Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The utilization of solar radiation to obtain high-temperature heat can be realized by multiplying it on the illuminated surface with solar concentrating technologies. High-temperature heat with significant energy potential can be used for many technological purposes, e.g. the production of heat, cold or electricity. The following paper presents the results of the experimental study, on the operation of the parabolic linear absorber in the parabolic concentrator solar system. The parabolic mirror with an aperture of 1 m and a focal length of 0.25 m focuses the simulated radiation onto a tubular absorber with a diameter of 33.7 mm, which is placed in a vacuum tube. The length of the absorber is 1 m. The installation is illuminated by the solar simulator, which allows to carry out tests under constant and repeatable conditions. The simulator consists of 18 metal halide lamps, with a nominal power of 575 W each with a dimming possibility of up to 60%. The paper presents preliminary results of heat absorption by the analysed absorber, temperature increment, collected heat flux, and the pressure drop crucial for the optimization of the absorber geometry.
Go to article

Authors and Affiliations

Bartosz Stanek
1
Łukasz Bartela
1
Daniel Węcel
1
Sebastian Rulik
1

  1. Silesian University of Technology, Department of Power Engineering and Turbomachinery, Konarskiego 18, 44-100, Gliwice, Poland
Download PDF Download RIS Download Bibtex

Abstract

Research related to photovoltaic panels comprises different topics starting with modelling solar cells, finding new maximum power point tracking (MPPT) algorithms, testing existing ones or designing of DC/DC converters for MPPT systems and microgrids that incorporate photovoltaic energy sources. In each of the examples above a deep knowledge of photovoltaic panels is required, as well as a reliable measurement system that can deliver continuous, stable light with enough power to meet standard test conditions (STC) and that can ensure repeatable results. Therefore this paper presents a low-cost solar simulator with a microcontroller-based measurement system, that can be used for various measurements of low-power photovoltaic panels.
Go to article

Authors and Affiliations

Marcin Walczak
1
Leszek Bychto
1
Jarosław Kraśniewski
1
ORCID: ORCID
Stanisław Duer
2

  1. Koszalin University of Technology, Department of Electronics and Computer Science, Faculty of Electronics, 2 Śniadeckich St., 75-453 Koszalin, Poland
  2. Koszalin University of Technology, Department of Energy, Faculty of Mechanical Engineering, 15–17 Racławicka St., 75-620 Koszalin, Poland

This page uses 'cookies'. Learn more