Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 6
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The main objective of this work is to present an innovative method of numerical modeling of anchored piles system acting as a road protection against landslide, called the “2D/3D method”. Firstly, short description of the problem and “state of the art” review are included. An effective methodology of the design supported by the numerical analysis, solving the problem of interaction of a periodic system of piles and the unstable soil mass is presented, for which some detailed information about proposed numerical approach is given. The key idea of 2D/3D method is to join the pile with the 2D plane strain continuum by fictitious connectors of Winkler type with P-Y properties identified during the analysis of a subsidiary 3D problem. Practical example of usage of proposed approach to a real case of a road endangered by a landslide then protected by the piles system is presented. On the base of this example, a discussion about important design issues like internal forces in piles (mainly bending moments) and anchors (tensile forces) or overall stability of the soil-structure system is done.

Go to article

Authors and Affiliations

A. Urbański
M. Grodecki
Download PDF Download RIS Download Bibtex

Abstract

An effective method for the analysis of soil-structure interaction including the behaviour of cylindrical storage tank with varying wall thickness under the action of constant thermal loading is presented. Elastic half-space and the Winkler model have been used for the description of subsoil. The soil-structure interaction is described by using the power series. A computational example of reinforced concrete tank loaded with constant temperature is given. The analysis of a hydrostatically loaded cylindrical tank performed for the model incorporating elastic half-space shows decrease of radial displacements as well as substantial changes in the distribution of bending moments when compared to the Winkler foundation. Additionally, local increase of subsoil reaction around the slab circumference is observed for the case of elastic half-space, in contrast to the Winkler model. However, in the case of a tank loaded with constant temperature, the solutions for both subsoil models do not differ significantly.

Go to article

Authors and Affiliations

Paweł Marek Lewiński
Michał Rak
Download PDF Download RIS Download Bibtex

Abstract

In this paper, existing knowledge on the behaviour of soil-steel composite structures (SSCSs) has been reviewed. In particular, the response of buried corrugated steel plates (CSPs) to static, semistatic, and dynamic loads has been covered. Furthermore, the performance of SSCS under extreme loading, i.e., loading until failure, has been studied. To investigate the behaviour of the type of composite structures considered, numerous full-scale tests and numerical simulations have been conducted for both arched and box shapes of the shell. In addition, researchers have examined different span lengths and cover depths. Furthermore, to enhance the load-bearing capacity of the composite structures, various stiffening elements have been applied and tested. The reviewshows that the mechanical features of SSCSs are mainly based on the interaction of the shell with the soil backfill. The structures, as a composite system, become appropriately stiff when completely backfilled. For this reason, the construction phase corresponds to the highest values of shell displacement and stress. Moreover, the method of laying and compacting the backfill, as well as the thickness of the cover, has a significant impact on the behaviour of the structure at the stage of operation in both the quantitative and qualitative sense. Finally, a limited number of studies are conducted on the ultimate bearing capacity of large-span SSCS and various reinforcing methods. Considerably more works will need to be done on this topic. It applies to both full scale tests and numerical analysis.
Go to article

Authors and Affiliations

Alemu Mosisa Legese
1
ORCID: ORCID
Maciej Sobótka
1
ORCID: ORCID
Czesław Machelski
1
ORCID: ORCID
Adrian Różański
1
ORCID: ORCID

  1. Wrocław University of Science and Technology, Faculty of Civil Engineering, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

The subject of this paper is an assessment of the accuracy of a solution based on the linear theory of elasticity describing the interaction of a cylindrical reinforced concrete tank with the subsoil. The subsoil was modeled in the form of an elastic half-space and Winkler springs. The behavior of the shell structure of the RC cylindrical tank, and particularly of the ground slab interacting with the subsoil, depends largely on the distribution of the reactions on the foundation surface. An analysis of this structure with the shell fixed in a circular ground slab was carried out taking into consideration the elastic half-space model using the Gorbunov-Posadov approach and, for comparison, the two-parameter Winkler model. Although the results for both subsoil models proved to be divergent, the conclusions that follow the accuracy assessment of a solution based on the theory of elasticity are fairly important for engineering practice.

