Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Infrared (IR) science and technology has been mainly dedicated to surveillance and security: since the 70’s specialized techniques have been emerging in thermal imaging for medical and cultural heritage diagnostics, building and aeronautics structures control, energy savings and remote sensing. Most of these applications were developed thanks to IR FPAs sensors with high numbers of pixels and, actually, working at room temperatures. Besides these technological achievements in sensors/ receivers, advanced developments of IR laser sources up to far IR bands have been achieved in the form QCL (quantum cascade laser), allowing wide band TLC and high sensitivity systems for security. recently new sensors and sources with improved performances are emerging in the very far IR region up to submillimeter wavelengths, the so called terahertz (THz) region.

A survey of the historical growth and a forecast of the future developments in Devices and Systems for the new frontier of IR will be discussed, in particular for the key questions: “From where and when is IR coming?”, “Where is it now?” and “Where will it go and when?”. These questions will be treated for key systems (Military/Civil), key devices (Sensors/ Sources), and new strategic technologies (Nanotech/TeraHertz).

Go to article

Authors and Affiliations

C. Corsi
Download PDF Download RIS Download Bibtex

Abstract

The article presents measurement results of prototype integrated circuits for acquisition and processing of images in real time. In order to verify a new concept of circuit solutions of analogue image processors, experimental integrated circuits were fabricated. The integrated circuits, designed in a standard 0.35 μm CMOS technology, contain the image sensor and analogue processors that perform low-level convolution-based image processing algorithms. The prototype with a resolution of 32 × 32 pixels allows the acquisition and processing of images at high speed, up to 2000 frames/s. Operation of the prototypes was verified in practice using the developed software and a measurement system based on a FPGA platform.

Go to article

Authors and Affiliations

Waldemar Jendernalik
Jacek Jakusz
Grzegorz Blakiewicz
Stanisław Szczepański
Robert Piotrowski
Download PDF Download RIS Download Bibtex

Abstract

Circuit Breakers (CBs) play an important role in ensuring the safe operation of protection systems. Condition Monitoring (CM) devices are widely implemented to extend lifetime, and to improve the maintenance quality. The present paper proposes a cost-based prioritization approach for CBs in a network equipped withCMdevices. To this end, a mathematical formulation is developed for the categorization and modeling of equipment failures based on their severity. This formulation quantifies the effect of the CM devices on the outage rate of the equipment. The reliability parameters of the substations 400/132/20 KV, including the failure rate, λ, average repair time, r, average outage time, U, substations, in two status of without CM and with CM of the CBs are calculated. These parameters are calculated implementing a minimal cut-set method. The outage rate of equipment with and without the CM devices is used to determine the effect of the CM devices on the reliability of the network. Finally, the prioritization of substations to install theCMdevices on the CBs has been investigated in terms of the Expected Energy Not Supplied (EENS) and costs of CM. To verify the effectiveness and applicability of the method, the proposed approach is applied to the CBs in the power transmission network in the Khorasan Regional Electricity Company (KREC) in Iran.

Go to article

Authors and Affiliations

Ali Karimabadi
Mohammad Ebrahim Hajiabadi
Ebadollah Kamyab
Download PDF Download RIS Download Bibtex

Abstract

Aviation testing is intrinsically connected with rotary telemetry, which enables engineers to measure and verify parameters of high-speed aircraft engines components during laboratory testing. The main purpose of this article is to propose new design concept of smart telemetry module for temperature measurements, which could be easily adapted to various demands of high-speed rotary components tests and is more handful, functional and affordable than other solutions on the market. The result of the work is a telemetry system in form of light weight, PCB-based, wireless powered, smart transducer. Article presents state of art analysis, design and manufacturing steps, test results and conclusions.
Go to article

Authors and Affiliations

Tomasz Kabala
1
Jerzy Weremczuk
2

  1. Łukasiewicz Research Network – Institute of Aviation, Poland
  2. Faculty of Electronics and InformationTechnology, Warsaw University of Technology, Poland
Download PDF Download RIS Download Bibtex

Abstract

In this paper the design and implementation of a plug-and-play analog resistance temperature sensor is presented. The smart temperature sensor consists of an analog sensor element with transducer electronic data sheet (TEDS) memory device and a network- capable application processor (NCAP) connected through a mixedmode interface (MMI). The mixed-mode interface and NCAP front-end electronic support have been implemented by the use of a standard 8-bit microcontroller. NCAP's application processing and network communication functions are implemented based on the concept of virtual instrumentation using a PC. The implemented NCAP can also be used as a plug-and-play stand-alone data acquisition system or as development system for plug-and-play sensors compliant with the IEEE 1451.4 standard. Details of sensor implementation and test results are included in the paper.

Go to article

Authors and Affiliations

Nenad Jevtic
Vujo Drndarevic

This page uses 'cookies'. Learn more