Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 164
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the verification of a solution to the narrow sound frequency range problem of flat reflective panels. The analytical, numerical and experimental studies concerned flat panels, panels with curved edges and also semicircular elements. There were compared the characteristics of sound reflected from the studied elements in order to verify which panel will provide effective sound reflection and also scattering in the required band of higher frequencies, i.e. above the upper limit frequency. Based on the conducted analyzes, it was found that among some presented solutions to narrow sound frequency range problem, the array composed of panels with curved edges is the most preferred one. Nevertheless, its reflection characteristic does not meet all of the requirements, therefore, it is necessary to search for another solution of canopy which is effective over a wide frequency range.
Go to article

Authors and Affiliations

Agata Szeląg
Tadeusz Kamisiński
Mirosława Lewińska
Jarosław Rubacha
Adam Pilch
Download PDF Download RIS Download Bibtex

Abstract

The analysis of available literature indicates that tests of products sound quality, which would not involve participation of groups of listeners supposed to evaluate the sounds emitted by these products, are neither carried out in Poland, nor in the world. That results in the fact that the products sound quality is determined on the basis of psychoacoustic information and comprises both objective and subjective factors of sound perception. With reference to those factors and to different life cycles of the machine, an original definition of the “sound quality of the machine” has been developed and presented in this article. The global index of the acoustic quality of the machine, accounting for the relations between the noise level at the workstation and the selected parameters characterising both the machine's sound activity and the working environment, was adopted as the measure of the sound quality of the machine. The experiments that followed confirmed the appropriateness of the assessment made with the use of the global index of acoustic quality.
Go to article

Authors and Affiliations

Dariusz Pleban
Download PDF Download RIS Download Bibtex

Abstract

Main aim of this study is to combine the characteristics of the sonic crystal (SC) with acoustic panels and porous materials to improve the sound transmission loss (STL) through the triple-panel structure. SCs cause a bandgap centered around a certain frequency (Bragg’s frequency) due to generation of destructive interference. Initially, an analytical method is developed that extends the previous theory of double-panel structure to predict STL through a triple-panel structure. Finite element (FE) simulations are performed to obtain the STL through the triple-panel, which are validated with the analytical predictions. Various configurations are analyzed using the FE method based on the method of inserting the porous material and SCs between the panels to address the combined effect. STL through the triple-panel structure is compared with that through the double-panel structure having the same total weight and total thickness. It is found that the combined structure of the triple panel and the SC with glass wool as filler gives the best soundproof performance for the same external dimensions. For narrow air gaps, filing with glass wool is more advantageous than inserting one row of SC. In addition, the triple panel combined with a SC has better soundproofing than the two-panel counterparts.

Go to article

Authors and Affiliations

Myong-Jin Kim
Download PDF Download RIS Download Bibtex

Abstract

The theoretical estimation of sound absorption coefficient of a surface may give very different results. This will depend on the type of sound field assumed in the theoretical model used for the estimation of its sound absorption coefficient. Absorption coefficients for normal and diffuse sound fields are widely known, although they may be far from the absorption values given by an absorbing material when it is finally installed inside a room or enclosed space, where a sound field closer to a spherical wavefront is more likely to be found. This work presents a theoretical study, which is addressed at obtaining a mathematical expression to calculate the sound absorption coefficient for a variable range of incidence angles, called αs. The presented method uses a circular sound field incidence as an approximation to a spherical incidence. The estimation of this coefficient αs is based on obtaining the incident and reflected sound fields for a surface located facing a lineal source. The advantage of this calculation method over others lies on its capability to give results for circular, normal and random wave incidence depending on the range of incidence angles considered in the calculation.

