Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 12
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Studies conducted between December 20. 1978 and February 20. 1979 on Arctowski Station show that daily sums of total radiation ranged from 165.5 to 834.5 mWhr x cm2. Maximal mean hourly radiations were recorded from 12 to 14 hours (39.7—72.4 mWhr x cm2).

Go to article

Authors and Affiliations

Adam Krężel
Kazimierz Pęcherzewski
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the results of measurements of the operation of a photovoltaic system, connected to the power grid. The intensity of solar radiation and the ambient temperature in the location of the installation were simultaneously recorded in different weather conditions on selected days throughout the year. For the combined results the analysis of correlation in terms of efficiency of individual exemplary photovoltaic installation was conducted.
Go to article

Authors and Affiliations

Mariusz Sarniak
Download PDF Download RIS Download Bibtex

Abstract

Solar radiation (Rs) is an essential input for estimating reference crop evapotranspiration, ETo. An accurate estimate of ETo is the first step involved in determining water demand of field crops. The objective of this study was to assess the ac-curacy of fifteen empirical solar radiations (Rs) models and determine its effects on ETo estimates for three sites in humid tropical environment (Abakaliki, Nsukka, and Awka). Meteorological data from the archives of NASA (from 1983 to 2005) was used to derive empirical constants (calibration) for the different models at each location while data from 2006 to 2015 was used for validation. The results showed an overall improvement when comparing measured Rs with Rs determined us-ing original constants and Rs using the new constants. After calibration, the Swartman–Ogunlade (R2 = 0.97) and Chen 2 models (RMSE = 0.665 MJ∙m–2∙day–1) performed best while Chen 1 (R2 = 0.66) and Bristow–Campbell models (RMSE = 1.58 MJ∙m–2∙day–1) performed least in estimating Rs in Abakaliki. At the Nsukka station, Swartman–Ogunlade (R2 = 0.96) and Adeala models (RMSE = 0.785 MJ∙m–2∙day–1) performed best while Hargreaves–Samani (R2 = 0.64) and Chen 1 mod-els (RMSE = 1.96 MJ∙m–2∙day–1) performed least in estimating Rs. Chen 2 (R2 = 0.98) and Swartman–Ogunlade models (RMSE = 0.43 MJ∙m–2∙day–1) performed best while Hargreaves–Samani (R2 = 0.68) and Chen 1 models (RMSE = 1.64 MJ∙m–2∙day–1) performed least in estimating Rs in Awka. For estimating ETo, Adeala (R2 =0.98) and Swartman–Ogunlade models (RMSE = 0.064 MJ∙m–2∙day–1) performed best at the Awka station and Swartman–Ogunlade (R2 = 0.98) and Chen 2 models (RMSE = 0.43 MJ∙m–2∙day–1) performed best at Abakaliki while Angstrom–Prescott–Page (R2 = 0.96) and El-Sebaii models (RMSE = 0.0908 mm∙day–1) performed best at the Nsukka station.

Go to article

Authors and Affiliations

Emeka Ndulue
Ikenna Onyekwelu
Kingsley Nnaemeka Ogbu
Vintus Ogwo
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the first results of measurements of global solar radiation, albedo, ground surface and 2−m air temperature, relative humidity, and wind speed and direction carried out in the central part of Spitsbergen Island in the period 2008–2010. The study site was located on the coastal ice−free zone of Petuniabukta (north−western branch of Billefjorden), which was strongly affected by local topography, character of the ground surface, and sea ice extent. Temporal analysis of the selected meteorological parameters shows both strong seasonal and inter−diurnal variation affected by synoptic−scale weather systems, channelling and drainage effects of the fjords and surrounding glaciers. The prevailing pattern of atmospheric circulation primarily determined the variation in global solar radiation, wind speed, ground surface and 2−m air temperatures. Furthermore, it was found that thermal differences between Petuniabukta and the nearest meteorological station (Svalbard Lufthavn) differ significantly due to differences in sea ice concentrations and ice types in the fjords during the winter and spring months.
Go to article

Authors and Affiliations

Kamil Láska
Denisa Witoszová
Pavel Prošek
Download PDF Download RIS Download Bibtex

Abstract

The proper designing of PV systems requires the use of advanced building energy simulation techniques. It allows to design the best position of the PV array, as well as the right quantity of produced energy in different cases. On the other hand the PV efficiency is not only a constant value but changes according to temperature and solar radiation. This paper is devoted to estimate the simultaneous effect of both weather factors on PV efficiency. The task was achieved by numerical simulation and ESP-r software. Computer simulations have been carried out with the use of the Typical Meteorological Year data for Warsaw (52°N 21°E). The greatest influence of temperature on the efficiency of solar energy conversion was observed for crystalline silicon cells. The influence of the boundary conditions assumed in the study is ignored for amorphous silicon cells in the summer period and regardless of the material type in the winter period.

