Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 41
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Thin film solar cells based on multinary compound Cu(In,Ga)Se2 show record photovoltaic conversion efficiency approaching 20%. Investigation on defect physics in this compound is crucial for making further progress in the technology. In this work we present the results on photocapacitance (PC) and deep level optical spectroscopy (DLOS) for two types of cells – high efficiency Cu(In,Ga)Se2 cell with about 20% of gallium and pure gallium CuGaSe2 device. We show that PC and DLOS, employed as the techniques complimentary to deep level transient spectroscopy DLTS and admittance spectroscopy, are useful methods in providing information on defect levels in solar cells. In particular they are helpful in diffierentiating between levels belonging to the bulk of absorber and to the interface states. We tentatively assign some of the observed deep levels to InCu or GaCu antisites and Cu interstitials.

Go to article

Authors and Affiliations

M. Igalson
A. Urbaniak
Download PDF Download RIS Download Bibtex

Abstract

In this work, two thermal- and air-stable, hole transporting materials (HTM) in perovskite solar cells are analyzed. Those obtained and investigated materials were two polyazomethines: the first one with three thiophene rings and 3,3′-dimethoxybenzidine moieties (S9) and the second one with three thiophene rings and fluorene moieties (S7). Furthermore, presented polyazomethines were characterized by Fourier transform infrared spectroscopy (FTIR), UV–vis spectroscopy, atomic force microscopy (AFM) and thermogravimetric analysis (TGA) experiments. Both polyazomethines (S7 and S9) possessed good thermal stability with a 5% weight loss at 406 and 377°C, respectively. The conductivity of S7 was two orders of magnitude higher than for S9 polymer (2.7 × 10−8 S/cm, and 2.6 × 10−10 S/cm, respectively). Moreover, polyazomethine S9 exhibited 31 nm bathochromic shift of the absorption band maximum compared to S7.

Obtained perovskite was investigated by UV–vis and XRD. Electrical parameters of perovskite solar cells (PSC) were investigated at Standard Test Conditions (STC). It was found that both polyazomethines protect perovskite which is confirmed by ageing test where Voc did not decrease significantly for solar cells with HTM in contrast to solar cell without hole conductor, where Voc decrease was substantial. The best photoconversion efficiency (PCE = 6.9%), among two investigated in this work polyazomethines, was obtained for device with the following architectures FTO/TiO2/TiO2 + perovskite/S7/Au. Stability test proved the procreative effects of polyazomethines on perovskite absorber.

Go to article

Authors and Affiliations

K. Gawlinska
A. Iwan
Zbigniew Starowicz
ORCID: ORCID
G. Kulesza-Matla
K. Stan-Glowinska
M. Janusz
M. Lipinski
B. Boharewicz
I. Tazbir
A. Sikora
Download PDF Download RIS Download Bibtex

Abstract

Photovoltaic (PV) technologies which play a role in PV market are divided into basic two types: wafer-based (1st generation PV) and thin-film cell (2nd generation PV). To the first category belong mainly crystalline silicon (c-Si) cells (both mono- and multi-crystalline). In 2015 around 90% of the solar market belonged to crystalline silicon. To the 2nd generation solar cells belongs thin film amorphous silicon (a-Si) or a combination of amorphous and microcrystalline silicon (a-Si/μc-Si), compound semiconductor cadmium telluride (CdTe), compound semiconductor made of copper, indium, gallium and selenium (CIS or CIGS) and III–V materials. The PV market for thin film technology is dominated by CdTe and CIGS solar cells. Thin film solar cells’ share for all thin film technologies was only 10% in 2015. New emerging technologies, called 3rd generation solar cells, remain the subject of extensive R&D studies but have not been used in the PV market, so far.

In this review the best laboratory 1st and 2nd generation solar cells that were recently achieved are described. The scheme of the layer structure and energy band diagrams will be analyzed in order to explain the boost of their efficiency with reference to the earlier standard designs.

Go to article

Authors and Affiliations

E. Płaczek-Popko
Download PDF Download RIS Download Bibtex

Abstract

In perovskite solar cells, series of symmetrical and asymmetrical imino-naphthalimides were tested as hole-transporting materials. The compounds exhibited high thermal stability at the temperature of the beginning of thermal decomposition above 300 °C. Obtained imino-naphthalimides were electrochemically active and their adequate energy levels confirm the application possibility in the perovskite solar cells. Imino-naphthalimides were absorbed with the maximum wavelength in the range from 331 nm to 411 nm and emitted light from the blue spectral region in a chloroform solution. The presented materials were tested in the perovskite solar cells devices with a construction of FTO/b-TiO2/m-TiO2/perovskite/ HTM/Au. For comparison, the reference perovskite cells were also performed (without hole-transporting materials layer). Of all the proposed materials tested as hole-transporting materials, the bis-(imino-naphthalimide) containing in core the triphenylamine structure showed a power conversion efficiency at 1.10% with a short-circuit current at 1.86 mA and an open-circuit voltage at 581 mV.
Go to article

Bibliography

  1. Gopikrishna, P., Meher, N. & Iyer P. K. Functional 1,8-naphthalimide AIE/AIEEgens: recent advances and prospects. ACS Appl. Mater. Interfaces 10, 12081–12111 (2018). https://doi.org/10.1021/acsami.7b14473
  2. Banerjee, S. et al. Recent advances in the development of 1,8-naphthalimide based DNA targeting binders, anticancer and fluorescent cellular imaging agents. Chem. Soc. Rev. 42, 1601–1618 (2013). https://doi.org/10.1039/C2CS35467E
  3. Poddar, M., Sivakumar, G. & Misra, R. Donor-acceptor substituted 1,8-naphthalimides: design, synthesis, and structure–property relationship J. Mater. Chem. C 7, 14798–14815 (2019). https://doi.org/10.1039/C9TC02634G
  4. Tomczyk, M. D. & Walczak K. Z. 1,8-Naphthalimide based DNA intercalators and anticancer agents. A systematic review from 2007 to 2017. Eur. J. Med. Chem. 159, 393–422 (2018). https://doi.org/10.1016/j.ejmech.2018.09.055
  5. Gan, J.-A. et al. 1,8-naphthalimides for non-doping OLEDs: the tunable emission color from blue, green to red. J. Photochem. Photobiol. 162, 399–406 (2004). https://doi.org/10.1016/S1010- 6030(03)00381-2
  6. Luo, S. et al. Novel 1,8-naphthalimide derivatives for standard-red organic light-emitting device applications. J. Mater. Chem. C 3, 525–5267 (2015). https://doi.org/10.1039/C5TC00409H
  7. Zhang, X. et al. A 1,8-naphthalimide based small molecular acceptor for polymer solar cells with high open circuit voltage, J. Mater. Chem. C 3, 6979–6985 (2015). https://doi.org/10.1039/C5TC01148E
  8. Do, T. T. et al. Molecular engineering strategy for high efficiency fullerene-free organic solar cells using conjugated 1,8-naphthal-imide and fluorenone building blocks. ACS Appl. Mater. Interfaces 9, 16967–16976 (2017). https://doi.org/10.1021/acsami.6b16395
  9. Yadagiri, B. et al. An all-small-molecule organic solar cell derived from naphthalimide for solution- processed high-efficiency non-fullerene acceptors. J. Mater. Chem. C 7, 709–717 (2019). https://doi.org/10.1039/C8TC05692G
  10. Torres-Moya, I. et al. Synthesis of D-π-A high-emissive 6-arylalkynyl-1,8-naphthalimides for application in organic field-effect transistors and optical waveguides Dyes and Pigm. 191, 109358 (2021). https://doi.org/10.1016/j.dyepig.2021.109358
  11. Gudeika, D. A review of investigation on 4-substituted 1,8-naphthalimide derivatives. Synth. Met. 262, 116328 (2020). https://doi.org/10.1016/j.synthmet.2020.116328
  12. Xie, L. et al. 5-Non-amino aromatic substituted naphthalimides as potential antitumor agents: Synthesis via Suzuki reaction, antiproliferative activity, and DNA-binding behavior. Bioorg. Med. Chem. 19, 961–967 (2011). https://doi.org/10.1016/j.bmc.2010.11.055
  13. Rykowski, S. et al. Design, synthesis, and evaluation of novel 3-carboranyl-1,8-naphthalimide derivatives as potential anticancer agents. Int. J. Mol. Sci. 22, 2772 (2021). https://doi.org/10.3390/ijms22052772
  14. Sivakumar, G. et al. Design, synthesis and characterization of 1,8-naphthalimide based fullerene derivative as electron transport material for inverted perovskite solar cells. Synth. Met. 249, 25–30 (2019). https://doi.org/10.1016/j.synthmet.2019.01.014
  15. Li, L. et al. Self-assembled naphthalimide derivatives as an efficient and low-cost electron extraction layer for n-i-p perovskite solar cells. Chem. Commun. 55, 13239–13242 (2019). https://doi.org/10.1039/C9CC06345E
  16. Agarwala, P. & Kabra, D. A review on triphenylamine (TPA) based organic hole transport materials (HTMs) for dye sensitized solar cells (DSSCs) and perovskite solar cells (PSCs): evolution and molecular engineering. J. Mater. Chem. A 5, 1348–1373 (2017). https://doi.org/10.1039/C6TA08449D
  17. Duan, L. et al. Facile synthesis of triphenylamine-based hole-trans-porting materials for planar perovskite solar cells. J. Power Sources 435, 226767 (2019). https://doi.org/10.1016/j.jpowsour.2019.226767
  18. Wu, G. et al. Triphenylamine-based hole transporting materials with thiophene-derived bridges for perovskite solar cells. Synth. Met. 261, 116323 (2020). https://doi.org/10.1016/j.synthmet.2020.116323
  19. Rezaei, F. & Mohajeri, A. Molecular designing of triphenylamine-based hole-transporting materials for perovskite solar cells Sol. Energy 221, 536–544 (2021). https://doi.org/10.1016/j.solener.2021.04.055
  20. Li, M. et al. Facile donor (D)-π-D triphenylamine-based hole transporting materials with different π-linker for perovskite solar cells. Sol. Energy 195, 618–625 (2020). https://doi.org/10.1016/j.solener.2019.11.071
  21. Bogdanowicz, K. A. et al. Selected electrochemical properties of 4,4’-((1E,1’E)-((1,2,4- Thiadiazole-3,5-diyl)bis(azaneylylidene))-bis(methaneylylidene))bis(N,N-di-p-tolylaniline) towards perovskite solar cells with 14.4% efficiency. Materials 13, 2440 (2020). https://doi.org/10.3390/ma13112440
  22. Ma, B.-B. et al. Visualized acid–base discoloration and optoelectronic investigations of azines and azomethines having double 4-[N,N-di(4-methoxyphenyl)amino]phenyl terminals. J. Mater. Chem. C 3, 7748–7755 (2015). https://doi.org/10.1039/C5TC00909J
  23. Korzec, M. et al. Synthesis and thermal, photophysical, electrochemical properties of 3,3-di[3- arylcarbazol-9-ulmethyl]oxetane derivatives. Materials 14, 5569 (2021). https://doi.org/10.3390/ma14195569
  24. Pająk, A. K. et al. New thiophene imines acting as hole transporting materials in photovoltaic devices. Energy Fuels 34, 10160–10169 (2020). https://doi.org/10.1021/acs.energyfuels.0c01698
  25. Kula, S. et al. 9,9’-bifluorenylidene derivatives as novel hole-transporting materials for potential photovoltaic applications. Dyes Pigm. 174, 108031 (2020). https://doi.org/10.1016/j.dyepig.2019.108031
  26. Derkowska-Zielinska, B. et al. Photovoltaic cells with various azo dyes as components of the active layer. Sol. Energy 203, 19–24 (2020). https://doi.org/10.1016/j.solener.2020.04.022
  27. Nitschke, P. et al. Spectroscopic and electrochemical properties of thiophene-phenylene based Schiff-bases with alkoxy side groups, towards photovoltaic applications. Spectrochim. Acta A 248, 119242 (2021). https://doi.org/10.1016/j.saa.2020.119242
  28. Sęk, D. et al. Polycyclic aromatic hydrocarbons connected with Schiff base linkers: Experimental and theoretical photophysical characterization and electrochemical properties Spectrochim. Acta A, 175, 168–176 (2017). https://doi.org/10.1016/j.saa.2016.12.029
  29. Korzec, M. et al. Live cell imaging by 3-imino-(2-phenol)-1,8-naphthalimides: The effect of ex vivo hydrolysis. Spectrochim. Acta A 238, 118442 (2020). https://doi.org/10.1016/j.saa.2020.118442
  30. Kotowicz, S. et al. Novel 1,8-naphthalimides substituted at 3-C position: Synthesis and evaluation of thermal, electrochemical and luminescent properties. Dyes Pigm. 158, 65–78 (2018). https://doi.org/10.1016/j.dyepig.2018.05.017
  31. Korzec, M. et al. Novel b-ketoenamines versus azomethines for organic electronics: characterization of optical and electrochemical properties supported by theoretical studies. J Mater Sci, 55, 3812–3832 (2020). https://doi.org/10.1007/s10853-019-04210-3
  32. Kotowicz, S. et al. New acceptor–donor–acceptor systems based on bis-(imino-1,8- naphthalimide). Materials 14, 2714 (2021). https://doi.org/10.3390/ma14112714
  33. Costa, J. S. C. et al. Optical band gaps of organic semiconductor materials Opt. Mater. 58, 51–60 (2016). https://doi.org/10.1016/j.optmat.2016.03.041
  34. Nitschke, P. et al. The effect of alkyl substitution of novel imines on their supramolecular organization, towards photovoltaic applications, Sol. Energy 221, 536–544.https://doi.org/10.1016/j.solener.2021.04.055
  35. Misra, A. et al. Electrochemical and optical studies of conjugated polymers for three primary colours. Indian J. Pure Appl. Phys. 43, 921–925 (2005).
  36. Kim, K. et al. Direct p-doping of Li-TFSI for efficient hole injection: Role of polaronic level in molecular doping. Appl. Surf. Sci. 480, 565–571 (2019).https://doi.org/10.1016/j.apsusc.2019.02.248
  37. Singh, R. & Parashar, M. Origin of Hysteresis in Perovskite Solar Cells in Soft-Matter Thin Film Solar Cells: Physical Processes and Device Simulation (AIP Publishing, on-line) (New York, 2020). https://doi.org/10.1063/9780735422414_001
  38. Li, B. et al. Insights into the hole transport properties of LiTFSI-doped spiro-OMeTAD films through impedance spectroscopy. J. Appl. Phys.128, 085501 (2020).https://doi.org/10.1063/5.0011868
  39. Abate, A. et al. Lithium salts “redox active” p-type dopants for organic semiconductors and their impact in solid-state dye-sensitized solar cells. Phys. Chem. Chem. Phys., 15, 2572–2579 (2013). https://doi.org/10.1039/C2CP44397J
  40. Wang, S., Yan, W. & Meng, Y. S., Spectrum-dependent spiro- OMeTAD oxidization mechanism in perovskite solar cells. Appl. Mater. Interfaces 7, 24791–24798 (2015).https://doi.org/10.1021/acsami.5b07703
Go to article

Authors and Affiliations

Mateusz Korzec
1
ORCID: ORCID
Sonia Kotowicz
1
ORCID: ORCID
Agnieszka K. Pająk
1 2
ORCID: ORCID
Ewa Schab-Balcerzak
1 3
ORCID: ORCID

  1. Institute of Chemistry, Faculty of Science and Technology, University of Silesia in Katowice, 9 Szkolna St., 40-007 Katowice, Poland
  2. Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymont St., 30-059 Krakow, Poland
  3. Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Skłodowska St., 41-819 Zabrze, Poland
Download PDF Download RIS Download Bibtex

Abstract

The emergence of solar cells on flexible and bendable substrates has made the printing process a ubiquitous tool for the fabrication of these devices. The various printing techniques available now such as inkjet, screen and flexography offer cost- effectiveness, user-friendliness and suitability for mass production. While downscaling the fill factor and efficiency of organic solar cells. A multilayered structure, the combination of different printing techniques avails the variety of thickness and resolution required for each layer in the production of an organic solar cell. In this review article, we discuss the suitability of the inkjet and screen printing processes to produce organic solar cells. We also discuss various challenges involved in the fabrication of organic solar cells using these two techniques and the possible solutions for the same. We also provide an analogy that both processes share. Further, we consider future possibilities of combining these printing technologies to produce organic solar cells to improve device performance.

Go to article

Authors and Affiliations

S. Ganesan
S. Mehta
D. Gupta
Download PDF Download RIS Download Bibtex

Abstract

The aim of this article is to present the results of research aimed at confirmation whether it is possible to form an intermediate band in GaAs implantation with H+ ions. The obtained results were discussed with particular emphasis on possible applications in the photovoltaic industry. As it is commonly known, the idea of intermediate band solar cells reveals considerable potential as the most fundamental principle of the next generation of semiconductors solar cells. In progress of the research, a series of GaAs samples were subjected to poly-energy implantation of H+ ions, followed by high-temperature annealing. Tests were conducted using thermal admittance spectroscopy, under conditions of variable ambient temperature, measuring signal frequency in order to localize deep energy levels, introduced by ion implantation. Activation energy ΔE was determined for additional energy levels resulting from the implantation of H+ ions. The method of determining the activation energy value is shown in Fig. 2 and the values read from it are σ0 = 10−9 (Ω·cm)−1 for 1000/T0 = 3.75 K−1 and σ1 = 1.34 × 10−4 (Ω·cm)−1 for 1000/T1 = 2.0 K−1. As a result, we obtain ΔE ≈ 0:58 eV. It was possible to identify a single deep level in the sample of GaAs implanted with H+ ions. Subsequently, its location in the band gap was determined by estimating the value of ΔE. However, in order to confirm whether the intermediate band was actually formed, it is necessary to perform further analyses. In particular, it is necessary to implement a new analytical model, which takes into consideration the phenomena associated with the thermally activated mechanisms of carrier transport as it was described in [13]. Moreover, the influence of certain parameters of ion implantation, post-implantation treatment and testing conditions should also be considered.