Go to article

Authors and Affiliations

Sergio Alfio Yori
Download PDF Download RIS Download Bibtex

Abstract

In this study, the modified Sauer cavitation model and Kirchhoff-Ffowcs Williams and Hawkings (K-FWH) acoustic model were adopted to numerically simulate the unsteady cavitation flow field and the noise of a threedimensional NACA66 hydrofoil at a constant cavitation number. The aim of the study is to conduct and analyze the noise performance of a hydrofoil and also determine the characteristics of the sound pressure spectrum, sound power spectrum, and noise changes at different monitoring points. The noise change, sound pressure spectrum, and power spectrum characteristics were estimated at different monitoring points, such as the suction side, pressure side, and tail of the hydrofoil. The noise characteristics and change law of the NACA66 hydrofoil under a constant cavitation number are presented. The results show that hydrofoil cavitation takes on a certain degree of pulsation and periodicity. Under the condition of a constant cavitation number, as the attack angle increases, the cavitation area of the hydrofoil becomes longer and thicker, and the initial position of cavitation moves forward. When the inflow velocity increases, the cavitation noise and the cavitation area change more drastically and have a superposition tendency toward the downstream. The novelty is that the study presents important calculations and analyses regarding the noise performance of a hydrofoil, characteristics of the sound pressure spectrum, and sound power spectrum and noise changes at different monitoring points. The article may be useful for specialists in the field of engineering and physics.
Go to article

Authors and Affiliations

He Xiaohui
1
Liu Zhongle
2
Yang Chao
1
Yuan Zhiyong
2

  1. Jiangnan Industry Group Co., Ltd., Wuyi Village, China
  2. Naval University of Engineering, Wuhan, China
Download PDF Download RIS Download Bibtex

Abstract

For the purpose of reducing the impact noise transmission across floating floors in residential buildings, two main sound transmission paths in the floating floor structure are considered: the stud path and the cavity path. The sound transmission of each path is analysed separately: the sound transmission through the cavity and the stud are predicted by statistical energy analysis (SEA). Then, the sound insulation prediction model of the floating floor is established. There is reasonable agreement between the theoretical prediction and measurement, and the results show that a resilient layer with low stiffness can attenuate the sound bridge effect, resulting in higher impact noise insulation. Then, the influences of the floor covering, the resilient layer and the floor plate on the impact sound insulation are investigated to achieve the optimised structure of the floating floor based on the sound insulation.
Go to article

Authors and Affiliations

Xianfeng Huang
1 2
Yimin Lu
3
Chen Qu
1
Chenhui Zhu
1

  1. College of Civil Engineering and Architecture, Guangxi University, Nanning 530004, China
  2. Guangxi Key Laboratory of Disaster Prevention and Engineering Safety, Guangxi University, Nanning 530004, China
  3. School of Electrical Engineering, Guangxi University, Nanning 530004, China
Download PDF Download RIS Download Bibtex

Abstract

The design of neonatal intensive care units (NICU) influences both patient safety and clinical outcomes as well as the acoustic conditions. In NICU exposure to sound pressure levels above the recommended can affect both neonates and healthcare staff.
This study aimed to evaluate the sound pressure levels and to assess noise perception of professionals in a NICU before and after structural modifications and layout redesign.
The measurements were performed with a sound level meter. A questionnaire was given to staff before and after the intervention. The opinion of healthcare staff regarding noise in NICU was better after the intervention, when compared with the responses previously given.
The results showed that noise levels were excessive in the NICU (before and after), exceeding the international recommendations, with the levels ranging between 46.6 dBA to 57.8 dBA before and 52.0 dBA to 54.0 dBA after intervention. Overall, there is a need for more research in order to verify the effectiveness of some actions and strategies to reduce the impact of noise in NICU.
Go to article

Bibliography

1. Ahamed M.F., Campbell D., Horan S., Rosen O. (2017), Noise reduction in the neonatal intensive care unit: a quality improvement initiative, American Journal of Medical Quality, 33(2): 177–184, doi: 10.1177/1062860617711563.
2. American Academy of Pediatrics: Committee on Environmental Health (1997), