), 1157–1176, DOI: 10.1080/02331934.2017.1316501.
[15] M. Dehghan, E.-A. Hamedi, and H. Khosravian-Arab: A numerical scheme for the solution of a class of fractional variational and optimal control problems using the modified Jacobi polynomials. Journal of Vibration and Control, 22(6), (2016), 1547–1559, DOI: 10.1177/1077546314543727.
[16] S. Yousefi, A. Lotfi, and M. Dehghan: The use of a Legendre multiwavelet collocation method for solving the fractional optimal control problems. Journal of Vibration and Control, 17(13), (2011), 2059–2065, DOI: 10.1177/1077546311399950.
[17] M. Gomoyunov: Optimal control problems with a fixed terminal time in linear fractional-order systems. Archives of Control Sciences, 30(2), (2019), 295–324, DOI: 10.24425/acs.2020.135849.
[18] T. Chiranjeevi and R.K. Biswas: Discrete-time fractional optimal control. Mathematics, 5(2), (2017), DOI: 10.3390/math5020025.
[19] A. Dzielinski and P.M. Czyronis: Fixed final time and free final state optimal control problem for fractional dynamic systems – linear quadratic discrete-time case. Bulletin of the Polish Academy of Sciences: Technical Sciences, 61(3), (2013), 681–690, DOI: 10.2478/bpasts-2013-0072.
[20] T. Chiranjeevi, R.K. Biswas, and N.R. Babu: Effect of initialization on optimal control problem of fractional order discrete-time system. Journal of Interdisciplinary Mathematics, 23(1), (2020), 293–302, DOI: 10.1080/09720502.2020.1721924.
[21] P.M. Czyronis: Dynamic programming problem for fractional discretetime dynamic systems. Quadratic index of performance case. Circuits, Systems, and Signal Processing, 33(7), 2131–2149, DOI: 10.1007/s00034-014-9746-0.
[22] J.J. Trujillo and V.M. Ungureanu: Optimal control of discrete-time linear fractional order systems with multiplicative noise. International Journal of Control, 91(1), (2018), 57–69, DOI: 10.1080/00207179.2016.1266520.
[23] A. Ruszewski: Stability of discrete-time fractional linear systems with delays. Archives of Control Sciences, 29(3), (2019), 549–567, DOI: 10.24425/acs.2019.130205.
[24] L.Dai: Singular Control Systems. Berlin Heidelberg, Springer-Verlag, 1989, DOI: 10.1007/BFb0002475.
[25] R.K. Biswas and S. Sen: Fractional optimal control problems: a pseudostate- space approach. Journal of Vibration and Control, 17(7), (2011), 1034–1041, DOI: 10.1177/1077546310373618.
[26] R.K. Biswas and S. Sen: Fractional optimal control within Caputo’s derivative. In: Proceedings of the ASME IDETC/CIE Conference, (2012), 353– 360, DOI: 10.1115/DETC2011-48045.
[27] T. Chiranjeevi, R.K. Biswas, and C. Sethi: Optimal control of fractional order singular system. The International Journal of Electrical Engineering & Education, p. 0020720919833031, (2019), DOI: 10.1177/0020720919833031.
[28] T. Chiranjeevi and R.K. Biswas: Numerical approach to the fractional optimal control problem of continuous-time singular system. In: Advances in Electrical Control and Signal Systems, Singapore, (2020), 239–248, DOI: 10.1007/978-981-15-5262-5_16.
[29] T. Chiranjeevi and R.K. Biswas: Linear quadratic optimal control problem of fractional order continuous-time singular system. Procedia Computer Science, 171 (2020), 1261–1268, DOI: 10.1016/j.procs.2020.04.134.
[30] M.R.A. Moubarak, H.F. Ahmed, and O. Khorshi: Numerical solution of the optimal control for fractional order singular systems. Differential Equations and Dynamical Systems, 26(1), (2018), 279–291, DOI: 10.1007/s12591-016-0320-z.
[31] T. Chiranjeevi, R.K. Biswas, and S.K. Pandey: Fixed final time and fixed final state linear quadratic optimal control problem of fractional order singular system. In: Computing Algorithms with Applications in Engineering, Singapore, (2020), 285–294. DOI: 10.1007/978-981-15-2369-4_24.
[32] Muhafzan, A. Nazra, L. Yulianti, Zulakmal, and R. Revina: On LQ optimization problem subject to fractional order irregular singular systems. Archives of Control Sciences, 30(4), (2020), 745–756, DOI: 10.24425/acs.2020.135850.
[33] T. Chiranjeevi and R.K. Biswas: Computational method based on reflection operator for solving a class of fractional optimal control problem. Procedia Computer Science, 171 (2020), 2030–2039, DOI: 10.1016/j.procs.2020.04.218.
[34] T. Chiranjeevi and R.K. Biswas: Numerical simulation of fractional order optimal control problem. Journal of Statistics and Management Systems, 23(6), (2020), 1069–1077, DOI: 10.1080/09720510.2020.1800188.
[35] T. Kaczorek: Singular fractional continuous-time and discrete-time linear systems. Acta Mechanica et Automatica, 7(1), (2013), 26–33, DOI: 10.2478/ama-2013-0005.
[36] T. Kaczorek: Selected Problems of Fractional Systems Theory. Berlin Heidelberg, Springer-Verlag, 2011, DOI: 10.1007/978-3-642-20502-6.
[37] T. Kaczorek: Polynomial and Rational Matrices: Applications in Dynamical Systems Theory. London, Springer-Verlag, 2007, DOI: 10.1007/978-1-84628-605-6.
Go to article

Authors and Affiliations

Tirumalasetty Chiranjeevi
1
Raj Kumar Biswas
2
Ramesh Devarapalli
3
ORCID: ORCID
Naladi Ram Babu
2
Fausto Pedro García Márquez
4

  1. Department of Electrical Engineering, Rajkiya Engineering College Sonbhadra, U. P., India
  2. Department of Electrical Engineering, National Institute of Technology, Silchar, India
  3. Department of Electrical Engineering, BIT Sindri, Dhanbad 828123, Jharkhand, India
  4. Ingenium Research Group, University of Castilla-La Mancha, Spain
Download PDF Download RIS Download Bibtex

Abstract

This paper presents a robust model free controller (RMFC) for a class of uncertain continuous-time single-input single-output (SISO) minimum-phase nonaffine-in-control systems. Firstly, the existence of an unknown dynamic inversion controller that can achieve control objectives is demonstrated. Afterwards, a fast approximator is designed to estimate as best as possible this dynamic inversion controller. The proposed robust model free controller is an equivalent realization of the designed fast approximator. The perturbation theory and Tikhonov’s theorem are used to analyze the stability of the overall closed-loop system. The performance of the developped controller are verified experimentally in the position control of a pneumatic actuator system.

Go to article

Authors and Affiliations

Ahsene Boubakir
Salim Labiod
Fares Boudjema
Download PDF Download RIS Download Bibtex

Abstract

In this paper we discuss the linear quadratic (LQ) optimization problem subject to fractional order irregular singular systems. The aim of this paper is to find the control-state pairs satisfying the dynamic constraint of the form a fractional order irregular singular systems such that the LQ objective functional is minimized. The method of solving is to convert such LQ optimization into the standard fractional LQ optimization problem. Under some particularly conditions we find the solution of the problem under consideration.