Go to article

Authors and Affiliations

D. Heim
Download PDF Download RIS Download Bibtex

Abstract

This article presents the results of observations of selected fluxes of the radiation balance in north-western Spitsbergen in the years from 2010 to 2014. Measurements were taken in Ny-Ålesund and in the area of Kaffiøyra, on different surface types occurring in the Polar zone: moraine, tundra, snow and ice. Substantial differences in the radiation balance among the various types of surface were observed. The observations carried out in the summer seasons of 2010-2014 in the area of Kaffiøyra demonstrated that the considerable reflection of solar radiation on the Waldemar Glacier (albedo 55%) resulted in a smaller solar energy net income. During the polar day, a diurnal course of the components of the radiation balance was apparently related to the solar elevation angle. When the sun was low over the horizon, the radiation balance became negative, especially on the glacier. Diurnal, annual and multi-annual variations in the radiation balance have a significant influence on the functioning of the environment in polar conditions.
Go to article

Authors and Affiliations

Marek Kejna
Marion Maturilli
Andrzej Araźny
Ireneusz Sobota
Download PDF Download RIS Download Bibtex

Abstract

Outdoor remote temperature measurements in the infrared range can be very inaccurate because of the influence of solar radiation reflected from a measured object. In case of strong directional reflection towards a measuring device, the error rate can easily reach hundreds per cent as the reflected signal adds to the thermal emission of an object. As a result, the measured temperature is much higher than the real one. Error rate depends mainly on the emissivity of an object and intensity of solar radiation. The position of the measuring device with reference to an object and the Sun is also important. The method of compensation of such undesirable influence of solar radiation will be presented. It is based on simultaneous measurements in two different spectral bands, shor-twavelength and long-wavelength ones. The temperature of an object is derived from long-wavelength data only, whereas the short-wavelength band, the corrective one, is used to estimate the solar radiation level. Both bands were selected to achieve proportional changes of the output signal due to solar radiation. Knowing the relation between emissivity and solar radiation levels in both spectral bands, it is possible to reduce the measurement error several times.

Go to article

Authors and Affiliations

Henryk Madura
Mariusz Kastek
Tomasz Sosnowski
Tomasz Orżanowski
Download PDF Download RIS Download Bibtex

Abstract

Arctic glaciers depend on supply of moisture, mostly from the Atlantic. The snowline is remarkably high in northeast Siberia, remote from this source. Because of differential solar radiation receipt, local glaciers have a northward−facing tendency throughout the Arctic. This is weaker than in dry mid−latitudes but low sun angles enhance the effects of shading, compensating for the broader range of aspects ( i.e. slope directions) illuminated in summer. Statistics from the World Glacier Inventory and other sources show that mass balance differences between slopes of different aspects give both more glaciers, and lower glaciers, facing the favoured direction: usually North. This is clear, for example, for local glaciers (and for all small glaciers) in central Spitsbergen and in Axel Heiberg Island. Wind effects (drifting snow to leeward slopes) are much less important, except in northwest Europe from Norway to Novaya Zemlya which is under the strong influence of westerly winds, greatest in the Polar and Sub−polar Urals. A thorough analysis is provided of aspect data for local glaciers within and near the Arctic Circle, and of variation in glacier mid−altitude with aspect and position. There is consistency between mean glacier aspect (in terms of numbers) and aspect with lowest glaciers, everywhere except in Wrangel Island.
Go to article

