Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 9
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Growing popularity of distributed generation is drawing special attention to communication technologies in smart power grids. This paper provides a detailed overview of the communication protocols utilized in the modern distributed grid laboratory. It describes both wired and wireless technologies used in Smart Grid and presents the remote operation of switching the subsystem from grid mode to island mode operating under nominal conditions. It shows the duration of power outages during a transfer to island mode with diesel generator running on idle - which simulates planned islanding and diesel generator stationary, which simulates unplanned islanding. Latency between registration of disturbance and executing control command is measured. The results obtained are compared with current legislation. The consequences to the power system that are possible in both scenarios are highlighted. Obtained results and description of the communication technologies can be useful for the design of distributed power grids, island-mode power grids, and Smart Grids, as well as for further research in the area of using combustion fuel generators as a primary power supply in the microgrid.
Go to article

Authors and Affiliations

Kamil Prokop
1
Andrzej Bień
1
Szymon Barczentewicz
1

  1. AGH University of Science and Technology, Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

This article takes up the matter of contemporary threats to cities and urbanity, setting the problems cities face today against the background of the two categories of the resilient city and the city developing sustainably. The author describes and presents the evolution of the sustainable development concept as such, as well as the generational change in priorities that has taken place where the development of urbanised areas is concerned, given the way the concept has undergone a certain devaluation, in the light of its failure to achieve fulfi lment. The challenges cities face today require multi-faceted activity, in respect of increased inclusivity, robustness and resilience, and flexibility. This leaves today’s idea of the resilient city embracing old elements of the sustainable city, but also augmenting them in various ways.

Go to article

Authors and Affiliations

Jacek Kwiatkowski
Download PDF Download RIS Download Bibtex

Abstract

The work is intended to extend the application of a smart transformer on a radial distribution system. In this paper, an updated algorithm on the backward/forward power flow is introduced. The so-called direct approach of power flow is employed and analyzed. In addition, the paper focused on integrating a smart transformer to the network and solving the updating network also using the direct approach load flow. The solution of the smart transformer using the direct approach power flow method is quite straightforward. This model is applied to radial distribution systems which are the IEEE 33- and IEEE 69-bus systems as a case study. Also, the paper optimizes the best allocation of the smart transformer to reduce the power losses of the grid.
Go to article

Bibliography

[1] Coster E., Myrzik J.M., Kruimer J., Kling W., Integration Issues of Distributed Generation in Distribution Grids, Proceedings of the IEEE, vol. 99, no. 1 (2011).
[2] Sood K., HVDC and FACTS Controllers: Applications of Static Converters in Power Systems, Springer (2004).
[3] Anan V., Sanjeev Kumar Mallik S.K., Power flow analysis and control of distributed FACTS devices in power system, Archives of Electrical Engineering, vol. 67, no. 3, pp. 545–561 (2018).
[4] Wang J., Huang A., Sung W., Liu Y., Baliga B., Smart grid technologies, IEEE Industrial Electronics Magazine, vol. 3, no. 2, pp. 16–23 (2009).
[5] Liserre M., Buticchi G., Andresen M., De Carne G., Costa L., Zou Z., The Smart Transformer: Impact on the Electric Grid and Technology Challenges, IEEE Industrial Electronics Magazine, vol. 10, no. 2, pp. 46–58 (2016).
[6] Freedman D., Smart transformers-controlling the flow of electricity to stabilize the grid, MIT Technology Review, 10 Emerging Technologies Breakthroughs, pp. 44–45 (2011).
[7] Pournaras E., Vasirani M., Kooij R., Aberer K., Decentralized planning of energy demand for the management of robustness and discomfort, IEEE Transactions on Industrial Informatics, vol. 10, no. 4, pp. 2280–2289 (2014).
[8] Belivanis M., Bell K., Coordination of phase-shifting transformers to improve transmission network utilisation, in 2010 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT Europe), IEEE, pp. 1–6 (2010).
[9] Teng J.-H., A direct approach for distribution system load flow solutions, IEEE Trans Power Delivery, vol. 18, no. 3, pp. 882–887 (2003).
[10] Shirmohammadi D., Hong H.W., Semlyen A., Luo G.X. , A compensation-based power flow method for weakly meshed distribution and transmission networks, IEEE Transactions on Power Systems, vol. 3, no. 2, pp. 753–62 (1988).
[11] Cano J.M., Rejwanur M., Mojumdar R., Norniella J.G., Orcajo G.A., Phase shifting transformer model for direct approach power flow studies, International Journal of Electrical Power and Energy Systems, vol. 91, pp. 71–79 (2017).
[12] Mahmoud I.M., Swief R., Abdelsalam T., Tuned Hyper Reconfiguration Analysis applying Plant Growth Algorithm, 2019 21st International Middle East Power Systems Conference (MEPCON), Tanta University, Cairo, Egypt, pp. 884–889 (2019).
[13] Baran M.E., Wu F.F., Network reconfiguration in distribution systems for loss reduction and load balancing, IEEE Trans Power Delivery, vol. 4, no. 2, pp. 1401–1407 (1989).
[14] Samman M.A., Mokhlis H., Mansor N., Mohamad H., Suyono H., Sapari N.M., Fast Optimal Network Reconfiguration with Guided Initialization Based on a Simplified Network Approach, IEEE Access, vol. 8, pp. 11948–11963 (2020).
Go to article