Go to article

Authors and Affiliations

Muhafzan
Admi Nazra
Lyra Yulianti
Zulakmal
Refi Revina
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the formulation and numerical simulation for linear quadratic optimal control problem (LQOCP) of free terminal state and fixed terminal time fractional order discrete time singular system (FODSS). System dynamics is expressed in terms of Riemann-Liouville fractional derivative (RLFD), and performance index (PI) in terms of state and costate. Because of its complexity, finding analytical and numerical solutions to singular system (SS) is difficult. As a result, we use coordinate transformation to convert FODSS to its corresponding fractional order discrete time nonsingular system (FODNSS). After that, we obtain the necessary conditions by employing a Hamiltonian approach. The relevant conditions are solved using the general solution approach. For the analysis of formulation and solution algorithm, a numerical example is illustrated. Results are obtained for various �� values. According to state of the art, this is the first time that a formulation and numerical simulation of free terminal state and fixed terminal time optimal control problem (OCP) of FODSS is presented.
Go to article

Authors and Affiliations

Tirumalasetty Chiranjeevi
1
Ramesh Devarapalli
2
ORCID: ORCID
Naladi Ram Babu
3
Kiran Babu Vakkapatla
4
R. Gowri Sankara Rao
5
Fausto Pedro Garcìa Màrquez
6

  1. Department of Electrical Engineering, Rajkiya Engineering College Sonbhadra, U.P., India
  2. Department of EEE, Lendi Institute of Engineering and Technology, Vizianagaram-535005, India
  3. Department of EEE, Aditya Engineering College, Surampalem, Andhra Pradesh, India
  4. Lingayas Institute of Management and Technology Madalavarigudem, A.P., India
  5. Department of EEE, MVGR College of Engineering Vizianagaram, A.P., India
  6. Ingenium Research Group, University of Castilla-La Mancha, Spain
Download PDF Download RIS Download Bibtex

Abstract

In the paper, an extended analysis of the polarization properties of a liquid crystal cell with a biconically tapered single-mode telecommunication optical fiber was presented. These properties are a result of a sample geometry and used LC materials. They were analyzed by using two theoretical models based on the matrix decomposition methods, i.e., polar and singular-value one. By measuring Mueller matrices, information about losses, depolarization, dichroism and birefringence was obtained. In the experiment two types of tested samples filled with well-known 6CHBT and E7 liquid crystals were prepared and all optical parameters were shown as the voltage dependence. The tested samples have dichroic properties and for both models calculated PDL is similar and it increases from 2.6 to 6.6 dB for E7 and from 0.4 to 2.7 dB for 6CHBT with voltage changes within the range of 40 – 190 V. Optical losses simultaneously decrease from 30 dB to 27 dB and from 36 dB to 28 dB, respectively. The birefringence properties cannot be directly comparable due to differences between both applied models but voltage fluctuations of these parameters are not significant. These results confirm expected dichroic properties of designed device and complete knowledge about its working principles. Moreover, presented analysis validates usefulness of the singular-value decomposition model applied to dichroic optical fiber elements.

Go to article

Authors and Affiliations

P. Marć
K. Stasiewicz
J. Korec
L.R. Jaroszewicz
ORCID: ORCID
P. Kula
Download PDF Download RIS Download Bibtex

Abstract

The review exposes basic concepts and manifestations of the singular and structured light fields. The presentation is based on deep intrinsic relations between the singularities and the rotational phenomena in light; it involves essentially the dynamical aspects of light fields and their interactions with matter. Due to their topological nature, the singularities of each separate parameter (phase, polarization, energy flow, etc.) form coherent interrelated systems (singular networks), and the meaningful interconnections between the different singular networks are analysed. The main features of singular-light structures are introduced via generic examples of the optical vortex and circular vortex beams. The review describes approaches for generation and diagnostics of different singular networks and underlines the role of singularities in formation of optical field structures. The mechanical action of structured light fields on material objects is discussed on the base of the spin-orbital (canonical) decomposition of electromagnetic momentum, expressing the special roles of the spin (polarization) and spatial degrees of freedom. Experimental demonstrations spectacularly characterize the topological nature and the immanent rotational features of the light-field singularities. The review is based on the results obtained by its authors with a special attention to relevant works of other researchers.
Go to article

Bibliography

  1. Descartes, R. Principia Phylosophiae. (Amsterdam, 1644); Dioptrique, Meteores. (Leyden, 1637).
  2. Descartes, R. [The World]. Le Monde, Ou Traité De La Lumière. (Abaris Books, 1979).
  3. Fresnel, A. Œuvres Complètes. (Imprimerie Imperiale, France, 1866–1870). (In French)
  4. Faraday, M. Experimental Researches in Chemistry and Physics. (Taylor & Francis, 1859). https://doi.org/10.5962/bhl.title.30054
  5. Maxwell, J. C. Treatise on Electricity and Magnetism. (Cambridge University Press, 1873). https://doi.org/10.1017/CBO9780511709333
  6. Sadowsky, A. Acta et Commentationes Imp. Universitatis Jurievensis (olim Dorpatensis) 7, 1–3 (1899). (In Russian)
  7. Poynting, J. H. The wave motion of a revolving shaft, and a suggestion as to the angular momentum in a beam of circularly polarised light. R. Soc. Lond. A 82, 560–567 (1909). https://doi.org/10.1098/rspa.1909.0060
  8. Beth, R. A. Mechanical detection and measurement of the angular momentum of light. Rev. 50, 115–125 (1939). https://doi.org/10.1103/PhysRev.50.115
  9. Ignatowski, W. S. Diffraction by a lens of arbitrary aperture. Opt. Inst. I, 1–36 (1919). https://doi.org/10.1017/9781108552264.019
  10. Boivin, A., Dow, J. & Wolf, E. Energy flow in the neighbourhood of the focus of a coherent beam. Opt. Soc. Am. 57, 1171–1176 (1967). https://doi.org/10.1364/JOSA.57.001171
  11. Baranova, N.B. et al. Wave-front dislocations: topological limitations for adaptive systems with phase conjugation. Opt. Soc. Am. 73, 525–528 (1983). https://doi.org/10.1364/JOSA.73.000525
  12. Angelsky, O. V., Maksimyak, P. P., Magun, I. I. & Perun, T. O. On spatial stochastiation of optical fields and feasibilities of optical diagnostics of objects with large phase inhomogeneities. Spectr. 71, 123–128 (1991).
  13. Coullet, P., Gil, L. & Rocca, F. Optical vortices. Commun. 73, 403–408 (1989). https://doi.org/10.1016/0030-4018(89)90180-6
  14. Gottfried, K. Quantum Mechanics. (Benjamin, 1966).
  15. Simmonds, J. W. & Guttmann, M. J. States, Waves and Photons. (Addison-Wesley, 1970).
  16. Berestetskii, V. B., Lifshits, E. M. & Pitaevskii, L. P. Quantum Electrodynamics. (Butterworth-Heinemann, 1982). https://doi.org/10.1016/C2009-0-24486-2
  17. Allen, L., Beijersbergen, M. V., Spreeuw, R. J. C. & Woerdman, J. P. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Rev. A 45, 8185–8189 (1992). https://doi.org/10.1103/PhysRevA.45.8185
  18. Bazhenov, V. Yu., Vasnetsov, M. V. & Soskin M. S. Laser beams with screw dislocations in their wavefronts. JETP Lett. 52, 429–431(1990).
  19. Soskin, M. S. & Vasnetsov, M. V. Nonlinear singular optics. Pure Appl. Opt. 7, 301–311 (1998). https://doi.org/10.1088/0963-9659/7/2/019
  20. Soskin, M. S. & Vasnetsov, M. V. Chapter 4–Singular optics. Opt. 42, 219–276 (2001). https://doi.org/10.1016/S0079-6638(01)80018-4
  21. Nye, J. F. & Berry, M. V. Dislocations in wave trains. R. Soc. Lond. 336, 165–190 (1974). https://doi.org/10.1098/rspa.1974.0012
  22. Berry, M. V. Singularities in Waves and Rays. in Physics of Defects. (eds. Balian, R., Klaeman, M. & Poirier, J. P.) 453–549 (North Holland Publishing Company, 1981).
  23. Nye, J. F. Natural Focusing and Fine Structure of Light. Caustics and Wave Dislocations. (Institute of Physics Publishing: Bristol and Philadelphia, 1999).
  24. Gbur, G., Tyson, R. K., Vortex beam propagation through atmospheric turbulence and topological charge conservation. Opt. Soc. Am. A: Opt. Image Sci. Vis. 25, 225–230 (2008). https://doi.org/10.1364/JOSAA.25.000225
  25. Angelsky, O. V. et al. Structured light: ideas and concepts. Front. Phys. 8, 114 (2020). https://doi.org/10.3389/fphy.2020.00114
  26. Andrews, D. L. Structured Light and Its Applications: An Introduction to Phase-Structured Beams and Nanoscale Optical Forces. (Academic Press, 2011). https://doi.org/10.1016/B978-0-12-374027-4.X0001-1
  27. Bekshaev, A., Bliokh, K. & Soskin, M. Internal flows and energy circulation in light beams. J Opt. 13, 053001 (2011). https://doi.org/10.1088/2040-8978/13/5/053001
  28. Rubinsztein-Dunlop, H. et al. Roadmap on structured light. Opt. 19, 013001 (2017).
    https://doi.org/10.1088/2040-8978/19/1/013001
  29. Rotenberg, N. & Kuiper, L. Mapping nanoscale light fields. Nat. Photonics 8, 919–926 (2014). https://doi.org/10.1038/nphoton.2014.285
  30. Aiello, A. & Banzer, P. The ubiquitous photonic wheel. Opt. 18, 085605 (2016). http://dx.doi.org/10.1088/2040-8978/18/8/085605
  31. Aiello, A. et al. From transverse angular momentum to photonic wheels. Photonics 9, 789–795 (2015). https://doi.org/10.1038/nphoton.2015.203
  32. Bekshaev, A. & Soskin, M. S. Transverse energy flows in vectorial fields of paraxial beams with singularities. Opt. Commun., 271, 332–348 (2007). https://doi.org/10.1016/j.optcom.2006.10.057
  33. Bliokh, K. & Nori, F. Transverse and longitudinal angular momenta of light. Phys. Rep. 592, 1–38 (2015). https://doi.org/10.1016/j.physrep.2015.06.003
  34. Dennis, M. , O’Holleran, K. & Padgett, M. J. Chapter 5 Singular optics: optical vortices and polarization singularities. Prog. opt. 53, 293–363 (2009). https://doi.org/10.1016/S0079-6638(08)00205-9
  35. Basisty, I. , Soskin, M. S. & Vasnetsov, M. V. Optical wavefront dislocations and their properties. Opt. Comm. 119, 604–612 (1995). https://doi.org/10.1016/0030-4018(95)00267-C
  36. Soskin, M. , Vasnetsov, M. V. & Basisty, I. V. Optical wavefront dislocations. Proc. SPIE 2647, 57–62 (1995). https://doi.org/10.1117/12.226741
  37. White, A. et al. Interferometric measurements of phase singulari­ties in the output of a visible laser. J. Mod. Opt. 38, 2531–2541 (1991). https://doi.org/10.1080/09500349114552651
  38. Heckenberg, N. , McDuff, R., Smith, C. P. & White, A. G. Generation of optical singularities by computer-generated holograms. Opt. Lett. 17, 221–223 (1992). https://doi.org/10.1364/OL.17.000221
  39. Angelsky, O. Optical Correlation Techniques and Applications. (Bellingham: SPIE Press PM168, 2007). https://doi.org/10.1117/3.714999
  40. Allen, L., Padgett, M. & Babiker, M. IV The orbital angular momentum of light. Prog. Opt. 39, 291–372 (1999). https://doi.org/10.1016/S0079-6638(08)70391-3
  41. Bekshaev, A., Soskin, M. & Vasnetsov M. Paraxial Light Beams with Angular Momentum. (New York: Nova Science Publishers, 2008). https://arxiv.org/abs/0801.2309
  42. Gbur, G. Singular Optics. (CRC Press, 2016). https://doi.org/10.1201/9781315374260
  43. Senthilkumaran, P. Singularities in Physics and Engineering. (IOP Publishing,2018). https://doi.org/10.1088/978-0-7503-1698-9
  44. Yao, A. & Padgett, M. J. Orbital angular momentum: origins, behavior and applications. Adv. Opt. Photonics 3, 161–204 (2011). https://doi.org/10.1364/AOP.3.000161
  45. Barnett, S. , Babiker, M. & Padgett, M. J. Optical orbital angular momentum. Philos. Trans. R. Soc. A 375, 0444 (2017). http://doi.org/10.1098/rsta.2015.0444
  46. Habraken, S. M. Light with A Twist: Ray Aspects (Leiden University, Netherlands, 2010).
  47. Alexeyev, C. N. Propagation of optical vortices in periodically perturbed weakly guiding optical fibres. (Institute of Physical Optics of the Ministry of Education and Science of Ukraine, Lviv, 2010). (in Russian)
  48. Ruchi, Senthilkumaran P. & Pal, S. Phase singularities to polarization singularities. Int. J. Opt. 2020, 2812803 (2020). https://doi.org/10.1155/2020/2812803
  49. Born, M. & Wolf, E. Principles of Optics. (Pergamon, 1968).
  50. Landau, L. & Lifshitz, E. M. The classical theory of fields. Course of theoretical physics Vol. 2. (Pergamon, 1975). https://doi.org/10.1016/C2009-0-14608-1
  51. Berry, M. Optical currents. J. Opt. A: Pure Appl. Opt. 11, 11094001 (2009). https://doi.org/10.1088/1464-4258/11/9/094001
  52. Haus, H. Waves and Fields in Optoelectronics (Prentice-Hall, Inc., 1984).
  53. Bekshaev, A. & Karamoch, A. I. Spatial characteristics of vortex light beams produced by diffraction gratings with embedded phase singularity. Opt. Commun. 281, 1366–1374 (2008). https://doi.org/10.1016/j.optcom.2007.11.032
  54. Bekshaev, A. , Karamoch, A. I., Khoroshun, G. M., Masajada, J. & Ryazantsev, O. I. Special features of a functional beam splitter: diffraction grating with groove bifurcation. in Advances in Engineering Research vol. 28. (ed. Petrova, V. M.) 1–86 (Nova Science Publishers New York, 2019).
  55. McGloin, D. & Dholakia, K. Bessel beams: diffraction in a new light. Phys. 46, 15–28 (2005). https://doi.org/10.1080/0010751042000275259
  56. Karimi, E., Zito, G., Piccirillo, B., Marrucci, L. & Santamato, E. Hypergeometric-Gaussian modes. Lett. 32, 3053–3055 (2007). https://doi.org/10.1364/OL.32.003053
  57. Abramovitz, M. & Stegun, I. Handbook of Mathematical Functions (National Bureau of Standards, 1964)
  58. Berry, M. Paraxial beams of spinning light. SPIE 3487, 6–11 (1998). https://doi.org/10.1117/12.317704
  59. Roux, F. Distribution of angular momentum and vortex morphology in optical beams. Opt. Commun. 242, 45–55 (2004). https://doi.org/10.1016/j.optcom.2004.08.006
  60. Bekshaev, A., Orlinska, O. & Vasnetsov, M. Optical vortex generation with a “fork” hologram under conditions of high-angle diffraction. Commun. 283, 2006–2016 (2010). https://doi.org/10.1016/j.optcom.2010.01.012
  61. Baranova, N. , Zel’dovich, B. Ya., Mamaev, A. V., Philipetskii, N. F. & Shkunov, V. V. Dislocations of the wavefront of a speckle-inhomogeneous field (theory and experiment). JETP Lett. 33, 195–199 (1981).