Authors and Affiliations

Ian S. Evans
Download PDF Download RIS Download Bibtex

Abstract

The main objective of this article is to assess the legitimacy of using different tracking systems applied to the photovoltaic panels, for the city of Wroclaw (Poland), using 2 numerical tools: the CM SAF (Climate Monitoring Satellite Application Facility) and PVGIS (Photovoltaic Geographical Information System). In order to identify the solar irradiation, the CM-SAF database (based on the measurements of MFG – Meteosat First Generation – and MSG – Meteosat Second Generation – satellites) was utilised, while the PVGIS (Photovoltaic Geographical Information System) – to calculate the energy yield from PV panels. Particular attention was given to the optimisation of the annual tilt angle and the determination of the energy benefits from the implementation of the various sun tracking systems. Conducted studies showed that up to 30% more electricity yearly can be yielded after the replacement of PV cells with optimally fixed both azimuth and tilt angles by the 2-axis tracking system (179 kWh/m2 instead of 138 kWh/m2). Moreover, by the adequate decreasing of tilt angles in the summer time or obtaining the most favourable local solar exposure conditions, the supply curve of PV units may be significantly flattened, which may be beneficial when energy storage systems have low capacities.
Go to article

Bibliography

[1] McKinsey&Company, Assessment of Greenhouse Gas Emissions Abatement Potential in Poland by 2030. Summary of findings, Publications of McKinsey&Company (2009).

[2] Fraunhofer Institute for Solar Energy Systems, PSE AG, Photovoltaics Report, Materials of Fraunhofer ISE (2017).

[3] Ciechanowska M., Energy Policy of Poland by 2050, Nafta-Gaz (in Polish), vol. 11, pp. 839–842 (2014).

[4] Stowarzyszenie Branży Fotowoltaicznej – Polska PV, Development of the Polish PV market in 2010-2020, Główny Urząd Statystyczny (in Polish) (2016).

[5] Ministerstwo Gospodarki RP, Conclusions from forecast analyses for the purposes of Energy Policy of Poland until 2050. Annex 2, Ministerstwo Gospodarki RP (in Polish) (2015).

[6] Strupczewski A., Analysis and evaluation of electricity costs from various energy sources in Poland, National Centre of Nuclear Research (in Polish), Świerk (2015).

[7] Babatunde A.A., Abbasoglu S., Evaluation of field data and simulation results of a photovoltaic system in countries with high solar radiation, Turkish Journal of Electrical Engineering & Computer Sciences, vol. 23, no. 6, pp. 1608–1618 (2015), DOI: 10.3906/elk-1402-313.

[8] Abdul Kareem M.S., Saravanan M., A new method for accurate estimation of PV module parameters and extraction of maximum power point under varying environmental conditions, Turkish Journal of Electrical Engineering & Computer Sciences, vol. 24, no. 4, pp. 2028–2041 (2016), DOI: 10.3906/elk-1312-268.

[9] Khan J., Arsalan M.H., Solar power technologies for sustainable electricity generation – A review, Renewable & Sustainable Energy Reviews, vol. 55, pp. 414–425 (2016), DOI: 10.1016/j.rser.2015.10.135.

[10] Hafiz A.M., Abdelrahman M.E., Temraz H., Economic dispatch in power system networks including renewable energy resources using various optimization techniques, Archives of Electrical Engineering, vol. 70, no. 3, pp. 643–655 (2021), DOI: 10.24425/aee.2021.137579.

[11] Cholewiński M., Tomków Ł., Domestic hydrogen installation in Poland – technical and economic analysis, Archives of Electrical Engineering, vol. 64, no. 2, pp. 189–196 (2015), DOI: 10.1515/aee-2015-0016.

[12] Sharma H., Pal N., Kumar P., Yadav A., A control strategy of hybrid solar-wind energy generation system, Archives of Electrical Engineering, vol. 66, no. 2, pp. 242–251 (2017), DOI: 10.1515/aee- 2017-0018.

[13] Jastrzębska G., Solar cells. Construction, technology and application, Wydawnictwa Komunikacji i Łączności (in Polish) (2013).

[14] Ding R., Feng C., Wang D., Sun R., Wang L., Yuan S., Trade based on alliance chain in energy from distributed photovoltaic grids, Archives of Electrical Engineering, vol. 70, no. 2, pp. 325–336 (2021), DOI: 10.24425/aee.2021.136987.

[15] IHS Markit, Concentrated PV (CPV) Report – 2014, IHS Markit Company (2014).

[16] Huld T., Jäger Waldau A., Ossenbrink H., Szabo S., Dunlop E., Taylor N., Cost Maps for Unsubsidised Photovoltaic Electricity, Report number JRC 91937 Joint Research Centre (2014).

[17] Fraunhofer ISE, Current and Future Cost of Photovoltaics. Long-term Scenarios for Market Develop- ment, System Prices and LCOE of Utility-Scale PV Systems, Study on behalf of Agora Energiewende, 059/01-S-2015/EN (2015).

