Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The most important feature of bells is their sound. Their clarity and beauty depend, first of all, on the bell’s geometry - particularly the shape of its profile and the mechanical properties of alloy. Bells are the castings that work by emitting sound in as-cast state. Therefore all features that are created during melting, pouring, solidification and cooling processes will influence the bell's sound. The mechanical properties of bronze depend on the quality of alloy and microstructure which is created during solidification and depend on its kinetics. Hence, if the solidification parameters influence the alloy’s properties, how could they influence the frequencies of bell`s tone? Taking into account alterable thickness of bell's wall and differences in microstructure, the alloy's properties in bell could be important. In the article authors present the investigations conducted to determine the influence of cooling kinetics on microstructure of bronze with 20 weight % tin contents.

Go to article

Authors and Affiliations

D. Bartocha
C. Baron
J. Suchoń
Download PDF Download RIS Download Bibtex

Abstract

The influence of the cooling rate on the extent of precipitation hardening of cast aluminum alloy (ADC12) was investigated experimentally. This study explored the cooling rate of the solidification of Cu in the α-Al phase to improve the mechanical properties of ADC12 after an aging process (Cu based precipitation hardening). The solid solution of Cu occurred in the α-Al phases during the casting process at cooling rates exceeding 0.03 °C/s. This process was replaced with a solid solution process of T6 treatments. The extent of the solid solution varied depending on the cooling rate; with a higher cooling rate, a more extensive solid solution was formed. For the cast ADC12 alloy made at a high cooling rate, high precipitation hardening occurred after low-temperature heating (at 175 °C for 20 h), which improved the mechanical properties of the cast Al alloys. However, the low-temperature heating at the higher temperature for a longer time decreased the hardness due to over aging. Keywords: Aluminum alloy, Casting, Precipitation, Solid solution, Aging, Solidification rate
Go to article

Bibliography

[1] Sepehrband, P., Mahmudi, R. & Khomamizadeh, F. (2005). Effect of Zr addition on the aging behavior of A319 aluminum cast alloy. Scripta Materialia. 52(4), 253-257.
[2] Rana, G., Zhoua, J.E. & Wang, Q.G. (2008). Precipitates and tensile fracture mechanism in a sand cast A356 aluminum alloy. Journal of Materials Processing Technology. 207(1-3), 46-52.
[3] Tian, L., Guo, Y., Li, J., Xia, F., Liang, M. & Bai, Y. (2018). Effects of solidification cooling rate on the microstructure and mechanical properties of a Cast Al-Si-Cu-Mg-Ni piston alloy. Materials. 11(7), 1230.
[4] Choi, S.W., Kima, Y.M., Leea, K.M., Cho, H.S., Hong, S.K., Kim, Y.C., Kang, C.S. & Kumai, S. (2014). The effects of cooling rate and heat treatment on mechanical and thermal characteristics of Al–Si–Cu–Mg foundry alloys. Journal of Alloys and Compounds. 617, 654-659.
[5] Dobrzański, L.A., Maniara, R., Sokołowski, J. & Kasprzak, W. (2007). Effect of cooling rate on the solidification behavior of AC AlSi7Cu2 alloy. Journal of Materials Processing Technology. 191(1-3), 317-320.
[6] Shabel, B.S., Granger, D.A., Trucker, W.G. (1992). Friction and wear of aluminum-silicon alloys. In P.J. Blau (Eds.), ASM Handbook: Friction, Lubrication, and Wear Technology (pp. 785-794), ASM International.
[7] Son, S.K., Takeda, M., Mitome, M., Bando, Y. & Endo,T. (2005). Precipitation behavior of an Al–Cu alloy during isothermal aging at low temperatures. Materials Letters. 59(6), 629-632.
[8] Wen-jun, T., Lin, Q. & Pi-xiang, Q. (2007). Study on heat treatment blister of squeeze casting parts. China Foundry. 4(2), 108-111.
[9] Okayasu, M., Sahara, N. & Mayama, K. (2021). Effect of microstructural characteristics on mechanical properties of cast Al–Si–Cu alloy controlled by Na. Materials Science and Engineering. A (in press).
[10] Hamasaki, M. & Miyahara, H. (2013). Solidification microstructure and critical conditions of shrinkage porosity generation in die casting process of JIS-ADC12 (A383) alloy. Materials Transactions. 54(7), 1131-1139.
[11] Kamio, A. (1996). Refinement of solidification structure in aluminum alloys. Japan Foundry Engineering Society. 68, 1075-1083.
[12] Okayasu, M. & Go, S. (2015). Precise analysis of effects of aging on mechanical properties of cast ADC12 aluminum alloy. Materials Science and Engineering. A 638, 208-218.
[13] David, S.A. & Vitek, J.M. (1989). Correlation between solidification parameters and weld microstructures. International Materials Reviews. 34(1), 213-245.

Go to article

Authors and Affiliations

M. Okayasu
1
N. Sahara
1
M. Touda
2

  1. Graduate School of Natural Science and Technology, Okayama University3-1-1 Tsushimanaka, Kita-ku, Okayama city, Okayama, 700-8530, Japan
  2. Kyowa Casting Co., Ltd.5418-3 Nishi Ebara-cho, Ibara city, Okayama, 715-0006, Japan

This page uses 'cookies'. Learn more