  62. Beijersbergen, M. , Allen, L., Van der Veen, H. E. L. O. & Woerdman, J. P. Astigmatic laser mode converters and transfer of orbital angular momentum. Opt. Commun. 96, 123–132 (1993). https://doi.org/10.1016/0030-4018(93)90535-D
  63. Bekshaev, A. & Popov, A. Optical system for Laguerre-Gaussian / Hermite-Gaussian mode conversion. SPIE 4403, 296–301 (2001). https://doi.org/10.1117/12.428283
  64. Soroko, L. Holography and Coherent Optics. (Springer, Boston, 1980). https://doi.org/10.1007/978-1-4684-3420-0
  65. Petrov, D. Vortex–edge dislocation interaction in a linear medium. Opt.Commun.188, 307–312 (2001). https://doi.org/10.1016/S0030-4018(01)00993-2
  66. Cheng, S. et al. Composite spiral zone plate. IEEE Photon. J. 11, 1–11(2018). https://doi.org/10.1109/JPHOT.2018.2885004
  67. Sabatyan, A. & Behjat, Z. Radial phase modulated spiral zone plate for generation and manipulation of optical perfect vortex. Quantum Electron. 49, 371 (2017).
    https://doi.org/10.1007/s11082-017-1211-4
  68. Bekshaev, A. & Karamoch, A. I. Displacements and deformations of a vortex light beam produced by the diffraction grating with embedded phase singularity. Opt. Commun. 281, 3597–3610 (2008). https://doi.org/10.1016/j.optcom.2008.03.070
  69. Anan'ev, Y. & Bekshaev, A. Y. Theory of intensity moments for arbitrary light beams. Opt. Spectrosc. 76, 558–568 (1994).
  70. Bekshaev, A. , Mohammed, K. A. & Kurka, I. A. Transverse energy circulation and the edge diffraction of an optical vortex beam. Appl. Opt. 53, B27–B37 (2014). https://doi.org/10.1364/AO.53.000B27
  71. Oemrawsingh, S. R. et al. Production and characterization of spiral phase plates for optical wavelengths. Appl. Opt. 43, 688–694 (2004). https://doi.org/10.1364/AO.43.000688
  72. Berry, M. V. Optical vortices evolving from helicoidal integer and fractional phase steps. Opt. A Pure Appl. Opt. 6, 259 (2004). https://doi.org/10.1088/1464-4258/6/2/018
  73. Kotlyar, V. V. et al. Generation of phase singularity through diffracting a plane or Gaussian beam by a spiral phase plate.  Opt. Soc. Am. A: Opt. Image Sci. Vis. 22(5), 849–861(2005). https://doi.org/10.1364/JOSAA.22.000849
  74. Bomzon, Z., Biener, G., Kleiner, V. & Hasman, E. Space-variant Pancharatnam–Berry phase optical elements with computer-generated subwavelength gratings. Lett. 27, 1141–1143 (2002). https://doi.org/10.1364/OL.27.001141
  75. Biener, G., Niv, A., Kleiner, V. & Hasman, E. Formation of helical beams by use of Pancharatnam–Berry phase optical elements. Let. 27, 1875–1877 (2002). https://doi.org/10.1364/OL.27.001875
  76. Niv, A., Biener, G., Kleiner, V. & Hasman, E. Manipulation of the Pancharatnam phase in vectorial vortices. Express 14, 4208–4220 (2006). https://doi.org/10.1364/OE.14.004208
  77. Marucci, L., Manzo, C. & Paparo, D. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. Rev. Lett. 96, 163905 (2006). https://doi.org/10.1103/PhysRevLett.96.163905
  78. Basistiy, I. , Pas’ko, V. A., Slyusar, V. V., Soskin, M. S & Vasnetsov, M. V. Synthesis and analysis of optical vortices with fractional topological charges. J. Opt. A Pure Appl. Opt. 6, S166–S169 (2004). https://doi.org/10.1088/1464-4258/6/5/003
  79. Gbur, G. Fractional vortex Hilbert’s hotel. Optica 3, 222–225 (2016). https://doi.org/10.1364/OPTICA.3.000222
  80. Freund, I. & Shvartsman, N. Wave-field phase singularities: the sign principle. Rev. A 50, 5164 (1994). https://doi.org/10.1103/PhysRevA.50.5164
  81. Soskin, S., Gorshkov, V. N., Vasnetsov, M. V., Malos, J. T. & Heckenberg, N. R. Topological charge and angular momentum of light beams carrying optical vortices. Phys. Rev. A 56, 4064–4075 (1997). https://doi.org/10.1103/PhysRevA.56.4064
  82. Bialynicki-Birula, I. & Bialynicka-Birula, Z. Rotational frequency shift. Rev. Lett. 78, 2539–2542 (1997). https://doi.org/10.1103/PhysRevLett.78.2539
  83. Garetz, B. Angular Doppler effect. J. Opt. Soc. Am. 71, 609–611 (1981). https://doi.org/10.1364/JOSA.71.000609
  84. Garetz, B. & Arnold, S. Variable frequency shifting of circularly polarized laser radiation via a rotating half-wave plate. Opt. Commun. 31, 1–3 (1979).
    https://doi.org/10.1016/0030-4018(79)90230-X
  85. Simon, R., Kimble, H. & Sudarshan, E. C. G. Evolving geometric phase and its dynamical manifestation as a frequency shift: An optical experiment. Phys. Rev. Lett. 61, 19–22 (1988). https://doi.org/10.1103/PhysRevLett.61.19
  86. Bretenaker, F.& Le Floch, A. Energy exchanges between a rotating retardation plate and a laser beam. Rev. Lett. 65, 2316 (1990). https://doi.org/10.1103/PhysRevLett.65.2316
  87. Courtial, J., Dholakia, K., Robertson, D. , Allen, L. & Padgett, M. J. Measurement of the rotational frequency shift imparted to a rotating light beam possessing orbital angular momentum. Phys. Rev. Lett. 80, 3217–3219 (1998). https://doi.org/10.1103/PhysRevLett.80.3217
  88. Courtial, J., Robertson, D. , Dholakia, K., Allen, L. & Padgett, M. J. Rotational frequency shift of a light beam. Phys. Rev. Lett. 81, 4828–4830 (1998). https://doi.org/10.1103/PhysRevLett.81.4828
  89. Bekshaev, A. et al. Observation of rotational Doppler effect with an optical-vortex one-beam interferometer. Ukr. J. Phys. 47, 1035–1040 (2002). http://archive.ujp.bitp.kiev.ua/files/journals/47/11/471105p.pdf
  90. Basistiy, I.V., Bekshaev, A. , Vasnetsov, M. V., Slyusar, V. V. & Soskin, M. S. Observation of the rotational Doppler effect for optical beams with helical wave front using spiral zone plate. JETP Lett. 76, 486–489 (2002). https://doi.org/10.1134/1.1533771
  91. Basistiy, I. , Slyusar, V. V., Soskin, M. S., Vasnetsov, M. V. & Bekshaev, A. Ya. Manifestation of the rotational Doppler effect by use of an off-axis optical vortex beam. Opt. Lett. 28, 1185–1187 (2003). https://doi.org/10.1364/OL.28.001185
  92. Bekshaev, A. & Popov, A. Non-collinear rotational Doppler effect. SPIE 5477, 55–66 (2004). https://doi.org/10.1117/12.558759
  93. Bekshaev, A. & Grimblatov, V. M. Energy method of analysis of optical resonators with mirror deformations. Opt. Spectrosc. 58, 707–709 (1985).
  94. Bekshaev, A. , Grimblatov, V. M. & Kalugin, V. V. Misaligned Ring Resonator with A Lens-Like Medium. (Odessa University, 2016). https://doi.org/10.48550/arXiv.1612.01407
  95. Bekshaev, A. Manifestation of mechanical properties of light waves in vortex beam optical systems. Opt. Spectrosc. 88, 904–910 (2000). https://doi.org/10.1134/1.626898
  96. Bekshaev, A. Mechanical properties of the light wave with phase singularity. Proc. SPIE 3904, 131–139 (1999). https://doi.org/10.1117/12.370396
  97. Bekshaev, A. , Soskin, M. S. & Vasnetsov, M.V. Rotation of arbitrary optical image and the rotational Doppler effect. Ukr. J. Phys. 49, 490–495 (2004). http://archive.ujp.bitp.kiev.ua/files/journals/49/5/490512p.pdf
  98. Vinitskii, S. I., Derbov, V. L, Dubovik, V. M., Markovski, B. & Stepanovskii, Yu. P. Topological phases in quantum mechanics and polarization optics. Sov. Phys. Usp. 33, 403–429 (1990). https://doi.org/10.1070/PU1990v033n06ABEH002598
  99. Bekshaev, A. , Soskin, M. S. & Vasnetsov, M. V. An optical vortex as a rotating body: mechanical features of a singular light beam. J. Opt. A Pure Appl. Opt. 6, S170–S174 (2004). https://doi.org/10.1088/1464-4258/6/5/004
  100. Allen, L. & Padgett, M. The Poynting vector in Laguerre-Gaussian beams and the interpretation of their angular momentum density. Opt. Commun. 184, 67–71 (2000). https://doi.org/10.1016/S0030-4018(00)00960-3
  101. Bekshaev, A. Transverse rotation of the instantaneous field distribution and the orbital angular momentum of a light beam. J. Opt. A Pure Appl. Opt. 11, 094004 (2009). https://doi.org/10.1088/1464-4258/11/9/094004
  102. Bekshaev, A. Internal energy flows and instantaneous field of a monochromatic paraxial light beam. Appl. Opt. 51, C13–C16 (2012). https://doi.org/10.1364/AO.51.000C13
  103. Lekner, J. TM, TE, and ‘TEM’ beam modes: exact solutions and their problems. Opt. A Pure Appl. Opt. 3, 407–412 (2001). https://doi.org/10.1088/1464-4258/3/5/314
  104. Lekner, J. Phase and transport velocities in particle and electromagnetic beams. Opt. A Pure Appl. Opt. 4, 491–499 (2002). https://doi.org/10.1088/1464-4258/4/5/301
  105. Lekner, J. Polarization of tightly focused laser beams. Opt. A Pure Appl. Opt. 5, 6–14 (2003). https://doi.org/10.1088/1464-4258/5/1/302
  106. He, H., Friese, M. J., Heckenberg, N. R. & Rubinsztein-Dunlop, H. Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity. Phys. Rev. Lett. 75, 826–829 (1995). https://doi.org/10.1103/PhysRevLett.75.826
  107. Rubinsztein-Dunlop, H., Nieminen, T. , Friese, M. E. J. & Heckenberg, N. R. Optical trapping of absorbing particles. Adv. Quantum Chem. 30, 469–492 (1998). https://doi.org/10.1016/S0065-3276(08)60523-7
  108. Gahagan, K. & Swartzlander, G. A. Optical vortex trapping of particles. Opt. Lett. 21, 827–829 (1996). https://doi.org/10.1364/OL.21.000827
  109. Gahagan, K. & Swartzlander, G. A. Trapping of low-index microparticles in an optical vortex. J. Opt. Soc. Am. B 15, 524–534 (1998). https://doi.org/10.1364/JOSAB.15.000524
  110. Simpson, N. , McGloin, D., Dholakia, K., Allen, L. & Padgett, M. J. Optical tweezers with increased axial trapping efficiency. J. Mod. Opt. 45, 1943–1949 (1998). https://doi.org/10.1080/09500349808231712
  111. Simpson, N. , Allen, L. & Padgett, M. J. Optical tweezers and optical spanners with Laguerre Gaussian modes. J. Mod. Opt. 43, 2485–2491 (1996). https://doi.org/10.1080/09500349608230675