Go to article

Authors and Affiliations

Paweł Węgierek
Justyna Pietraszek
Download PDF Download RIS Download Bibtex

Abstract

In this study a two-step short wet etching was implemented for the black silicon formation. The proposed structure consists of two steps. The first step: wet acidic etched pits-like morphology with a quite new solution of lowering the texturization temperature and second step: wires structure obtained by a metal assisted etching (MAE). The temperature of the process was chosen due to surface development control and surface defects limitation during texturing process. This allowed to maintain better minority carrier lifetime compared to etching in ambient temperature. On the top of the acidic texture the wires were formed with optimized height of 350 nm. The effective reflectance of presented black silicon structure in the wavelength range of 300-1100 nm was equal to 3.65%.
Go to article

Authors and Affiliations

G. Kulesza-Matlak
K. Gawlińska
Z. Starowicz
A. Sypień
K. Drabczyk
B. Drabczyk
M. Lipiński
P. Zięba
Download PDF Download RIS Download Bibtex

Abstract

The ethylene vinyl acetate (EVA) is widely used for solar modules encapsulation. During lamination process EVA melts and chemical bonds between polymer chains are created. Its number is tightly related to cross-linking degree and it is consider as a major quality reference for module encapsulation. The lamination can be described as a process with two stages: melting and curing where the typical temperature for curing is in the range from 145 to 175°C. In the present study, for the first time, comparison of three commercial available EVA foils with low curing temperature EVA (EVA LOW). For this reason, the temperature of following lamination processes was set from a range from 115 to 175°C. The behavior of cured EVA films under investigation EVA was determined with two approaches: with extraction and with optical methods. The results indicate the applicability of these methods for the EVA cross-linking characterization. Finally, the extraordinary behavior of EVA LOW foil was noticed.
Go to article

Authors and Affiliations

K. Gawlińska
K. Drabczyk
Z. Starowicz
P. Sobik
B. Drabczyk
P. Zięba
Download PDF Download RIS Download Bibtex

Abstract

This paper presents maps of spatial distributions of the short circuit current Isc(x,y) and the open circuit voltage Uoc(x,y) of the investigated low cost solar cells. Visible differences in values of these parameters were explained by differences in the serial and shunt resistances determined for different points of solar cells from measurements of I–V characteristics. The spectral dependence of the photo voltage of solar cell is also shown, discussed and interpreted in the model of amorphous and crystal silicon.
Go to article

Authors and Affiliations

Łukasz Bartłomiej Chrobak
Wiesław Ryszard Madej
Mirosław Andrzej Maliński
Download PDF Download RIS Download Bibtex

Abstract

Noise spectroscopy as a highly sensitive method for non-destructive diagnostics of semiconductor devices was applied to solar cells based on crystalline silicon with a view to evaluating the quality and reliability of this solar cell type. The experimental approach was used in a reverse-biased condition where the internal structure of solar cells, as well as pn-junction itself, was electrically stressed and overloaded by a strong electric field. This gave rise to a strong generation of a current noise accompanied by local thermal instabilities, especially in the defect sites. It turned out that local temperature changes could be correlated with generation of flicker noise in a wide frequency range. Furthermore, an electrical breakdown in a nonstable form also occurred in some specific local regions what created micro-plasma noise with a two-level current fluctuation in the form of a Lorentzian-like noise spectrum. The noise research was carried out on both of these phenomena in combination with the spectrally-filtered electroluminescence mapping in the visible/near-infrared spectrum range and the dark lock-in infrared thermography in the far-infrared range. Then the physical origin of the light emission from particular defects was searched by a scanning electron microscope and additionally there was performed an experimental elimination of one specific defect by the focused ion beam milling.
Go to article

Authors and Affiliations

Lubomir Skvarenina
Robert Macku
Download PDF Download RIS Download Bibtex

Abstract

The presented article is a report on progress in photovoltaic devices and material processing. A cadmium telluride solar cell as one of the most attractive option for thin-film polycrystalline cell constructions is presented. All typical manufacturing steps of this device, including recrystalisation and junction activation are explained. A new potential field of application for this kind of device - the BIPV (Building Integrated Photovoltaic) is named and discussed. All possible configuration options for this application, according to material properties and exploitation demands are considered. The experimental part of the presented paper is focused on practical implementation of the high- temperature polymer foil as the substrate of the newly designed device by the help of ICSVT (Isothermal Close Space Vapour Transport) technique. The evaluation of the polyester and polyamide foils according to the ICSVT/CSS manufacturing process parameters is described and discussed. A final conclusion on practical verification of these materials is also given.

Go to article

Authors and Affiliations

M. Sibińksi
Z. Lisik
Download PDF Download RIS Download Bibtex

Abstract

GZO/IZO semiconductor thin films were prepared on the ITO substrate via sol-gel spin coating method for using in the dyesensitized solar cells (DSSCs). For this purpose, GZO and IZO thin films were optimized by the percentage of doping gallium and indium in zinc oxide and were studied their electrical, optical and structural properties. After that, the layers with the best performance were selected for use in the DSSCs. The concentration of all solutions for spin coating processes was 0.1 M and zinc oxide has been doped with gallium and indium, with different doping percentages (0, 0.5, 1, 2 and 4 volume percentage). So, by studying the properties of the fabricated thin films, it was found the films with 0.5%GZO and 0.5%IZO have the best performance and hence, the optimized dual-layer (0.5% GZO/0.5% IZO (GIZO)) were prepared and studied their electrical and optical properties. The synthesized optimized dual-layer film was successfully used as the working electrode for dye-sensitized solar cells. The sample with 0.5%IZO shows the 9.1 mA/cm2 short-circuit current density, 0.52 V open circuit voltage, 63% fill factor and 2.98% efficiency.

Go to article

Authors and Affiliations

M. Hossein Manzari Tavakoli
M. Ahmadi
M. Sabet
Download PDF Download RIS Download Bibtex

Abstract

In this work, we propose a new method for manufacturing busbars in photovoltaic modules for different solar cell generations, focusing on 1st and 3rd generations. The method is based on high-pressure spray coating using nanometric metallic powder. Our focus is primarily on optimizing conductive paths for applications involving conductive layers used in 3rd generation solar cells, such as quantum dot solar cell, dye-sensitized solar cell, and silicon-based solar cells on glass-glass architecture for buildingintegrated photovoltaic. The advantages of the proposed method include the possibility of reducing the material quantity in the conductive paths and creating various shapes on the surface, including bent substrates.
This paper examines the influence of the proposed high-pressure spraying technique using metallic particles on the morphology of the resulting conductive paths, interface characteristics, and electrical parameters. Conductive paths were created on four different layers commonly used in photovoltaic systems, including transparent conductive oxide, Cu, Ti, and atomic layer deposition processed Al 2O 3. The use of high-pressure technology enables the production of conductive layers with strong adhesion to the substrate and precise control of the spatial parameters of conductive paths. Furthermore, the temperature recorded during the deposition process does not exceed 385 K, making this technique suitable for various types of substrates, including glass and silicon. Additionally, the produced layers exhibit low resistance, measuring less than 0.3Ω . Finally, the mechanical resistance, as determined through tearing tests, as well as environmental and time stability, have been confirmed for the produced paths.

