Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 8
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Some physical concepts important for a hysteresis model (effective field, anhysteretic magnetization) are discussed on the example of Jiles-Atherton model. The Jiles-Atherton model reveals some drawbacks, which make this model more difficult to be applied in electrical engineering. In particular, it does not describe accurately the magnetization curves after a reversal, moreover complex magnetization cycles are poorly represented. On the other hand, the phenomenological description proposed by Takács seems to be a valuable alternative to the Jiles-Atherton formalism. The concept of effective field may be easily incorporated in the description.

Go to article

Authors and Affiliations

Krzysztof Chwastek
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a formula useful for prediction of loss density in soft magnetic materials, which takes into account multi-scale energy dissipation. A universal phenomenological P(Bm, f) relationship is used for loss prediction in chosen soft magnetic materials. A bootstrap method is used to generate additional data points, what makes it possible to increase the prediction accuracy. A substantial accuracy improvement for estimated model parameters is obtained in the case, when additional data points are taken into account. The proposed description could be useful both for device designers and researchers involved in computational electromagnetism.
Go to article

Authors and Affiliations

Jan Szczygłowski
Paweł Kopciuszewski
Krzysztof Chwastek
Mariusz Najgebauer
Wiesław Wilczyński
Download PDF Download RIS Download Bibtex

Abstract

An extension of the modified Jiles-Atherton description to include the effect of anisotropy is presented. Anisotropy is related to the value of the angular momentum quantum number J, which affects the form of the Brillouin function used to describe the anhysteretic magnetization. Moreover the shape of magnetization dependent R(m) function is influenced by the choice of the J value.
Go to article

Authors and Affiliations

Krzysztof Chwastek
Jan Szczygłowski
Download PDF Download RIS Download Bibtex

Abstract

The accurate prediction of iron losses has become a prominent problem in electromagnetic machine design. The basis of all iron loss models is found in the spatial field-locus of the magnetic flux density (B) and magnetic field (H). In this paper the behavior of the measured BH-field-loci is considered in FEM simulation. For this purpose, a vector hysteresis model is parameterized based on the global measurements, which then can be used to reproduce the measurement system and obtain more detailed insights on the device and its local field distribution. The IEM has designed a rotary loss tester for electrical steel, which can apply arbitrary BH-field-loci occurring during electrical machine operation. Despite its simplicity, the proposed pragmatic analytical model for vector hysteresis provides very promising results.

Go to article

Authors and Affiliations

Fabian Müller
Gregor Bavendiek
Benedikt Schauerte
ORCID: ORCID
Kay Hameyer
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

Magnetic circuits of electromagnetic energy converters, such as electrical machines, are nowadays highly utilized. This proposition is intrinsic for the magnetic as well as the electric circuit and depicts that significant enhancements of electrical machines are difficult to achieve in the absence of a detailed understanding of underlying effects. In order to improve the properties of electrical machines the accurate determination of the locally distributed iron losses based on idealized model assumptions solely is not sufficient. Other loss generating effects have to be considered and the possibility being able to distinguish between the causes of particular loss components is indispensable. Parasitic loss mechanisms additionally contributing to the total losses originating from field harmonics, non-linear material behaviour, rotational magnetizations, and detrimental effects caused by the manufacturing process or temperature, are not explicitly considered in the common iron-loss models, probably even not specifically contained in commonly used calibration factors. This paper presents a methodology being able to distinguish between different loss mechanisms and enables to individually consider particular loss mechanisms in the model of the electric machine. A sensitivity analysis of the model parameters can be performed to obtain information about which decisive loss origin for which working point has to be manipulated by the electromagnetic design or the control of the machine.
Go to article

Authors and Affiliations

Simon Steentjes
Georg Von Pfingsten
Andreas Ruf
Marco Hombitzer
David Franck
Kay Hameyer Rwth
Download PDF Download RIS Download Bibtex

Abstract

This article presents the results of tests carried out on rapid quenched Fe-based alloys. The alloys were made using an injection-casting method. The actual structure of the alloys was also studied using an indirect method, based on H. Kronmüller's theorem. Based on analysis of the primary magnetization curves, in accordance with the aforementioned theory, it was found that Mo causes a change in internal regions associated with changes in the direction of the magnetization vector. The evolution of the thermal properties with increasing volume of Mo has been confirmed by the DSC curves. Addition of Mo, at the expense of the Nb component, results in changes to the crystallization process (i.e. the crystallization onset temperature and number of stages). The study showed that the addition of Mo at the expense of Nb reduces glass forming ability. Based on the DSC analysis, free volumes were determined for the alloys tested. These values were compared with the analysis of primary magnetization curves. It was found that the DSC curves can be used to indirectly describe the structure of amorphous alloys similar to the theory of the approach to ferromagnetic saturation. This approach is new and can be used by many researchers in this field.
Go to article

Authors and Affiliations

Bartłomiej Jeż
1
ORCID: ORCID
Marcin Nabiałek
2
ORCID: ORCID

  1. Department of Technology and Automation, Faculty of Mechanical Engineering and Computer Science, Czestochowa University of Technology, al. Armii Krajowej 19c, 42-200 Czestochowa, Poland
  2. Department of Physics, Faculty of Production Engineering and Materials Technology, Czestochowa University of Technology, al. Armii Krajowej 19, 42-200 Cz ̨estochowa, Poland
Download PDF Download RIS Download Bibtex

Abstract

In the present work, we performed the ultra-rapid annealing (URA) process for amorphous Fe78Ni8B14 melt-spun ribbons in order to obtain fine excellent microstructure assuring the best soft magnetic properties. Several microscopic methods mainly based on transmission electron microscopy (TEM) and Lorentz TEM (L-TEM) were applied for detailed studies of the microstructure and magnetic domains structure. The investigation revealed that the optimized parameters of the URA process (500°C/0.5-5 s) lead to outstanding soft magnetic properties. A mixture containing close to 50% amorphous phase and 50% α-Fe nanocrystals of size up to 30 nm has been already obtained after annealing for 3 s. These annealing conditions appear to be the most suitable in terms of microstructure providing the best magnetic properties.
Go to article

Authors and Affiliations

Wojciech Maziarz
1
ORCID: ORCID
A. Kolano-Burian
2
ORCID: ORCID
M. Kowalczyk
3
ORCID: ORCID
P. Błyskun
3
ORCID: ORCID
R. Chulist
1
ORCID: ORCID
P. Czaja
1
ORCID: ORCID
M. Szlezynger
1
ORCID: ORCID
A. Wójcik
1
ORCID: ORCID

  1. Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta Str., 30-059 Krakow, Poland
  2. Lukasiewicz Research Network – institute of non-Ferrous Metals, 5 Generała Józefa Sowińskiego str., 44-121 Gliwice, Poland
  3. Warsaw University of Technology, the Faculty of Materials Science and Engineering, 141 Wołoska stR., 02-507 Warszawa, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of research from the analysis of primary magnetization curves for Fe based amorphous alloys. Structural defects in the form of pseudodislocation dipoles occur in amorphous alloys. Using the theory developed by H. Kronmuller called the approach to ferromagnetic saturation, it is possible to indirectly observe internal stresses occurring in the volume of amorphous alloys. The magnetic structure is sensitive to all kinds of inhomogeneities that become visible in the process of high-field magnetization. It has been shown that the cooling rate of the liquid alloy has a great influence on the migration of atoms during the solidification process. Longer time of alloy formation causes more atoms to occupy ordered positions, which results in a change in the distance between the magnetic atoms and a higher degree of structure relaxation. This is indicated by a significant difference in the value of the spin wave stiffness parameter Dspf. The structural differences of the alloys were also investigated using a magnetic balance. It has been shown that the cooling rate influences insignificant differences in the course of thermomagnetic curves and the Curie temperature.
Go to article

Authors and Affiliations

B. Jeż
1
ORCID: ORCID

  1. Czestochowa University of Technology, Faculty of Mechanical Engineering and Computer Science, Department of Technology and Automati on, 19c Armii Krajowej Str., 42-200 Czestochowa, Poland

This page uses 'cookies'. Learn more