[18] Bukowski M., Śniegocki A., Megatrends – from acceptance to action, WiseEuropa – Warsaw Institute for Economic and European Studies (in Polish), ISBN 978-83-64813-30-6 (2017).

[19] Badescu V., Modeling Solar Radiation at the Earth’s Surface, Springer (2008), DOI: 10.1007/978-3-540-77455-6.

[20] The German Energy Society, Planning & Installing Photovoltaic Systems. A Guide for Installers, Architects and Engineers, Earthscal (2008), DOI: 10.4324/9781849776998.

[21] Šúri M., Remund J., Cebecauer T., Dumortier D., Wald L., Huld T., Blanc P., First Steps in the Cross- Comparison of Solar Resource Spatial Products in Europe, Proceedings of the EUROSUN 2008, 1����International Conference on Solar Heating, Cooling and Buildings, Lisbon, Portugal, JRC47255 (2008).

[22] Scharmer K., Greif J., The European Solar Radiation Atlas. Vol. 1: Fundamentals and Maps, École des Mines de Paris, ISBN 2-911762-21-5 (2000).

[23] NREL, Best Research-Cell Efficiency Chart, available on-line: https://www.nrel.gov/pv/cell-efficiency.html, accessed May 2021.

[24] International Renewable Energy Agency (IRENA), Solar Photovoltaics, Renewable Energy Technologies: Cost Analysis Series, Vol. 1: Power Sector, iss. 4/5 (2012).

[25] Saga T., Advances in crystalline silicon solar cell technology for industrial mass production, NPG Asia Materials, vol. 2, pp. 96–102 (2010), DOI: 10.1038/asiamat.2010.82.

[26] Mengi O.O., Altas I.H., Fuzzy logic control for a wind/battery renewable energy production sys- tem, Turkish Journal of Electrical Engineering & Computer Sciences, vol. 2, pp. 187–206 (2012), DOI: 10.3906/elk-1104-20.

[27] Buyukguzel B., Aksoy M., A current-based simple analog MPPT circuit for PV systems, Turkish Journal of Electrical Engineering & Computer Sciences, vol. 24, no. 5, pp. 3621–3637 (2016), DOI: 10.3906/elk-1407-21.


[28] Hafez A.Z., Tilt and azimuth angles in solar energy applications – A review, Renewable & Sustainable Energy Reviews, vol. 77, pp. 147–168 (2017), DOI: 10.1016/j.rser.2017.03.131.

[29] Seddjar A., Kerrouche K.D.E., Wang L., Simulation of the proposed combined Fuzzy Logic Control for Maximum Power Point Tracking and Battery Charge Regulation used in CubeSat, Archives of Electrical Engineering, vol. 69, no. 3, pp. 521–543 (2020), DOI: 10.24425/aee.2020.133916.

[30] Komarnicki P., Energy storage systems: power grid and energy market use cases, Archives of Electrical Engineering, vol. 65, no. 3, pp. 495–511 (2016), DOI: 10.1515/aee-2016-0036.

[31] Michalak P., Atmospheric transparency coefficient at selected stations in the Southern and Eastern Poland, Polska Energetyka Słoneczna (in Polish), vol. 2–4, pp. 23–26 (2011).

[32] Marchel P., Paska J., Modeling of photovoltaic power plants reliability, Rynek Energii (in Polish, abstract in English), vol. 111, no. 2, pp. 81–86 (2014).

[33] Cooper P.I., The absorption of radiation in solar stills, Solar Energy, vol. 12, pp. 333–346 (1969), DOI: 10.1016/0038-092X(69)90047-4.

[34] Shen Ch., He Y.-L., Liu Y.-W., Tao W.-Q., Modelling and simulation of solar radiation data processing with Simulink, Simulation Modelling Practice and Theory, vol. 16, pp. 721–735 (2008), DOI: 10.1016/j.simpat.2008.04.013.

[35] Kamali G.A., Moradi I., Khalili A., Estimating solar radiation on tilted surfaces with various orientations: a study case in Karaj (Iran), Theoretical and Applied Climatology, vol. 84, pp. 235–241 (2006), DOI: 10.1007/s00704-005-0171-y.

[36] Polski Komitet Normalizacyjny, EN 61215-1:2016. Terrestrial photovoltaic (PV) modules. Design qualification and type approval. Test requirements, PKN (2016).