Go to article

Bibliography

  1.  H. Borowicka, “Pressure distribution under elastic plates“, Ing. Arch., X. Band, 113–125 (1939) [in German].
  2.  M.I. Gorbunov-Posadov, T.A. Malikova, and V.I. Solomin, Calculation of Structures on Elastic Foundation, Stroyizdat, Moskva, 1984 [in Russian].
  3.  P.M. Lewiński and M. Rak, “Soil-structure interaction of cylindrical water tanks with linearly varying wall thickness”, PCM-CMM-2015: 3rd Pol. Congr. Mech. & 21st Comp. Meth. Mech., Gdańsk, Poland, 8‒11 September, 2015, vol. 2, pp. 921‒922.
  4.  P.M. Lewiński and M. Rak, “Soil-structure interaction of cylindrical tank of variable wall thickness under the thermal gradient conditions”, IOP Conf. Ser.: Mater. Sci. Eng. 661, 012044 (2019)
  5.  A.R. Kukreti, M.M. Zaman, and A. Issa, “Analysis of fluid storage tanks including foundation-superstructure interaction”, Appl. Math. Model. 17, 618‒631 (1993).
  6.  A.R. Kukreti and Z.A. Siddiqi, “Analysis of fluid storage tanks including foundation-superstructure interaction using differential quadrature method”, Appl. Math. Model. 21, 193‒205 (1997).
  7.  J.A. Hemsley (Ed.), Design Applications of Raft Foundations, Thomas Telford Publishing, London, 2000.
  8.  J.A. Hemsley, Elastic Analysis of Raft Foundations, Thomas Telford Publishing, London, 1998.
  9.  E.S. Melerski, Design Analysis of Beams, Circular Plates and Cylindrical Tanks on Elastic Foundations, Taylor & Francis Group, London, 2006.
  10.  J.S. Horvath and R.J. Colasanti, “Practical subgrade model for improved soil-structure interaction analysis: Model development”, Int. J. Geomech. 11(1), 59‒64 (2011).
  11.  N. el Mezaini, “Effects of soil-structure interaction on the analysis of cylindrical tanks”, Pract. Period. Struct. Des. Constr. 11(1), 50–57 (2006).
  12.  Z. Mistríková and N. Jendželovský, “Static analysis of the cylindrical tank resting on various types of subsoil”, J. Civ. Eng. Manag. 18(5), 744–751 (2012).
  13.  P. Lewiński, Analysis of Interaction of RC Cylindrical Tanks with Subsoil, Prace Naukowe ITB, Rozprawy, Wydawnictwa ITB, Warszawa, 2007 [in Polish].
  14.  Z. Kączkowski, Plates. Static Calculations, Arkady, Warszawa, 2000 [in Polish].
  15.  W. Flügge, Stresses in Shells, 2nd ed., Springer, Berlin, Heidelberg, 1973.
  16.  Z.E. Mazurkiewicz and T. Lewiński (Ed.), Thin Elastic Shells, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa, 2004 [in Polish].
  17.  E. Szewczak and A. Piekarczuk, “Performance evaluation of the construction products as a research challenge. Small error – big difference in assessment?”, Bull. Pol. Ac.: Tech. Sci. 64(4), 675–686 (2016).
  18.  P.M. Lewiński and S. Dudziak, “Nonlinear interaction analysis of RC cylindrical tank with subsoil by adopting two kinds of constitutive models for ground and structure”, Amer. Inst. Phys., AIP Conf. Proc. 1922, 130007 (2018).
Go to article

Authors and Affiliations

Paweł Marek Lewiński
1

  1. Building Research Institute, ul. Filtrowa 1, 00-611 Warszawa, Poland
Download PDF Download RIS Download Bibtex

Abstract

The overall efficiency of a construction of a deep excavation urban project does not depend only on the duration of the construction but also on its influence on the urban environment and the traffic [9, 10]. These two things depend greatly on the excavation method and the construction stages defined during the design process. This paper describes the construction stages of three metro stations (two stations in Warsaw and one in Paris) and discusses their advantages and disadvantages including among other things its impact on neighbouring infrastructure and the city’s traffic. An important conclusion drawn from this analysis is that the shape of the slabs used can considerably affect the design and the construction stages. For example, a vaulted top slab allows an almost immediate traffic restoration and a vaulted bottom raft allows a much shorter dewatering period.
Go to article