Go to article

Authors and Affiliations

Paweł Kwaśnicki
1 2
Anna Gronba-Chyła
1
Agnieszka Generowicz
3
Józef Ciuła
4
Iwona Wiewiórska
5
Krzysztof Gaska
6

  1. John Paul II Catholic University of Lublin, Faculty of Natural and Technical Sciences, Konstantynów 1 H, 20-708 Lublin, Poland
  2. Research & Development Centre for Photovoltaics, ML System S.A., Zaczernie 190G, 36-062 Zaczernie, Poland
  3. Cracow University of Technology, Department of Environmental Technologies, Warszawska 24, 31-155 Cracow, Poland
  4. State University of Applied Sciences in Nowy Sacz, Faculty of Engineering Sciences, Zamenhofa 1A, 33-300 Nowy Sacz, Poland
  5. Sadeckie Wodociagi sp. z o.o., W. Pola 22, 33-300 Nowy Sacz, Poland
  6. Silesian University of Technology, Faculty of Energy and Environmental Engineering, Konarskiego 18, 44-100 Gliwice, Poland
Download PDF Download RIS Download Bibtex

Abstract

Many variants of thin film technology are nowadays part of the photovoltaic market. The most popular are amorphous silicon, CIS (Copper Indium Selenide)/CIGS (Copper Indium Gallium Selenide)/CIGSS (Copper Indium Gallium Sulphur Selenide), and CdS/CdTe (Cadmium Sulphide/Cadmium-Telluride) cells. All mentioned types allow potentially for a flexible cell structure. Most emitter contacts are currently based on TCOs (Transparent Conductive Oxides), however, wider approach with alternative carbon nanoforms, silver nanolayers and polymer materials, called TCLs (Transparent Conductive Layers) are also in use. Authors decided to investigate influence of mechanical stresses on physical and electrical behaviour of these layers. Consequently, the aim of work is to determine the level and possible mechanisms of flexible a-Si cell parameters degradation due to a deterioration of transparent contact properties.

Go to article

Authors and Affiliations

Maciej Sibiński
ORCID: ORCID
K. Znajdek
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the idea to improve the performance of thin film photovoltaic cells by a light capture enhancement through the introduction of down shifting energy converters. Luminescent down shifting layers convert high-energy photons (UV light) into low-energy ones (visible light), which are more efficient in a photovoltaic conversion. For this purpose, the application of a thin layer composed of zinc oxide (ZnO) nanoparticles deposited onto a thin film solar cell is proposed. The paper presents both experimental and theoretical results of this approach. Conducted investigations include an analysis of ZnO nanoparticle layers, deposited in two independent technology methods. The results showed that ZnO nanoparticles have a great potential of application as down converting layers and can be implemented to improve the efficiency of photovoltaic cells, especially in the field of thin film PV structures. The proposed new deposition method can potentially be used in some industrial photovoltaic applications.

Go to article

Authors and Affiliations

K. Znajdek
Maciej Sibiński
ORCID: ORCID
Z. Lisik
A. Apostoluk
Y. Zhu
B. Masenelli
P. Sędzicki
Download PDF Download RIS Download Bibtex

Abstract

Dye-sensitized solar cells (DSSCs) were prepared using various food dyes. Food dyes are economically superior to organometallic dyes since they are nontoxic and inexpensive. The spectrophotometric evaluation of chosen food dyes in solution and on a TiO2 substrate show that the dyes form J-aggregation on the photoelectrode substrate. Oxidation of potential measurements for used food dyes ensured an energetically permissible and thermodynamically favorable charge transfer throughout the continuous cycle of a photo-electric conversion. The performance of dye-sensitized solar cells based on food dyes was studied. The results illustrate that the dye containing carboxylic acid and sulfonic acid as the acceptor group gave the maximum conversion efficiency 4.20%.

Go to article

Authors and Affiliations

M. Hosseinnezhad
S. Rouhani
Download PDF Download RIS Download Bibtex

Abstract

The technology of manufacturing silicon solar cells is complex and consists of several stages. The final steps in succession are the deposition of antireflection layer and discharge contacts. Metallic contacts are usually deposited by the screen printing method and then, fired at high temperature. Therefore, this article presents the results of a research on the effect of heat treatment on the properties of the Al2O3 thin film previously deposited by the atomic layer deposition method. It works well as both passivating and antireflection coating. Moreover, heat treatment affects the value of the cell short-circuit current and, thus, its efficiency. The surface morphology, optical and electrical properties were investigated, describing the influence of heat treatment on the properties of the deposited layers and the manufactured solar cells.
Go to article