[37] Photovoltaic Geographical Information System (PVGIS), available on-line: https://ec.europa.eu/ jrc/en/pvgis, accessed April 2018.

[38] Amillo A.G., Huld T., Müller R., A New Database of Global and Direct Solar Radiation Using the Eastern Meteosat Satellite, Models and Validation, Remote Sensing, vol. 6, pp. 8165–8189 (2014), DOI: 10.3390/rs6098165.

[39] Shiva Kumar B., Sudhakar K., Performance evaluation of 10 MW grid connected solar photovoltaic power plant in India, Energy Reports, vol. 1, pp. 184–192 (2015), DOI: 10.1016/j.egyr.2015.10.001.

[40] Ministerstwo Klimatu i Środowiska, Energy Policy of Poland by 2040. Annex to the Resolution No. 22/2021 of the Council of Ministers from the 2nd February 2021, Ministerstwo Klimatu i Środowiska RP (in Polish) (2021).

[41] Wood Mackenzie, US solar PV system pricing: H2 2020, Wood Mackenzie (2020).


Go to article

Authors and Affiliations

Maciej Cholewiński
1
ORCID: ORCID
Jean-Marc Fąfara
2
ORCID: ORCID

  1. Wrocław University of Science and Technology, Faculty of Mechanical and Power Engineering, Department of Cryogenics and Aviation Engineering, Poland
  2. Wrocław University of Science and Technology, Faculty of Mechanical and Power Engineering, Department of Energy Conversion Engineering, Poland
Download PDF Download RIS Download Bibtex

Abstract

The results of the application and evaluation of the r.sun model for calculation of the total solar radiation for the Wedel Jarlsberg Land (SW Spitsbergen) are presented. Linke Turbidity Factor (LTF), which is the obligatory parameter for direct and diffused radiation calculations with the r.sun model, is derived here with the empirical formula and meteoro− logical measurements. Few different approaches for calculation of LTF are presented and tested. The r.sun model results, calculated with these various LTF, are evaluated through comparison with total solar radiation measurements gathered at Polish Polar Station. The r.sun model is found to be in good agreement with the measurements for clear sky condi− tions, with the explained variance (R2) close to 0.9. Overall, the model slightly underesti− mates the measured total radiation. Reasonable results were calculated for the cloudiness condition up to 2 octas, and for these r.sun model can be considered as a reliable and flexible tool providing spatial data on solar radiation for the study area.

Go to article

Authors and Affiliations

Maciej Kryza
Mariusz Szymanowski
Krzysztof Migała
ORCID: ORCID
Małgorzata Pietras
Download PDF Download RIS Download Bibtex

Abstract

This article analyses the conditions affecting the incoming global solar radiation in Hornsund (Spitsbergen) in spring of 2015. Incoming solar radiation turned out to be average for the season under analysis, as compared with longer-term data. The clearness index (KT) was 0.46, and was mainly determined by the extent of cloudiness. As a result of differences in the length of day, sunshine duration in May was greater than in April. Incoming solar radiation to the earth's surface is also affected by the atmospheric optical properties. The average value of aerosol optical depth (AOD) at 500 nm in Hornsund in spring of 2015 was 0.087. In the analysed period, increased values of AOD at 500 nm (up to 0.143) were observed, although these are not record values. Over April and May, the greatest part of optical depth was comprised of anthropogenic aerosols (41%), followed by marine aerosols (26%), desert dust (21%) and biomass-burning aerosols (12%). This indicates the significant role of the anthropogenic factor in the climatic conditions of Spitsbergen.
Go to article

Authors and Affiliations

Joanna Uscka-Kowalkowska
Rajmund Przybylak
Krzysztof M. Markowicz
Andrzej Araźny
Download PDF Download RIS Download Bibtex

Abstract

The presented article examines aspects of a PV module testing using natural sunlight in outdoor conditions. The article discusses the physical sense of indexes: atmosphere purity, diffused component content, beam clear sky index. Procedures for their determination are given in relation to both instantaneous and daily values. Their close connection with the values of solar irradiance spectral distribution such as Average Photon Energy and Useful Fraction is demonstrated, as well as their usefulness in module testing in outdoor conditions. Their influence on the conversion of modules made from various absorbers and various technologies is demonstrated

Go to article

Authors and Affiliations

T. Rodziewicz
M. Rajfur

This page uses 'cookies'. Learn more