Bibliography

[1] A. Stańczyk, “Doświadczenia z budowy stacji metra "Ratusz" i "Marymont" w Warszawie”, Inżynieria i Budownictwo, 5, pp. 244–247, 2008.
[2] Daktera, T., Bourgeois, E., Schmitt, P., Jeanmaire, T., Delva, L., & Priol, G., “Design of deep supported excavations: comparison between real behavior and predictions based on the subgrade coefficient method”, Proceedings of the XVII European Conference on Soil Mechanics and Geotechnical Engineering, pp. 2608–2615, 2019.
[3] Daktera T. “Amélioration des méthodes de calcul des écrans de soutènement à partir du retour d'expérience de grands travaux récents » PhD Thesis, Univ Gustave Eiffel, (to be published) 2020.
[4] M. Graff, “Subway in Warsaw”, Transport systems, 12, pp. 25–35, 2018.
[5] K.F. Unrug, “Shaft design criteria”, International Journal of Mining Engineering, 2, 141–155, 1984.
[6] ILF CONSULTING ENGINEERS, “Design and construction of the underground line II from “Rondo Daszyńskiego” station to the “DworzecWileński” station in Warsaw”, 2010.
[7] M. Mitew-Czajewska, “Geotechnical investigation and static analysis of deep excavation walls – a case study of metro station construction in Warsaw”, Ann. Warsaw Univ. Life Sci. – SGGW, Land Reclam. 47 (2), pp. 163–171, 2015. http://doi.org/10.1515/sggw-2015-0022
[8] A. Sieminska-Lewandowska, “Budowa obiektu a obudowa wykopu – niełatwe zależności”, Nowoczesne Budownictwo Inżynieryjne, marzec kwiecień, pp. 64–71, 2010.
[9] A. Siemińska-Lewandowska, “Głębokie wykopy. Projektowanie i wykonawstwo.”, WKŁ, Warszawa, 2010.
[10] G. Kacprzak, S. Bodus, “The modelling of excavation protection in a highly urbanised environment”, Technical Transactions, Vol. 1, pp. 133–142, 2019. https://doi.org/10.4467/2353737XCT.19.009.10049
Go to article

Authors and Affiliations

Grzegorz Kacprzak
1
ORCID: ORCID
Tomasz Daktera
2
ORCID: ORCID
Andrzej Stańczyk
3
ORCID: ORCID
Urszula Tomczak
1
ORCID: ORCID
Seweryn Bodus
3
ORCID: ORCID
Michał Werle
3
ORCID: ORCID

  1. Warsaw University of Technology, Faculty of Civil Engineering, Al. Armii Ludowej 16, 00-637 Warsaw, Poland
  2. Soletanche Bachy International 280 Avenue Napoléon Bonaparte, 92500 Rueil Malmaison, France
  3. Warbud S.A.
Download PDF Download RIS Download Bibtex

Abstract

The subject of this paper is an analysis of the influence of circumferential prestressing on the interaction of cylindrical silos and tanks with the subsoil. The behaviour of the shell structures of RC and PC cylindrical silos or tanks (with circumferential pre-tensioning), and particularly of the ground slab interacting with subsoil, depends largely on the function graphs of the subsoil reactions on the foundation surface. Distributions of the subbase reactions on the ground slab in such structures as silos and tanks have a significant impact on the behaviour of not only the slab itself, but also the interacting shell structure. An analysis of these structures with walls fixed in a circular ground slab and foundation ring was carried out taking into consideration the elastic half-space model using the Gorbunov-Posadov approach and the two-parameter Winkler model. In the computational examples of RC and PC silos and tanks with walls fixed in the circular ground slab or foundation ring, the eventual effects of prestressing obtained as a result of the superposition of internal forces were examined. Although the results for both subsoil models proved to be divergent, the conclusions that follow are fairly important for the engineering practice.

Go to article

Authors and Affiliations

Paweł Marek Lewiński

This page uses 'cookies'. Learn more