Bibliography

  1. Marks-Bielska, R. et al. The importance of renewable energy sources in Poland’s energy Energies 13, 1–23 (2020). https://doi.org/10.3390/en13184624
  2. Asfar, Y. et al. Evaluating Photovoltaic Performance Indoors. in 2012 38th IEEE Photovoltaic Specialists Conference (PVSC). 1948–1951 (IEEE, Austin, USA 2012).
  3. Ranjan, S. et al. Silicon solar cell production. Comput. Chem. Eng. 35, 1439–1453 (2011). https://doi.org/10.1016/j.compchemeng.2011.04.017
  4. Drygala, A. et al. Influence of laser texturization surface and atomic layer deposition on optical properties of polycrystalline silicon. Int. J. Hydrog. Energy 41, 7563–7567 (2016). https://doi.org/10.1016/j.ijhydene.2015.12.180
  5. Hou, G., Garcia, I. & Rey-Stolle, I. High-low refractive index stacks for broadband antireflection coatings for multijunction solar cells. Sol. Energy 217, 29–39 (2021). https://doi.org/10.1016/j.solener.2021.01.060
  6. Dobrzański, L. A., Szindler, M., Drygała, A. & Szindler, M.M., Silicon solar cells with Al2O3 antireflection coating. Cen. Eur. J. Phys. 12, 666–670 (2014). https://doi.org/10.2478/s11534-014-0500-9
  7. Sarkar, S. & Pradhan, S. K. Silica-based antireflection coating by glancing angle deposition. Surf. Eng. 35, 982–985. (2019). https://doi.org/10.1080/02670844.2019.1596578
  8. Szindler, M. Szindler, M. M., Boryło, P. & Jung, T. Structure and optical properties of TiO2 thin films deposited by ALD Open Phys. 15, 1067–1071 (2017). https://doi.org/10.1515/phys-2017-0137
  9. Król, K. et al. Influence of atomic layer deposition temperature on the electrical properties of Al/ZrO2/SiO2/4H-SiC metal-oxide semiconductor structures. Phys. Status Solidi (A) 215, 1–7 (2018). https://doi.org/10.1002/pssa.201700882
  10. Boryło, P. et al. Structure and properties of Al2O3 thin films deposited by ALD proces. Vacuum 131, 319–326 (2016). https://doi.org/10.1016/j.vacuum.2016.07.013
  11. Drabczyk, K. et al. Comparison of diffused layer prepared using liquid dopant solutions and pastes for solar cell with screen printed electrodes. Microelectron. Int. 33, 167–171 (2016). https://doi.org/10.1108/MI-03-2016-0031
  12. Öğütman, K. et al. Spatial atomic layer deposition of aluminum oxide as a passivating hole contact for silicon solar Phys. Status Solidi (A) 217, 1–6 (2020). https://doi.org/10.1002/pssa.202000348
  13. Drabczyk, K. et al. Electroluminescence imaging for determining the influence of metallization parameters for solar cell metal contacts. Sol. Energy 126, 14–21 (2016). https://doi.org/10.1016/j.solener.2015.12.029
  14. Park, H. H. Inorganic materials by atomic layer deposition for perovskite solar cells. Nanomaterials 11, 1–22 (2021). https://doi.org/10.3390/nano11010088
  15. Hossain, A. et al. Atomic layer deposition enabling higher efficiency solar cells: A review. Nano Materials 2, 204–226 (2020). https://doi.org/10.1016/j.nanoms.2019.10.001
  16. Werner, F. et al. High-rate atomic layer deposition of Al2O3 for the surface passivation of Si solar cells. Energy Procedia 8, 301–306 (2011). https://doi.org/10.1016/j.egypro.2011.06.140
  17. Werner, F., Cosceev, A. & Schmidt, J. Silicon surface passivation by Al2O3: Recombination parameters and inversion layer solar cells. Energy Procedia 27, 319–324 (2012). https://doi.org/10.1016/j.egypro.2012.07.070
  18. Swatowska, B. Antireflective and passivation properties of the photovoltaic structure with Al2O3 layer of different thickness. Microelectron. Int. 35, 177–180 (2018). https://doi.org/10.1108/MI-04-2018-0020
Go to article

Authors and Affiliations

Marek Szindler
1
ORCID: ORCID
Magdalena M. Szindler
2
ORCID: ORCID

  1. Scientific and Didactic Laboratory of Nanotechnology and Material Technologies, Faculty of Mechanical Engineering, Silesian University of Technology, 7 Towarowa St., 44-100 Gliwice, Poland
  2. Department of Engineering Materials and Biomaterials, Faculty of Mechanical Engineering, Silesian University of Technology, 18a Konarskiego St., 44-100 Gliwice, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a dual-band plasmonic solar cell. The proposed unit structure gathers two layers, each layer consists of a silver nanoparticle deposited on a GaAs substrate and covered with an ITO layer, It reveals two discrete absorption bands in the infra-red part of the solar spectrum. Nanoparticle structures have been used for light-trapping to increase the absorption of plasmonic solar cells. By proper engineering of these structures, resonance frequencies and absorption coefficients can be controlled as it will be elucidated. The simulation results are achieved using CST Microwave Studio through the finite element method. The results indicate that this proposed dual-band plasmonic solar cell exhibits an absorption bandwidth, defined as the full width at half maximum, reaches 71 nm. Moreover, It can be noticed that by controlling the nanoparticle height above the GaAs substrate, the absorption peak can be increased to reach 0.77.

Go to article

Authors and Affiliations

Ashraf A. M. Khalaf
ORCID: ORCID
M. D. Gaballa
Download PDF Download RIS Download Bibtex

Abstract

Al 2O 3/TiO 2 thin films were deposited onto monocrystalline silicon surfaces using an atomic layer deposition. Their surface morphology and optical properties were examined for their possible use in solar cells. The surface condition and chemical composition were characterized using a scanning electron microscope and the thickness was measured using a spectroscopic reflectometer. The refractive index and the reflection characteristics were determined. First, the optical properties of the Al 2O 3 thin film and its influence on recombination in the semiconductor were examined. In this way, it can fulfil a double role in a solar cell. Since reflection reduction was only achieved in a narrow range, it was decided to use the Al 2O 3/TiO 2 system. Thanks to this solution, the light reflection was reduced in a wide range (even below 0.2%).
Go to article

Authors and Affiliations

Marek Szindler
1
ORCID: ORCID
Magdalena M. Szindler
2
ORCID: ORCID
Justyna Orwat
3
ORCID: ORCID
Grażyna Kulesza-Matlak
4
ORCID: ORCID

  1. Scientific and Didactic Laboratory of Nanotechnology and Material Technologies, Faculty of Mechanical Engineering, Silesian University of Technology, 7 Towarowa St., 44-100 Gliwice, Poland
  2. Department of Engineering Materials and Biomaterials, Silesian University of Technology, 18a Konarskiego St., 44-100 Gliwice, Poland
  3. Department of Mining, Safety Engineering and Industrial Automation, Silesian University of Technology, 2 Akademicka St., 44-100 Gliwice, Poland
  4. Institute of Metallurgy and Materials Science of Polish Academy of Sciences, 25 Reymonta St., 30-059 Krakow, Poland
Download PDF Download RIS Download Bibtex

Abstract

The article describes the results of a research on the surface morphology and optical properties of Al 2O 3, ZnO, and TiO 2 thin films deposited by atomic layer deposition (ALD) for applications in silicon solar cells. The surface topography and elemental composition were characterised using a scanning electron microscope, and thickness was determined using an optical reflectometer. The samples were structurally examined using a Raman spectrometer. The structural variant was identified: for Al 2O 3 it is sapphire, for TiO 2 it is anatase, and for ZnO it is wurtzite. Possibilities of minimising light reflection using single and double thin film systems below 5% were presented. For the first time, the effectiveness of these thin films on the current-voltage characteristics and electrical parameters of manufactured silicon solar cells was examined and compared. The solar cell with the highest efficiency of converting solar radiation into electricity was obtained for Al 2O 3/TiO 2 and the efficiency of such a photovoltaic device was 18.74%.
Go to article

