Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 7
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

To guarantee food security and job creation of small scale farmers to commercial farmers, unproductive farms in the South 24 PGS, West Bengal need land reform program to be restructured and evaluated for agricultural productivity. This study established a potential role of remote sensing and GIS for identification and mapping of salinity zone and spatial planning of agricultural land over the Basanti and Gosaba Islands(808.314sq. km) of South 24 PGS. District of West Bengal. The primary data i.e. soil pH, Electrical Conductivity (EC) and Sodium Absorption ratio (SAR) were obtained from soil samples of various GCP (Ground Control Points) locations collected at 50 mts. intervals by handheld GPS from 0–100 cm depths. The secondary information is acquired from the remotely sensed satellite data (LANDSAT ETM+) in different time scale and digital elevation model. The collected field samples were tested in the laboratory and were validated with Remote Sensing based digital indices analysisover the temporal satellite data to assess the potential changes due to over salinization.Soil physical properties such as texture, structure, depth and drainage condition is stored as attributes in a geographical soil database and linked with the soil map units. The thematic maps are integrated with climatic and terrain conditions of the area to produce land capability maps for paddy. Finally, The weighted overlay analysis was performed to assign theweights according to the importance of parameters taken into account for salineareaidentification and mapping to segregate higher, moderate, lower salinity zonesover the study area.
Go to article

Authors and Affiliations

Sumanta Das
Malini Roy Choudhury
Subhasish Das
M. Nagarajan
Download PDF Download RIS Download Bibtex

Abstract

The study was carried out to assess ecological risks at the closed landfill in Cai Dau town, Chau Phu district, An Giang province. Soil samples were collected at six locations (S1–S6) at depths of 0–20 cm and 60–80 cm in the rainy season (November 2020) and dry season (March 2021). The soil quality was evaluated using eight heavy metals (Mn, Fe, Cu, Zn, Ni, Pb, Cr and As). The results showed that most monitoring sites had heavy metal contents within the allowable limits for agricultural land of QCVN 03-MT:2015/BTNMT. Some heavy metals have been found to migrate to the soil layer of 60–80 cm. The heavy metals accumulation ( Igeo) in the two soil layers did not differ; Ni, Cr, Pb and As accumulated at non-polluting levels – moderate to high in the rainy season, while Cr and As only accumulated in the dry season. The composite pollution index ( PLI) indicated that the locations around the landfill were polluted; however, the ecological risk ranged from low to moderate (potential ecological risk index ( PERI) = 102–195) in the rainy season. Only about 50% of study sites during the dry season were contaminated and the risk was low ( PERI = 44– 68). However, the area around the landfill always poses potential risks due to the presence of heavy metals, including Ni, Cr, As and Pb. Monitoring the heavy metals in the surrounding landfill for the potential risks to human health and environment is needed.
Go to article

Authors and Affiliations

Giao T. Nguyen
1
Nhien T.H. Huynh
1

  1. Can Tho University, College of Environment and Natural Resources, Department of Environmental Management, 3-2 Street, Xuan Khanh Ward, Ninh Kieu District, 900000, Can Tho City, Vietnam
Download PDF Download RIS Download Bibtex

Abstract

The presented paper reports data from malacological and pedological studies carried out at sites representing diverse biotopes (beech wood, coniferous forest, and meadow) located 2 km away from the Dyckerhoff Cement Plant in Sitkówka-Nowiny in 1992 and in 2008–2009. The studies aimed to determine physicochemical properties of soils exposed to cement and limestone dust emission and to identify composition of snail communities inhabiting three different biotopes in relation to physicochemical properties of soils, and to grasp the dynamics of the alkalization-dependent changes in physicochemical properties of soils and their impact on the composition and ecological structure of malacofauna.

Go to article

Authors and Affiliations

Jadwiga Anna Barga-Więcławska
Anna Świercz
Download PDF Download RIS Download Bibtex

Abstract

Solanum elaeagnifolium Cav. is known to be one of the most invasive species worldwide. In this study, laboratory and greenhouse experiments were carried out to investigate the allelopathic properties of S. elaeagnifolium vegetative parts, root parts, fruit mucilage, and exudate extracts on plant communities and soil properties. In addition, the extract profiles of allelochemicals were quantified and their influence on soil properties and microorganisms was determined. Overall, the allelopathic performance of S. elaeagnifolium was established depending on the extract types, used concentrations, and target species. The doseresponse activity indicated that vegetative parts extract showed the greatest allelopathic potential followed by root parts extract. Subsequently, mucilage extract had a moderate inhibitory potential, while root exudates showed the least activity. The same trend with slight response was detected in soil properties of pH and EC properties. Polyphenols, in the range of 5.70–0.211 mg · g–1 and flavonols, in the range of 2.392–0.00 mg · g–1, were found in the analyzed samples extracted by ethyl acetate using LC-DAD-MS. The total phenol amount was 1.67 to 1.89 in the rhizosphere and 0.53 to 087 mg · g–1 in non-rhizosphere soils. Solanum elaeagnifolium exhibited a greater significant suppression of fungi count in both high and low-density areas than in rhizosphere bacteria. In conclusion, the strong and broadspectrum allelopathic potentials may enhance the ability of S. elaeagnifolium to impact seed germination and seedling growth of neighboring species. These biochemical weapons may play a critical role to facilitate their invasion and establishment in new agroecosystems.
Go to article