  112. O’Neil, A. & Padgett, M. J. Three-dimensional optical confinement of micron-sized metal particles and the decoupling of the spin and orbital angular momentum within an optical spanner. Opt. Commun. 185, 139–143 (2000). https://doi.org/10.1016/S0030-4018(00)00989-5
  113. Higurashi, E., Sawada, R. & Ito, T. Optically induced angular alignment of trapped birefringent micro-objects by linearly polarized light. Rev. E 59, 3676–3681 (1999). https://doi.org/10.1103/PhysRevE.59.3676
  114. Friese, M. J., Rubinsztein-Dunlop, H., Gold, J., Hagberg, P. & Hanstorp, D. Optically driven micromachine elements. Appl. Phys. Lett. 78, 547–549 (2001). https://doi.org/10.1063/1.1339995
  115. Paterson, L. et al. Controlled rotation of optically trapped microscopic particles. Science 292, 912–914 (2001). https://doi.org/10.1126/science.1058591
  116. Grier, D. A revolution in optical manipulation. Nature 424, 810–816 (2003). https://doi.org/10.1038/nature01935
  117. Bowman, R. & Padgett, M. J. Optical trapping and binding. Rep. Prog. Phys. 76, 026401 (2013). https://doi.org/10.1088/0034-4885/76/2/026401
  118. Padgett, M. & Bowman, R. Tweezers with a twist. photonics 5, 343–348 (2011). https://doi.org/10.1038/nphoton.2011.81
  119. Jack, Ng., Lin, Zh. & Chan, C. T. Theory of optical trapping by an optical vortex beam. Rev. Lett. 104, 103601 (2010). https://doi.org/10.1103/PhysRevLett.104.103601
  120. Yuehan, T. et al. Multi-trap optical tweezers based on composite vortex beams. Commun. 485, 126712 (2021). https://doi.org/10.1016/j.optcom.2020.126712
  121. Chun-Fu, K. & Chu, S.-Ch. Numerical study of the properties of optical vortex array laser tweezers. Express 21, 26418–26431 (2013). https://doi.org/10.1364/OE.21.026418
  122. Mokhun, I. Introduction to Linear Singular Optics. in Optical Correlation Techniques and Applications (ed. Angelsky, O.) 1–132 (Bellingham, SPIE Press PM168, 2007). https://doi.org/10.1117/3.714999.ch1
  123. Mokhun, I .I. Introduction to Linear Singular Optics (Chernivtsi National University, 2012) (In Russian)
  124. Angelsky, O. , Besaga, R. N. & Mokhun, I. I. Appearance of wave front dislocations under interference among beams with simple wave fronts. Proc. SPIE 3317, 97–100 (1997). https://doi.org/10.1117/12.295666
  125. O’Holleran, K., Padgett, M. & Dennis, M.  R. Topology of optical vortex lines formed by the interference of three, four, and five plane waves. Opt. Express 14, 3039–3044 (2006). https://doi.org/10.1364/OE.14.003039
  126. Xavier, J., Vyas, S., Senthilkumaran, P. & Joseph, J. Tailored complex 3D vortex lattice structures by perturbed multiples of three-plane waves. Opt. 51, 1872–1878 (2012). https://doi.org/10.1364/AO.51.001872
  127. Kapoor, A., Kumar, M., Senthilkumaran, P. & Joseph, J. Optical vortex array in spatially varying lattice. Commun. 365, 99–102 (2016). https://doi.org/10.1016/j.optcom.2015.11.074
  128. Xavier, J., Vyas, S., Senthilkumaran, P. & Joseph, J. Complex 3D vortex lattice formation by phase-engineered multiple beam interference. J. Opt. 2012, 863875 (2012). https://doi.org/10.1155/2012/863875
  129. Galvez, E. , Rojec, B. L., Beach, K. & Cheng, X. C-point Singularities in Poincaré Beams (2014). http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.712.1192&rep=rep1&type=pdf
  130. Mokhun, A. , Soskin, M. S. & Freund, I. Elliptic critical points in paraxial optical fields. Opt. Commun. 208, 223–253 (2002). https://doi.org/10.1016/S0030-4018(02)01585-7
  131. Mokhun, I., Galushko, Yu., Kharitonova, Ye., Viktorovskaya, Yu. & Khrobatin, R. Elementary heterogeneously polarized field modeling. Lett. 36, 2137–2139 (2011). https://doi.org/10.1364/OL.36.002137
  132. Angelsky, O. , Dominikov, N. N., Maksimyak, P. P. & Tudor, T. Experimental revealing of polarization waves. Appl. Opt. 38, 3112–3117 (1999). https://doi.org/10.1364/AO.38.003112
  133. Angelsky, O. , Hanson, S. G., Zenkova, C. Yu., Gorsky, M. P. & Gorodin’ska, N. V. On polarization metrology (estimation) of the degree of coherence of optical waves. Opt. Express, 17, 15623–15634 (2009). https://doi.org/10.1364/OE.17.015623
  134. Mokhun, I., Khrobatin, R. & Viktorovskaya, Ju. The behavior of the Poynting vector in the area of elementary polarization singularities. Appl. 37, 261–277 (2007).
  135. Khrobatin, R. & Mokhun, I. Shift of application point of angular momentum in the area of elementary polarization singularity. Opt. A Pure Appl. Opt. 10, 064015 (2008).
    https:/doi.org/10.1088/1464-4258/10/6/064015
  136. Angelsky, O. , Besaga, R. N., Mokhun, I. I., Soskin, M. S. & Vasnetsov, M. V. Singularities in vectoral fields. Proc. SPIE 3904, 40–55 (1999). https://doi.org/10.1117/12.370443
  137. Mokhun, I. , Arkhelyuk, A., Galushko, Yu., Kharitonova, Ye., & Viktorovskaya, Ju. Experimental analysis of the Poynting vector characteristics. Appl. Opt. 51, C158–C162 (2012). https://doi.org/10.1364/AO.51.00C158
  138. Mokhun, I., Arkhelyuk, A. , Galushko, Yu., Kharitonova, Ye. & Viktorovskaya, Yu. Angular momentum of an incoherent Gaussian beam. Appl. Opt. 53, B38–B42 (2014). https://doi.org/10.1364/AO.53.000B38
  139. Andronov, A. , Vitt, A. A. & Khaikin, S. E. Theory of Oscillators (Pergamon Press, 1966).
  140. Bekshaev, A. Spin angular momentum of inhomogeneous and transversely limited light beams. Proc. SPIE 6254, 56–63 (2006). https://doi.org/10.1117/12.679902
  141. O’Neil, A. , MacVicar, I., Allen, L. & Padgett, M. J. Intrinsic and extrinsic nature of the orbital angular momentum of a light beam. Phys. Rev. Lett. 88, 053601 (2002). https://doi.org/10.1103/PhysRevLett.88.053601
  142. Bekshaev, A. , Soskin, M. S. & Vasnetsov, M. V. Optical vortex symmetry breakdown and decomposition of the orbital angular momentum of light beams. J. Opt. Soc. Amer. A 20, 1635–1643 (2003). https://doi.org/10.1364/JOSAA.20.001635
  143. Belinfante, F. On the current and the density of the electric charge, the energy, the linear momentum and the angular momentum of arbitrary fields. Physica 7, 449 (1940). https://doi.org/10.1016/S0031-8914(40)90091-X
  144. Bliokh, K. , Dressel, J. & Nori, F. Conservation of the spin and orbital angular momenta in electromagnetism. New J. Phys. 16, 093037 (2014). https://doi.org/10.1088/1367-2630/16/9/093037
  145. Angelsky, O. et al. Investigation of optical currents in coherent and partially coherent vector fields. Opt. Express 19, 660–672 (2011). https://doi.org/10.1364/OE.19.000660
  146. Zenkova, C. Yu., Gorsky, M. , Maksimyak, P. P. & Maksimyak, A. P. Optical currents in vector fields. App. Opt. 50, 1105–1112 (2011) https://doi.org/10.1364/AO.50.001105
  147. Angelsky, V., Zenkova, C. Yu., Hanson, S. G. & Zheng, J. Extraordinary manifestation of evanescent wave in biomedical application. Front. Phys. 8, 159 (2020). https://doi.org/10.3389/fphy.2020.00159
  148. Angelsky, O., Bekshaev. A., Dragan, G., Maksimyak, P., Zenkova, C.Y. & Zheng, J., Structured light control and diagnostics using optical crystals. Phys. 9, 368 (2021). https://doi.org/10.3389/fphy.2021.715045
  149. Angelsky, O. Introduction to Singular Correlation Optics. (SPIE Press, 2019).
  150. Allen, L. & Padgett, M. Response to question #79. Does a plane wave carry spin angular momentum? Am. J. Phys. 70, 567–568 (2002). https://doi.org/10.1119/1.1456075
  151. Pfeifer, R. N. C., Nieminen, T. A., Heckenberg, N. R. & Rubinsztein-Dunlop, H. Optical tweezers and paradoxes in electromagnetism. Opt. 13, 044017 (2011). https://doi.org/10.1088/2040-8978/13/4/044017
  152. Stewart, A. M. Angular momentum of the electromagnetic field: the plane wave paradox resolved. J. Phys. 26, 635–641 (2005). https://doi.org/10.1088/0143-0807/26/4/008
  153. Bekshaev, A. “Spin” and “Orbital” Flows in A Circularly Polarized Paraxial Beam: Orbital Rotation Without Orbital Angular Momentum. https://arxiv.org/ftp/arxiv/papers/0908/0908.2526.pdf (2009).
  154. Bekshaev, A. & Vasnetsov, M. Vortex Flow of Light: “Spin” and “Orbital” Flows in a Circularly Polarized Paraxial Beam. in Twisted Photons. Applications of Light with Orbital Angular Momentum (eds. Torres, J. & Torner, L.) chapter 2 (Weinheim: Wiley-VCH, 2011). https://doi.org/10.1002/9783527635368.ch2
  155. Bekshaev, A. & Soskin, M. Transverse energy flows in vectorial fields of paraxial light beams. SPIE 6729, 67290G (2007). https://doi.org/10.1117/12.751952
  156. Dienerowitz, M., Mazilu, M. & Dholakia, K. Optical manipulation of nanoparticles: a review. Nanophotonics 2, 021875 (2008). https://doi.org/10.1117/1.2992045
  157. Gouesbet, G. T-matrix methods for electromagnetic structured beams: a commented reference database for the period 2014–2018. Quant. Spectrosc. Radiat. Transf. 230, 247–281 (2019). https://doi.org/10.1016/j.jqsrt.2019.04.004
  158. Nieminen, T. , Loke, V. L., Stilgoe, A. B., Heckenberg, N. R., & Rubinsztein-Dunlop, H. T-matrix method for modelling optical tweezers. J. Mod. Opt. 58, 528–544 (2011). https://doi.org/10.1080/09500340.2010.528565
  159. Bekshaev, A. , Bliokh, K. Y. & Nori, F. Mie scattering and optical forces from evanescent fields: A complex-angle approach. Opt. Express 21, 7082–7095 (2013). https://doi.org/10.1364/OE.21.007082
  160. Аngelsky, O., Bekshaev, A., Maksimyak, P., Maksimyak, A. & Hanson, S. Measurement of small light absorption in microparticles by means of optically induced rotation. Express 23, 7152–7163 (2015). https://doi.org/10.1364/OE.23.007152