Authors and Affiliations

Marek Szindler
1
ORCID: ORCID
Magdalena M. Szindler
2
ORCID: ORCID

  1. Scientific and Didactic Laboratory of Nanotechnology and Material Technologies, Faculty of Mechanical Engineering, Silesian University of Technology, ul. Towarowa 7, 44-100 Gliwice, Poland
  2. Department of Engineering Materials and Biomaterials, Faculty of Mechanical Engineering, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
Download PDF Download RIS Download Bibtex

Abstract

This paper presents research on the deposition of an indium tin oxide (ITO) layer which may act as a recombination layer in a silicon/perovskite tandem solar cell. ITO was deposited by magnetron sputtering on a highly porous surface of silicon etched by the metal-assisted etching method (MAE) for texturing as nano and microwires. The homogeneity of the ITO layer and the degree of coverage of the silicon wires were assessed using electron microscopy imaging techniques. The quality of the deposited layer was specified, and problems related to both the presence of a porous substrate and the deposition method were determined. The presence of a characteristic structure of the deposited ITO layer resembling a "match" in shape was demonstrated. Due to the specificity of the porous layer of silicon wires, the ITO layer should not exceed 80 nm. Additionally, to avoid differences in ITO thickness at the top and base of the silicon wire, the layer should be no thicker than 40 nm for the given deposition parameters.
Go to article

Authors and Affiliations

Grażyna Kulesza-Matlak
1
ORCID: ORCID
Marek Szindler
2
ORCID: ORCID
Magdalena M. Szindler
2
ORCID: ORCID
Anna Sypień
1
ORCID: ORCID
Łukasz Major
1
ORCID: ORCID
Kazimierz Drabczyk
1
ORCID: ORCID

  1. Institute of Metallurgy and Materials Science, Polish Academy of Sciences, ul. W. Reymonta 25, 30-059 Kraków, Poland
  2. Faculty of Mechanical Engineering, Silesian University of Technology, ul. Akademicka 2A, 44-100 Gliwice, Poland
Download PDF Download RIS Download Bibtex

Abstract

Four dye-sensitized solar cell devices are designed and fabricated based on natural dyes extracted from Celosia Cristata, Saffron, Cynoglossum, and eggplant peel, as photosensitizers. The UV–vis technique has been served to determine maximum absorption of natural extract and pre-dyed photoanode. The Fourier transform infrared (FT-IR) was employed to cover the presence of functional groups. The cyclic voltammetry method has been employed to assess the possibility of charge transfer from dried natural dyes to the photoelectrode. The performance of natural-based dye-sensitized solar cells is determined subsequently. The highest power conversion efficiency was ca. 1.38%, which belonged to Celosia Cristata extract. The devices were examined for higher efficiencies, individually, co-sensitized arrangement and/or in tandem with each other.

Go to article

Authors and Affiliations

M. Hosseinnezhad
S. Rouhani
K. Gharanjig
Download PDF Download RIS Download Bibtex

Abstract

In this study, solar cells based on copper oxide and titanium dioxide were successfully manufactured using the reactive direct-current magnetron sputtering (DC-MS) technique with similar process parameters. TiO2/CuO, TiO2/Cu2O/CuO/Cu2O, and TiO2/Cu2O solar cells were manufactured via this process. Values of efficiencies, short-circuit current, short-circuit current density, open-circuit voltage, and maximum power of PV devices were investigated in the range of 0.02÷0.9%, 75÷350 µA, 75÷350 µA/cm2, 16÷550 mV, and 0.6÷27 µW, respectively. The authors compare solar cells reaching the best and the worst conversion efficiency results. Thus, only the two selected solar cells were fully characterized using I-V characteristics, scanning electron microscopy, X-ray diffraction, ellipsometry, Hall effect measurements, and quantum efficiency. The best conversion efficiency of a solar cell presented in this work is about three times higher in comparison with the authors’ previous PV devices.
Go to article

