Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 1
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Autonomous manipulation of group objects requires the gripper/robot hand to achieve high productivity without poor outcomes such as object slippage and damage. This article develops the robot hand capable of achieving effective performance in each trial of grasping the group objects. Our proposed robot hand consists of two symmetrical groups of hybrid fingers having soft pads on the grasping interfaces, which operate as a comb. The grasping ability of this robot hand was theoretically and experimentally validated by handling three groups of objects showcases: tea packs, toothbrushes, and mixing sticks.Additionally, validation resultswere compared with those of another soft robot hand having soft Pneunet fingers. In each trial, the experimental results showed that the proposed robot hand with hybrid fingers achieved more stable grasping states characterized by a higher number of grasped objects than those in the case of the soft robot hand. Also, experimental results were in good agreement with the predictions of the proposed theoretical analysis. Finally, better performances of the hybrid robot hand in handling the group object provide the bases for developing a novel-robotic application in industrial production.
Go to article

Bibliography

[1] D. Rus and M.T. Tolley. Design, fabrication and control of soft robots. Nature, 521:467–475, 2015. doi: 10.1038/nature14543.
[2] S.N. Gorb. Biological attachment devices: exploring nature’s diversity for biomimetics. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 366(1870):1557–1574, 2008. doi: 10.1098/rsta.2007.2172.
[3] S. Kim, M. Spenko, S. Trujillo, B. Heyneman, V. Mattoli, and M.R. Cutkosky. Whole body adhesion: hierarchical, directional and distributed control of adhesive forces for a climbing robot. Proceedings 2007 IEEE International Conference on Robotics and Automation (ICRA), pages 1268–1273, 2007. doi: 10.1109/ROBOT.2007.363159.
[4] E. W. Hawkes, H. Jiang, D. L. Christensen, A. K. Han, and M. R. Cutkosky. Grasping without squeezing: Design and modeling of shear-activated grippers. IEEE Transactions on Robotics, 34(2):303–316, 2018. doi: 10.1109/TRO.2017.2776312.
[5] J. Shintake, S. Rosset, B. Schubert, D. Floreano, and H. Shea. Versatile soft grippers with intrinsic electroadhesion based on multifunctional polymer actuators. Advanced Materials, 28(2):231–238, 2016. doi: 10.1002/adma.201504264.
[6] B. Mazzolai, A. Mondini, F. Tramacere, G. Riccomi, A. Sadeghi, G. Giordano, E. Del Dottore, M. Scaccia, M. Zampato, and S. Carminati. Octopus-inspired soft arm with suction cups for enhanced grasping tasks in confined environments. Advanced Intelligent Systems, 1(6):1900041, 2019. doi: 10.1002/aisy.201900041.
[7] P.V. Nguyen and V.A. Ho. Grasping interface with wet adhesion and patterned morphology: Case of thin shell. IEEE Robotics and Automation Letters, 4(2):792–799, 2019. doi: 10.1109/LRA.2019.2893401.
[8] D.N. Nguyen, N.L. Ho, T.-P. Dao, and C.N. Le. Multi-objective optimization design for a sand crab-inspired compliant microgripper. Microsystem Technologies, 25, 2019. doi: 10.1007/s00542-019-04331-4.
[9] J. Hughes, U. Culha, F. Giardina, F. Guenther, A. Rosendo, and F. Iida. Soft manipulators and grippers: A review. Frontiers in Robotics and AI, 3:69, 2016. doi: 10.3389/frobt.2016.00069.
[10] Phoung H. Le, Thien P. Do, and Du B. Le. A soft pneumatic finger with different patterned profile. International Journal of Mechanical Engineering and Robotics Research, 10(10):577– 582, 2021. doi: 10.18178/ijmerr.10.10.577-582.
[11] T.-P. Dao,N.L. Ho, T.T. Nguyen, H.G. Le, P.T. Thang, H.-T. Pham, H.-T. Do, M.-D. Tran, and T.T. Nguyen. Analysis and optimization of a micro-displacement sensor for compliant microgripper. Microsystem Technologies, 23:5375–5395, 2017. doi: 10.1007/s00542-017-3378-9.
[12] P.V. Nguyen, Q.K. Luu, Y. Takamura, and V.A. Ho. Wet adhesion of micro-patterned interfaces for stable grasping of deformable objects. 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 9213–9219, 2020. doi: 10.1109/IROS45743.2020.9341095.
[13] M. Calisti, M. Giorelli, G. Levy, B. Mazzolai, B. Hochner, C. Laschi, and P. Dario. An octopus-bioinspired solution to movement and manipulation for soft robots. Bioinspiration & Biomimetics, 6(3):036002, 2011. doi: 10.1088/1748-3182/6/3/036002.
[14] K.C. Galloway, K.P. Becker, B. Phillips, J. Kirby, S. Licht, D. Tchernov, R.J. Wood, and D.F. Gruber. Soft robotic grippers for biological sampling on deep reefs. Soft Robotics, 3(1):23–33, 2016. doi: 10.1089/soro.2015.0019.
[15] 2F-85 and 2F-140 Grippers. https://robotiq.com/products/2f85-140-adaptive-robot-gripper.
[16] Forestry Cranes https://marchesigru.com/en/forestry-cranes-2.
[17] H. Hyyti, V.V. Lehtola, and A. Visala. Forestry crane posture estimation with a two-dimensional laser scanner. Journal of Field Robotics, 35(7):1025–1049, 2018. doi: 10.1002/rob.21793.
[18] K.W. Allen. Encyclopedia of Physical Science and Technology – Materials. Elsevier, 2001.
[19] P.V. Nguyen, T.H. Bui, and V.A. Ho. Towards safely grasping group objects by hybrid robot hand. 2021 4th International Conference on Robotics, Control and Automation Engineering (RCAE), pages 389–393, 2021. doi: 10.1109/RCAE53607.2021.9638841.
[20] T.-L. Le, J.-C. Chen, F.-S. Hwu, and H.-B. Nguyen. Numerical study of the migration of a silicone plug inside a capillary tube subjected to an unsteady wall temperature gradient. International Journal of Heat and Mass Transfer, 97:439–449, 2016. doi: 10.1016/j.ijheatmasstransfer.2015.11.098.
[21] P.V. Nguyen and V.A. Ho. Wet adhesion of soft curved interfaces with micro pattern. IEEE Robotics and Automation Letters, 6(3):4273–4280, 2021. doi: 10.1109/LRA.2021.3067277.
[22] J. Gao, W.D. Luedtke, D. Gourdon, M. Ruths, J.N. Israelachvili, and U. Landman. Frictional forces and amontons’ law: From the molecular to the macroscopic scale. The Journal of Physical Chemistry B, 108(11):3410–3425, 2004. doi: 10.1021/jp036362l.
[23] D. Maruthavanan, A. Seibel, and J. Schlattmann. Fluid-structure interaction modelling of a soft pneumatic actuator. Actuators, 10(7):163, 2021. doi: 10.3390/act10070163.
[24] D.X. Phu, V. Mien, P.H.T. Tu, N.P. Nguyen, and S.-B. Choi. A new optimal sliding mode controller with adjustable gains based on Bolza-Meyer criterion for vibration control. Journal of Sound and Vibration, 485:115542, 2020. doi: 10.1016/j.jsv.2020.115542.
Go to article

Authors and Affiliations

Pho Van Nguyen
1 2
ORCID: ORCID
Phi N. Nguyen
2
Tan Nguyen
2
Thanh Lanh Le
2

  1. Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, Japan
  2. Department of Technology, Dong Nai Technology University, Bien Hoa 810000, Vietnam

This page uses 'cookies'. Learn more