Authors and Affiliations

Ibrahem Mohamed A. Mahmoud
1 2
Tarek Saad Abdelsalam
2
Rania Swief
2

  1. Faculty of Energy and Environmental Engineering, The British University in Egypt, Cairo, Egypt
  2. Electrical Power and Machine Engineering Department, Ain Shams University, Cairo, Egypt
Download PDF Download RIS Download Bibtex

Abstract

The smart grid concept is predicated upon the pervasive use of advanced digital communication, information techniques, and artificial intelligence for the current power system, to be more characteristics of the real-time monitoring and controlling of the supply/demand. Microgrids are modern types of power systems used for distributed energy resource (DER) integration. However, the microgrid energy management, the control, and protection of microgrid components (energy sources, loads, and local storage units) is an important challenge. In this paper, the distributed energy management algorithm and control strategy of a smart microgrid is proposed using an intelligent multi-agent system (MAS) approach to achieve multiple objectives in real-time. The MAS proposed is developed with co-simulation tools, which the microgrid model, simulated using MATLAB/Simulink, and the MAS algorithm implemented in JADE through a middleware MACSimJX. The main study is to develop a new approach, able to communicate a multi-task environment such as MAS inside the S-function block of Simulink, to achieve the optimal energy management objectives.

Go to article

Authors and Affiliations

Mohamed Azeroual
Tijani Lamhamdi
Hassan El Moussaoui
Hassane El Markhi
Download PDF Download RIS Download Bibtex

Abstract

Today’s electricity management mainly focuses on smart grid implementation for better power utilization. Supply-demand balancing, and high operating costs are still considered the most challenging factors in the smart grid. To overcome this drawback, a Markov fuzzy real-time demand-side manager (MARKOV FRDSM) is proposed to reduce the operating cost of the smart grid system and maintain a supply-demand balance in an uncertain environment. In addition, a non-linear model predictive controller (NMPC) is designed to give a global solution to the non-linear optimization problem with real-time requirements based on the uncertainties over the forecasted load demands and current load status. The proposed MARKOV FRDSM provides a faster scale power allocation concerning fuzzy optimization and deals with uncertainties and imprecision. The implemented results show the proposed MARKOV FRDSM model reduces the cost of operation of the microgrid by 1.95%, 1.16%, and 1.09% than the existing method such as differential evolution and real coded genetic algorithm and maintains the supply-demand balance in the microgrid.
Go to article

Authors and Affiliations

G. K. Jabash Samuel
1
ORCID: ORCID
M. S. Sivagama Sundari
2
R. Bhavani
3
A. Jasmine Gnanamalar
4

  1. Department of Electrical and Electronics Engineering, Rohini College of Engineering and Technology, Kanyakumari, India
  2. Department of Electrical and Electronics Engineering, Amrita College of Engineering and Technology, Nagercoil, India
  3. Department of Electrical and Electronics Engineering, Mepco Schlenk Engineering College, Sivakasi-626004, India
  4. Department of Electrical and Electronics Engineering, PSN College of Engineering and Technology, Anna University, India
Download PDF Download RIS Download Bibtex