Bibliography

  1. Olczak, P., Kryzia, D., Matuszewska, D. & Kuta, M. “My Electricity” program effectiveness supporting the development of PV installation in Poland. Energies 14, 231 (2021). https://doi.org/10.3390/en14010231
  2. Cader, J., Olczak, P. & Koneczna, R. Regional dependencies of interest in the ‘My Electricity’ photovoltaic subsidy program in Poland. Polityka Energetyczna – Energy Policy Journal 24, 97–116 (2021). https://doi.org/10.33223/epj/133473
  3. Zhang, Y. & Park, N.-G. A thin film (<200 nm) perovskite solar cell with 18% efficiency. J. Mater. Chem. A 34 17420–17428 (2020). https://doi.org/10.1039/D0TA05799A
  4. Luo, Y. et al. Electrochemically deposited Cu2O on TiO2 nanorod arrays for photovoltaic application. Electrochem. Solid-State Lett. 15, H34–H36 (2012). https://doi.org/10.1149/2.016202esl
  5. Pavan, M. et al. TiO2/Cu2O all-oxide heterojunction solar cells produced by spray pyrolysis. Sol. Energy Mater. Sol. Cells 132, 549–556 (2015). https://doi.org/10.1016/j.solmat.2014.10.005
  6. Rokhmat, M., Wibowo, E., Sutisna, Khairurrijal & Abdullah, M. Performance improvement of TiO2/CuO solar cell by growing copper particle using fix current electroplating method. Procedia Eng. 170, 72–77 (2017). https://doi.org/10.1016/j.proeng.2017.03.014
  7. Sawicka-Chudy, P. et al. Simulation of TiO2/CuO solar cells with SCAPS-1D software. Mater. Res. Express 6, 085918 (2019). https://doi.org/10.1088/2053-1591/ab22aa
  8. Zhu, L. Development of Metal Oxide Solar Cells through Numerical Modelling. (University of Bolton, Bolton, 2012).
  9. Hussain, S. et al. Fabrication and photovoltaic characteristics of Cu2O/TiO2 thin film heterojunction solar cell. Thin Solid Films 522, 430–434 (2012). https://doi.org/10.1016/j.tsf.2012.08.013
  10. Hussain, S. et al. Cu2O/TiO2 nanoporous thin-film heterojunctions: Fabrication and electrical characterization. Mater. Sci. Semicond. Process. 25, 181–185 (2014). https://doi.org/10.1016/j.mssp.2013.11.018
  11. Sawicka-Chudy, P. et al. Review of the development of copper oxides with titanium dioxide thin film solar cells. AIP Adv. 10, 010701 (2020). https://doi.org/10.1063/1.5125433
  12. Yang, Y., Xu, D., Wu, Q. & Peng, D. Cu2O/CuO bilayered composite as a high-efficiency photocathode for photoelectro-chemical hydrogen evolution reaction. Sci. Rep. 6, 35158 (2016). https://doi.org/10.1038/srep35158
  13. Ichimura, M. & Kato, Y. Fabrication of TiO2/Cu2O heterojunction solar cells by electrophoretic deposition and electrodeposition. Mater. Sci. Semicond. Process. 16, 1538–1541 (2013). https://doi.org/10.1016/j.mssp.2013.05.004
  14. Zhang, W., Li, Y., Zhu, S. & Wang, F. Influence of argon flow rate on TiO2 photocatalyst film deposited by dc reactive magnetron sputtering. Surf. Coat. Technol. 182, 192–198 (2004). https://doi.org/10.1016/j.surfcoat.2003.08.050
  15. Sawicka-Chudy, P. et al. Characteristics of TiO2, Cu2O, and TiO2/Cu2O thin films for application in PV devices. AIP Adv. 9, 055206 (2019). https://doi.org/10.1063/1.5093037
  16. Sawicka-Chudy, P. et al. Performance improvement of TiO2/CuO by increasing oxygen flow rates and substrate temperature using DC reactive magnetron sputtering method. Optik 206, 164297 (2020). https://doi.org/10.1016/j.ijleo.2020.164297
  17. Li, D. et al. Prototype of a scalable core–shell Cu2O/TiO2 solar cell. Chem. Phys. Lett. 501, 446–450 (2011). http://doi.org/10.1016/j.cplett.2010.11.064
  18. van der Pauw, L. J. A method of measuring specific resistivity and Hall effect of discs of arbitrary shape. Philips Res. Rep. 13, 1–9 (1958). https://doi.org/10.1142/9789814503464_0017
  19. ASTM F76-08(2016)e1, Standard Test Methods for Measuring Resistivity and Hall Coefficient and Determining Hall Mobility in, Single-Crystal Semiconductors (ASTM International, West Conshohocken, USA, 2016). https://doi.org/10.1520/F0076-08R16E01
  20. Ziaja, J. Cienkowarstwowe Struktury Metaliczne i Tlenkowe. Właści-wości, Technologia, Zastosowanie w Elektrotechnice (Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław, 2012). [in Polish]
  21. Łowkis, B., Ziaja, J., Klaus P. & Krawczyk D. Effect of magnetron sputtering parameters on dielectric properties of PTFE foil. IEEE Trans. Dielectr. Electr. Insul. 27, 837–841 (2020). https://doi.org/10.1109/TDEI.2020.008710
  22. Gulkowski, S. & Krawczak, E. RF/DC magnetron sputtering deposition of thin layers for solar cell fabrication. Coatings 10, 1–14 (2020). https://doi.org/10.3390/coatings10080791
  23. Zhang, D. K., Liu, Y. C., Liu, Y. L. & Yang, H. The electrical properties and the interfaces of Cu2O/ZnO/ITO p–i–n heterojunction. Physica B 351, 178–183 (2004). https://doi.org/10.1016/j.physb.2004.06.003
  24. Scherrer, P. Bestimmung der inneren Struktur und der Größe von Kolloidteilchen mittels Röntgenstrahlen. in Kolloidchemie Ein Lehrbuch 387–409 (Springer Berlin, Heidelberg, 1912). https://doi.org/10.1007/978-3-662-33915-2_7
  25. Forsyth J.B, Hull S. The effect of hydrostatic pressure on the ambient temperature structure of CuO. J. Phys.: Condens. Matter 35257-5261 (1991). https://doi.org/10.1088/0953-8984/3/28/001
  26. Hanke, L., Fröhlich, D., Ivanov, A., Littlewood, P. B. & Stolz, H. LA Phonoritons in Cu2O. Phys. Rev. Lett. 83, 4365–4368 (1999). https://doi.org/10.1103/PhysRevLett.83.4365
  27. Straumanis, M.  E. & Yu, L. S. Lattice parameters, densities, expansion coefficients and perfection of structure of Cu and Cu-In alpha phase. Acta Cryst. A25, 676–682 (1969). https://doi.org/10.1107/S0567739469001549
  28. Chrzanowska-Giżyńska, J. Cienkie warstwy z borków wolframu osadzane impulsem laserowym i metodą rozpylania magnetronowego –wpływ parametrów procesu na osadzone warstwy. (Instytut Podstawowych Problemów Techniki, Polska Akademia Nauk, Warszawa, 2017). [in Polish]
  29. Wong, T. K., Zhuk, S., Masudy-Panah, S. & Dalapati, G. K. Current status and future prospects of copper oxide heterojunction solar cells. Materials 9, 271 (2016). https://doi.org/10.3390/ma9040271
  30. Gao, X., Du, Y. & Meng, X. Cupric oxide film with a record hole mobility of 48.44 cm2/Vs via direct–current reactive magnetron sputtering for perovskite solar cell application. Sol. Energy 191, 205–209 (2019). https://doi.org/10.1016/j.solener.2019.08.080
  31. Hu, X. et al. Influence of oxygen pressure on the structural and electrical properties of CuO thin films prepared by pulsed laser deposition. Mater. Lett. 176, 282–284 (2016). https://doi.org/10.1016/j.matlet.2016.04.055
Go to article

Authors and Affiliations

Grzegorz Wisz
1
ORCID: ORCID
Paulina Sawicka-Chudy
1
ORCID: ORCID
Maciej Sibiński
2
ORCID: ORCID
Zbigniew Starowicz
3
ORCID: ORCID
Dariusz Płoch
1
ORCID: ORCID
Anna Góral
3
Mariusz Bester
1
ORCID: ORCID
Marian Cholewa
1
Janusz Woźny
4
ORCID: ORCID
Aleksandra Sosna-Głębska
2

  1. Institute of Physics, College of Natural Science, University of Rzeszów, 1 Pigonia St., 35-317 Rzeszów, Poland
  2. Department of Semiconductor and Optoelectronic Devices, Łódź University of Technology, 211/215 Wólczańska St., 90-924 Łódź, Poland
  3. Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta St., 30-059 Kraków, Poland
  4. Department of Semiconductor and Optoelectronic Devices, Łódź University of Technology, 211/215Wólczańska St., 90-924 Łódź, Poland

This page uses 'cookies'. Learn more