  161. Bekshaev A. , Angelsky O. V., Sviridova S. V. & Zenkova C. Yu. Mechanical action of inhomogeneously polarized optical fields and detection of the internal energy flows. Adv. Opt. Technol. 2011, 723901 (2011). https://doi.org/10.1155/2011/723901
  162. Bekshaev, A. , Angelsky, O. V., Hanson, S. G. & Zenkova, C. Yu. Scattering of inhomogeneous circularly polarized optical field and mechanical manifestation of the internal energy flows. Phys. Rev. A 86, 023847-10 (2012). https://doi.org/10.1103/PhysRevA.86.023847
  163. Bohren, C. & Huffman, D. R. Absorption and Scattering of Light by Small Particles. (Wiley-VCH, 1983).
  164. Bekshaev, A. Subwavelength particles in an inhomogeneous light field: Optical forces associated with the spin and orbital energy flows. J. Opt. 15, 044004 (2013). https://doi.org/10.1088/2040-8978/15/4/044004
  165. Bliokh, K. Y., Bekshaev, A.Y. & Nori, F. Extraordinary momentum and spin in evanescent waves. Commun. 5, 3300 (2014). https://doi.org/10.1038/ncomms4300
  166. Liberal, I., Ederra, I., Gonzalo, R. & Ziolkowski, R. W. Electromagnetic force density in electrically and magnetically polarizable media. Rev. A 88, 053808 (2013). https://doi.org/10.1103/PhysRevA.88.053808
  167. Nieto-Vesperinas, M., Saenz, J. , Gomez-Medina, R. & Chantada, L. Optical forces on small magnetodielectric particles. Opt. Express 18, 11428–11443 (2010). https://doi.org/10.1364/OE.18.011428
  168. Canaguier-Durand, A., Cuche, A., Cyriaque, G. & Ebbesen, T.W. Force and torque on an electric dipole by spinning light fields. Rev. A 88, 033831 (2013). https://doi.org/10.1103/PhysRevA.88.033831
  169. Bliokh, K. , Bekshaev, A. Y. & Nori, F. Dual electromagnetism: helicity, spin, momentum and angular momentum. New J. Phy. 15, 033026 (2013). https://doi.org/10.1088/1367-2630/15/3/033026
  170. Xu, X. & Nieto-Vesperinas, M. Azimuthal imaginary Poynting momentum density. Phys. Rev. Lett. 123, 233902 (2019). https://doi.org/10.1103/PhysRevLett.123.233902
  171. Nieto-Vesperinas, M. & Xu, X. Reactive helicity and reactive power in nanoscale optics: Evanescent waves. Kerker conditions. Optical theorems and reactive dichroism. Rev. Res. 3, 043080 (2021). https://doi.org/10.1103/PhysRevResearch.3.043080
  172. Bekshaev, A., Kontush, S., Popov, A. & Van Grieken, R. Application of light beams with non-zero angular momentum in optical study of micrometer-size aerosol particles. SPIE 4403, 287–295 (2001). https://doi.org/10.1117/12.428282
  173. Bekshaev, A. Abraham-Based Momentum and Spin of Optical Fields Under Conditions of Total Reflection. https://arxiv.org/ftp/arxiv/papers/1710/1710.01561.pdf (2017).
  174. Angelsky, O. V. et al. Orbital rotation without orbital angular momentum: mechanical action of the spin part of the internal energy flow in light beams. Express 20, 3563–3571 (2012). https://doi.org/10.1364/OE.20.003563
  175. Angelsky, O.V. et al. Circular motion of particles suspended in a Gaussian beam with circular polarization validates the spin part of the internal energy flow. Express 20, 11351–11356 (2012). https://doi.org/10.1364/OE.20.011351
  176. Angelsky, O. V., Bekshaev, A.  Ya., Maksimyak, P.  P. & Polyanskii, P. V. Internal energy flows and optical trapping. Photonic  News 25, 20–21 (2014).
  177. Bekshaev, A. Y., Bliokh, K. Y. & Nori, F. Transverse spin and momentum in two-wave interference. Rev. X 5, 011039 (2015). https://doi.org/10.1103/PhysRevX.5.011039
  178. Antognozzi, M. et al. Direct measurements of the extraordinary optical momentum and transverse spin-dependent force using a nano-cantilever. Phys. 12, 731–735 (2016). https//doi.org/10.1038/nphys3732
  179. Bekshaev, A. Y. Dynamical characteristics of an electromagnetic field under conditions of total reflection. Opt. 2, 045604 (2018). https://doi.org/10.1088/2040-8986/aab035
  180. Bliokh, K. Y. & Nori, F. Transverse spin of a surface polariton. Rev. A 85, 061801 (2012). https://doi.org/10.1103/PhysRevA.85.061801
  181. Bliokh, K. Y., Smirnova, D. & Nori, F. Quantum spin Hall effect of light. Science 348, 1448–1451 (2015). https://doi.org/1126/science.aaa9519
  182. Bliokh, K. Y. Rodríguez-Fortuño, F. J., Nori, F. & Zayats, A. V. Spin–orbit interactions of light. Photonics 9, 796 (2015). https://doi.org/10.1038/nphoton.2015.201
  183. Skelton, S. E. et al. Evanescent wave optical trapping and transport of micro and nanoparticles on tapered optical fibers. Quant. Spectrosc. Radiat. Transf. 113, 2512–2520 (2012). https://doi.org/10.1016/j.jqsrt.2012.06.005
  184. Chang, S., Kim, J. T., Jo, J. H. & Lee, S. Optical force on a sphere caused by the evanescent field of a Gaussian beam; effects of multiple scattering. Opt. Commun. 139, 252–261 (1997). https://doi.org/10.1016/S0030-4018(97)00144-2
  185. Song, Y. G., Han, B. M. & Chang, S. Force of surface plasmon-coupled evanescent fields on Mie particles. Commun. 198, 7–19 (2001). https://doi.org/10.1016/S0030-4018(01)01484-5
  186. Angelsky, O. V. et al. Influence of evanescent wave on birefringent microplates. Express 25, 2299–2311 (2017). https://doi.org/10.1364/OE.25.002299
  187. Zenkova C. Yu., Ivanskyi, D. I. & Kiyashchuk, T. V. Optical torques and forces in birefringent microplate. Appl. 47, 1–11 (2017). https://doi.org/10.5277/oa170313
  188. Angelsky, O. V., Zenkova, C. Yu. & Ivansky, D. I. Mechanical action of the transverse spin momentum of an evanescent wave on gold nanoparticles in biological objects media. Optoelectron. Adv. Mater. 20, 217–226 (2018).
  189. Angelsky, O.V. et al. Controllying and manipulation of red blood cells by evanescent waves. Appl. 49, 597–611 (2019). https://doi.org/10.37190/oa190406
  190. Angelsky,  V. et al. Peculiarities of control of erythrocytes moving in an evanescent field. J. Biomed. Opt. 24, 055002 (2019). https://doi.org/10.1117/1.JBO.24.5.055002
  191. Angelsky, O.V. et al. Peculiarities of energy circulation in evanescent field. Application for red blood cells. Mem. Neural Netw. (Inf. Opt.) 28, 11–20 (2019). https://doi.org/10.3103/S1060992X19010028
  192. Berry, M. V. & Dennis, M. R. The optical singularities of birefringent dichroic chiral crystals. R. Soc. Lond. 459, 1261 (2003). https://doi.org/10.1098/rspa.2003.1155
  193. Bliokh, K. Y. & Nori, F. Characterizing optical chirality. Rev. A 83, 021803(R) (2011). https://doi.org/10.1103/PhysRevA.83.021803
  194. Desyatnikov, A. S., Sukhorukov, A. A. & Kivshar, Y. S. Azimuthons: spatially modulated vortex solitons. Rev. Lett. 95: 20, 203904 (2005). https://doi.org/10.1103/PhysRevLett.95.203904
  195. Kivshar, Y. S. Vortex solitons and rotating azimuthons in nonlinear media. Topologica 2, 005 (2009). https://doi.org/3731/topologica.2.005
  196. Bekshaev, A., Angelsky, O. & Hanson, S.G. Transformations and Evolution of Phase Singularities in Diffracted Optical Vortices. in Advances in Optics: Reviews, Book Series Vol. 1 (ed. Yurish, S. Y.) 345–385 (International Frequency Sensor Association (IFSA), Spain, 2018). http://www.sensorsportal.com/HTML/BOOKSTORE/Advances_in_Optics_Vol_1.pdf
  197. Bekshaev, A., Chernykh, A., Khoroshun, A. & Mikhaylovskaya, L. Singular skeleton evolution and topological reactions in edge-diffracted circular optical-vortex beams. Commun. 397, 72–83 (2017). https://doi.org/10.1016/j.optcom.2017.03.062
  198. Bekshaev, A., Chernykh, A., Khoroshun, A. & Mikhaylovskaya, L. Localization and migration of phase singularities in the edge-diffracted optical-vortex beams. Opt. 18 024011 (2016). https://doi.org/10.1088/2040-8978/18/2/024011
  199. Bekshaev, A., Khoroshun, A. & Mikhaylovskaya, L. Transformation of the singular skeleton in optical-vortex beams diffracted by a rectilinear phase step. Opt. 21, 084003 (2019). https://doi.org/10.1088/2040-8986/ab2c5b
  200. Bekshaev, A. Spin-orbit interaction of light and diffraction of polarized beams. Opt. 19, 085602 (2017). https://doi.org/10.1088/2040-8986/aa746a
  201. Fedoseyev, V. G. Spin-independent transverse shift of the centre of gravity of a reflected and of a refracted light beam. Commun. 193, 9–18 (2001). https://doi.org/10.1016/S0030-4018(01)01262-7
  202. Okuda, H. & Sasada, H. Significant deformations and propagation variations of Laguerre-Gaussian beams reflected and transmitted at a dielectric interface. Opt. Am. A: Opt. Image Sci. Vis. 25, 881–890 (2008). https://doi.org/10.1364/JOSAA.25.000881
  203. Bekshaev, A. Ya. & Popov, A. Yu. Method of light beam orbital angular momentum evaluation by means of space-angle intensity moments. J. Phys. Opt. 3, 249–257 (2002). https://doi.org/10.3116/16091833/3/4/249/2002
  204. Bekshaev, A. Ya. Oblique section of a paraxial light beam: criteria for azimuthal energy flow and orbital angular momentum. Opt. A Pure Appl. Opt. 11, 094003 (2009). https://doi.org/10.1088/1464-4258/11/9/094003
  205. Bekshaev, A. Ya. Improved theory for the polarization-dependent transverse shift of a paraxial light beam in free space. J. Phys. Opt. 12, 10–18 (2011). https://doi.org/10.3116/16091833/12/1/10/2011
  206. Bekshaev, A. Ya. Polarization-dependent transformation of a paraxial beam upon reflection and refraction: A real-space approach. Rev. A 85, 023842 (2012). https://doi.org/10.1103/PhysRevA.85.023842
  207. Bliokh, K. Y. & Aiello, A. Goos–Hänchen and Imbert–Fedorov beam shifts: an overview. J. Opt. 15, 014001 (2013). https://doi.org/10.1088/2040-8978/15/1/014001
Go to article