Abstract

Fault location, isolation and self-restoration (FLISR) automation is an essential component of smart grids concept. It consists of a high level of comprehensive automation and monitoring of the distribution grid improving the quality of energy supplied to customers. This paper presents an algorithm for decentralized FLISR architecture with peer-to-peer communication using IEC 61860 GOOSE messages. An analysis of short circuit detection was presented due to the method of the grid earthing system. The proposed automation model was built based on communication logic between configured intelligent electronic devices (IED) from ABB and Siemens. The laboratory tests were conducted in a half-loop grid model with a bilateral power supply (typical urban grid). The laboratory research concerned three locations of short circuits: between substation and section point, between two section points and between section point and normally open point (NOP). The logic implementation was developed using State Sequencer software offered by Test Universe.
Go to article

Authors and Affiliations

Paweł Bielenica
1
Joanna Widzińska
2
Artur Łukaszewski
2
ORCID: ORCID
Łukasz Nogal
2
ORCID: ORCID
Piotr Łukaszewski
2

  1. ENCO Sp. z o.o., Poste˛ pu 13, 02-676 Warsaw, Poland
  2. Electrical Power Engineering Institute, Faculty of Electrical Engineering, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

This paper highlights the storage charging and discharging issue. The study objective is to manage the energy inputs and outputs of the principal grid at the same time in order to maximize profit while decreasing costs, as well as to ensure the availability of energy according to demand and the decisions to either save or search for energy. A fuzzy logic control model is applied in MATLAB Simulink to deal with the system’s uncertainties in scheduling the storage battery technology and the charging- discharging. The results proved that the fuzzy logic model has the potential to efficiently lower fluctuations and prolong the lifecycle.
Go to article

Authors and Affiliations

Meryem Meliani
1
ORCID: ORCID
Abdellah El Barkany
1
Ikram El Abbassi
2
Rafik Absi
2
Faouaz Jeffali
3

  1. Mechanical Engineering Laboratory, Faculty of Science and Technology, Sidi Mohammed Ben Abdellah University, Morocco
  2. ECAM, EPMI, France
  3. Laboratory of Materials, Waves, Energy and Environment, Mohammed First University, Morocco
Download PDF Download RIS Download Bibtex

Abstract

The electrical network is a man-made complex network that makes it difficult to monitor and control the power system with traditional monitoring devices. Traditional devices have some limitations in real-time synchronization monitoring which leads to unwanted behavior and causes new challenges in the operation and control of the power systems. A Phasor measurement unit (PMU) is an advanced metering device that provides an accurate real-time and synchronized measurement of the voltage and current waveforms of the buses in which the PMU devices are directly connected in the grid station. The device is connected to the busbars of the power grid in the electrical distribution and transmission systems and provides time-synchronized measurement with the help of the Global Positioning System (GPS). However, the implementation and maintenance cost of the device is not bearable for the electrical utilities. Therefore, in recent work, many optimization approaches have been developed to overcome optimal placement of PMU problems to reduce the overall cost by providing complete electrical network observability with a minimal number of PMUs. This research paper reviews the importance of PMU for the modern electrical power system, the architecture of PMU, the differences between PMU, micro-PMU, SCADA, and smart grid (SG) relation with PMU, the sinusoidal waveform, and its phasor representation, and finally a list of PMU applications. The applications of PMU are widely involved in the operation of power systems ranging from power system control and monitor, distribution grid control, load shedding control and analyses, and state estimation which shows the importance of PMU for the modern world.
Go to article

Authors and Affiliations

Maveeya Baba
1
ORCID: ORCID
Nursyarizal B.M. Nor
1
Aman Sheikh
2
Grzegorz Nowakowski
3
ORCID: ORCID
Faisal Masood
1
Masood Rehman
1
Muhammad Irfan
4
ORCID: ORCID
Ahmed Amirul Arefin
Rahul Kumar
5
Baba Momin
6

  1. Department of Electrical and Electronics Engineering Universiti Teknologi Petronas, Malaysia
  2. Department of Electronics and Computer Systems Engineering (ECSE), Cardiff School of Technologies, Cardiff Metropolitan University, United Kingdom
  3. Faculty of Electrical and Computer Engineering, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland
  4. College of Engineering, Electrical Engineering Department, Najran University, Saudi Arabia
  5. Laboratorio di Macchine e Azionamenti Elettrici, Dipartmento di Ingegneria Elettrica, Universita Degli Studi di Roma, 00185 Rome, Italy
  6. Department of Electrical Engineering CECOS University of Information Technology and Emerging Sciences, Pakistan

This page uses 'cookies'. Learn more