Authors and Affiliations

Mohamed A. Balah
1
Whaby M. Hassany
1
Abdelnasser A. Kobici
1

  1. Plant Protection Department, Desert Research Center, Matariya, Cairo, Egypt
Download PDF Download RIS Download Bibtex

Abstract

Unlike many other countries, tropical regions such as Indonesia still lack publications on pedotransfer functions (PTFs), particularly ones dedicated to the predicting of soil bulk density. Soil bulk density affects soil density, porosity, water holding capacity, drainage, and the stock and flux of nutrients in the soil. However, obtaining access to a laboratory is difficult, time-consuming, and costly. Therefore, it is necessary to utilise PTFs to estimate soil bulk density. This study aims to define soil properties related to soil bulk density, develop new PTFs using multiple linear regression (MLR), and evaluate the performance and accuracy of PTFs (new and existing). Seven existing PTFs were applied in this study. For the purposes of evaluation, Pearson’s correlation (r), mean error (ME), root mean square error (RMSE), and modelling efficiency (EF) were used. The study was conducted in five soil types on Bintan Island, Indonesia. Soil depth and organic carbon (SOC) are soil properties potentially relevant for soil bulk density prediction. The ME, RMSE, and EF values were lower for the newly developed PTFs than for existing PTFs. In summary, we concluded that the newly developed PTFs have higher accuracy than existing PTFs derived from literature. The prediction of soil bulk density will be more accurate if PTFs are applied directly in the area that is to be studied.
Go to article

Authors and Affiliations

Evi Dwi Yanti
1
ORCID: ORCID
Asep Mulyono
1
ORCID: ORCID
Muhamad Rahman Djuwansah
1
ORCID: ORCID
Ida Narulita
1
ORCID: ORCID
Risandi Dwirama Putra
2
ORCID: ORCID
Dewi Surinati
3
ORCID: ORCID

  1. Research Center for Geotechnology, Indonesian National Research and Innovation Agency, Bandung, Indonesia
  2. Maritim Raja Ali Haji University, Tanjung Pinang, Indonesia
  3. Research Center for Oceanography, Indonesian National Research and Innovation Agency, Jakarta, Indonesia
Download PDF Download RIS Download Bibtex

Abstract

Infiltration process plays important role in water balance concept particularly in runoff analysis, groundwater re-charged, and water conservation. Hence, increasing knowledge concerning infiltration process becomes essential for water manager to gain an effective solution to water resources problems. This study employed multiple linear regression for esti-mating infiltration rate where the soil properties used as the predictor variable and measured infiltration rate as the response variable. Field measurement was conducted at sixteen points to obtain infiltration rate using double ring infiltrometer and soil properties namely soil porosity, silt, clay, sand content, degree of saturation, and water content. The result showed that measured infiltration rate had an average initial infiltration rate (f0) of 6.92 mm∙min–1 and final infiltration rate (fc) of 1.49 mm∙min–1. Soil porosity and sand content showed a positive correlation with infiltration rate by 0.842, 0.639, respectively, while silt, clay, water content, and degree of saturation exhibited a negative correlation by –0.631, –0.743, –0.66 and –0.49, respectively. Three types of regression equations were established based on type of soil properties used as predictor varia-bles. The model performance analysis was conducted for each equation and the result shows that the equation with five predictor variables fMLR_3 = – 62.014 + 1.142 soil porosity – 0.205 clay, – 0.063 sand – 0.301, silt + 0.07 soil water content with R2 (0.87) and Nash–Sutcliffe (0.998) gave the best result for estimating infiltration rate. The study found that soil po-rosity contributes mostly to the regression equation that indicates great influence in controlling soil infiltration behavior.

Go to article

Authors and Affiliations

Donny Harisuseno
ORCID: ORCID
Evi N. Cahya
Download PDF Download RIS Download Bibtex

Abstract

The fertilizing value of rye, potato and molasses decoctions was evaluated in a microplot experiment, in which maize and turnip were used as testing plants. Based on the analysis of chemical composition of decoctions it was found that these decoctions used as fertilizing material were unbalanced with respect to their N, Pand K contents. The potato decoction is characterized by the most favourable N:K ratio from the point of view of the nutritional requirements of plants. The rye decoction contains too little potassium and that from molasses - too much of this element in relation to N content. The use of the molasses decoction in fertilizing is possible after its correction with phosphorus. The rye decoction requires correction with potassium for appropriate use in fertilization. In addition, application of the decoctions studied caused an increase in the organic C and total N contents in soil and improvements in the sorption properties of soil. The molasses decoction caused a decrease in the available forms of P in soil. The decoctions applied in experiments considerably increased yields and nutrient content in plants studied, both in the direct and after- effect.
Go to article

Authors and Affiliations

Beata Rutkowska
ORCID: ORCID
Wiesław Szulc
ORCID: ORCID
Jan Łabętowicz
Anna Gutowska

This page uses 'cookies'. Learn more