Authors and Affiliations

Oleg V. Angelsky
1 2
Aleksandr Ya. Bekshaev
3
Igor I. Mokhun
2
Mikhail V. Vasnetsov
4
Claudia Yu. Zenkova
1 2
Steen G. Hanson
5
Jun Zheng
1

  1. Taizhou Research Institute of Zhejiang University, Taizhou, China
  2. Chernivtsi National University, Chernivtsi, Ukraine
  3. Physics Research Institute, Odessa I. I. Mechnikov National University, Odessa, Ukraine
  4. Department of Optical Quantum Electronics, Institute of Physics of the NAS of Ukraine, Kyiv, Ukraine
  5. DTU Fotonik, Department of Photonics Engineering, DK-4000 Roskilde, Denmark
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the mental files framework focusing on its seminal form invented by P.F. Strawson and on its contemporary parallel rendering by F. Recanati. It also outlines the main ideas that stood behind the introduction of the framework. These are in particular the problem of the informativeness of identity statements (for Strawson) and the controversy between singularism and descriptivism (for Recanati). The paper presents also a further enrichment of the framework, based upon some other themes from Strawson’s philosophy of language. The main ideas of the enrichment are: introducing into the structure of the files a section of the metadata, containing information about the files themselves as mental particulars, and adopting Strawson’s referring use as a triggering mechanism for opening/activating of the files.

Go to article

Authors and Affiliations

Mieszko Tałasiewicz
Download PDF Download RIS Download Bibtex

Abstract

The article illustrates the destructive influence of language policy in the era of totalitarianism on the grammatical system of the Ukrainian literary language on the example of the endings of the genitive case of singular nouns in the 3rd declension. According to the “Ukrainian orthography” of various years of publication, we can trace the norm of using the endings of the genitive case of singular nouns of the 3rd declension over the past 100 years. The elimination of the ending ‐u from the grammatical system of word change of nouns of the 3rd declension in 1933 was recorded. This gives reasons to qualify this ending as repression. Founding on the historically determined regularities of the development of the grammatical system of the Ukrainian language, the need to return the ending ‐u to the edition of “Ukrainian orthography” in 2019 was justified. It was established that despite the democratization of society, the tendency towards the revival of national identity, the desire of Ukrainian‐oriented speakers to establish and return the specific foundations of Ukrainian literary languages, the re‐codification of the ending ‐и in the 21st century could not restore its active use in language practice. Based on the results of a questionnaire, we found out the main reasons for the non‐observance of the returned morphological norm by modern speakers. We concluded as to the disastrous consequences of the grammatical heritage formed in the Soviet period on the language practice of the third millennium. Ways to improve this situation are proposed.

Go to article

Authors and Affiliations

Лариса Колібаба
1
ORCID: ORCID

  1. Київ, Інститут української мови НАН України
Download PDF Download RIS Download Bibtex

Abstract

The article describes motion planning of an underwater redundant manipulator with revolute joints moving in a plane under gravity and in the presence of obstacles. The proposed motion planning algorithm is based on minimization of the total energy in overcoming the hydrodynamic as well as dynamic forces acting on the manipulator while moving underwater and at the same time, avoiding both singularities and obstacle. The obstacle is considered as a point object. A recursive Lagrangian dynamics algorithm is formulated for the planar geometry to evaluate joint torques during the motion of serial link redundant manipulator fully submerged underwater. In turn the energy consumed in following a task trajectory is computed. The presence of redundancy in joint space of the manipulator facilitates selecting the optimal sequence of configurations as well as the required joint motion rates with minimum energy consumed among all possible configurations and rates. The effectiveness of the proposed motion planning algorithm is shown by applying it on a 3 degrees-of-freedom planar redundant manipulator fully submerged underwater and avoiding a point obstacle. The results establish that energy spent against overcoming loading resulted from hydrodynamic interactions majorly decides the optimal trajectory to follow in accomplishing an underwater task.
Go to article

Bibliography

[1] D.E. Whitney. Resolved motion rate control of manipulators and human prostheses. IEEE Transaction on Man-Machine System, 10(2):47–53,1969. doi: 10.1109/TMMS.1969.299896.
[2] Z. Shiller and H-H. Lu. Computation of path constrained time optimal motions with dynamic singularities. Journal of Dynamic Systems, Measurement, and Control, 114(1):34–40,1992. doi: 10.1115/1.2896505.
[3] N. Faiz and S.K. Agrawal.Trajectory planning of robots with dynamics and inequalities. In Proceedings IEEE International Conference on Robotics and Automation, pages 3976–3982, 2000. doi: 10.1109/ROBOT.2000.845351.
[4] S. Macfarlane and E.A. Croft. Jerk-bounded manipulator trajectory planning: design for realtime applications. IEEE Transactions on Robotics and Automation, 19(1):42–52, 2003. doi: 10.1109/TRA.2002.807548.
[5] G. Antonelli, S. Chiaverini, and N. Sarkar. External force control for underwater vehiclemanipulator systems. IEEE Transactions on Robotics and Automation, 17(6):931–938, 2001. doi: 10.1109/70.976027.
[6] D. Yoerger and J. Slotine. Robust trajectory control of underwater vehicles. IEEE Journal of Oceanic Engineering, 10(4):462–470, 1985. doi: 10.1109/JOE.1985.1145131.
[7] A. Alvarez, A. Caiti, and R. Onken. Evolutionary path planning for autonomous underwater vehicles in a variable ocean. IEEE Journal of Oceanic Engineering, 29(2):418–429, 2004. doi: 10.1109/JOE.2004.827837.
[8] N. Sarkar and T.K. Podder. Coordinated motion planning and control of autonomous underwater vehicle-manipulator systems subject to drag optimization. IEEE Journal of Oceanic Engineering, 26(2):228–239, 2001. doi: 10.1109/48.922789.
[9] J. Yuh. Modeling and control of underwater robotic vehicles. IEEE Transactions on Systems, Man and Cybernetics, 20(6):1475–1483, 1990. doi: 10.1109/21.61218.
[10] B. Lévesque and M.J. Richard. Dynamic analysis of a manipulator in a fluid environment. International Journal of Robotics Research, 13(3):221–231, 1994. doi: 10.1177/027836499401300304.
[11] T.I. Fossen. Guidance and Control of Ocean Vehicles. John Wiley, New York, 1994.
[12] G. Antonelli. Underwater Robots. 2nd ed. Springer, 2006.
[13] T.J. Tarn, G.A. Shoults, and S.P. Yang. A dynamic model of an underwater vehicle with a robotic manipulator using Kane’s method. Autonomous Robots, 3:269–283, 1996. doi: 10.1007/BF00141159.
[14] J.M. Hollerbach. A recursive Lagrangian formulation of manipulator dynamics and a comparative study of dynamics formulation complexity. IEEE Transactions on Systems, Man, and Cybernetics, 10(11):730–736, 1980. doi: 10.1109/TSMC.1980.4308393.
[15] J.N. Newman. Marine Hydrodynamics. 40th Anniversary Edition. The MIT Press, 2018.
[16] A. Kumar, V. Kumar, and S. Sen. Dynamics of underwater manipulator: a recursive Lagrangian formulation. In R. Kumar, V.S. Chauhan, M. Talha, H. Pathak (Eds.), Machines, Mechanism and Robotics, Lecture Notes in Mechanical Engineering, pages 555–570. Springer, Singapure, 2022. doi: 10.1007/978-981-16-0550-5_56.
[17] A.K. Sharma and S.K. Saha. Simplified drag modeling for the dynamics of an underwater manipulator. IEEE Journal of Ocean Engineering, 46(1):40–55, 2021. doi: 10.1109/JOE.2019.2948412.
[18] R. Colbaugh, H. Seraji, and K.L. Glass. Obstacle avoidance for redundant robots using configuration control. Journal of Robotics Systems, 6(6):721–744,1989. doi: 10.1002/rob.4620060605.
Go to article

Authors and Affiliations

Virendra Kumar
1
ORCID: ORCID
Soumen Sen
1
Shibendu Shekhar Roy
2

  1. Robotics and Automation Division, CSIR-Central Mechanical Engineering Research Institute, Durgapur, India
  2. Mechanical Engineering Department, National Institute of Technology, Durgapur, India
Download PDF Download RIS Download Bibtex

Abstract

The article presents a closed-form formula for solving a weakly singular surface integral with a linear current source distribution associated with the SIE-MoM formulation used for solving electromagnetic (EM) problems. The analytical formula was obtained by transforming the surface integral over a triangular domain into a double integral, and then directly determining formulas for the inner and outer integrals. The solution obtained is marked by high computational efficiency, high accuracy, and very simple implementation. The derived formula, in contrast to the currently available formulas, consists of quantities that have a clear and simple geometric interpretation, related to the geometry of the computational domain.
Go to article

Authors and Affiliations

Anna Grytsko
1
ORCID: ORCID
Piotr Słobodzian
1
ORCID: ORCID

  1. Wroclaw University of Science and Technology, Faculty of Information and Communication Technology, Wybrzeze Wyspiańskiego 27, 50-370 Wrocław, Poland

This page uses 'cookies'. Learn more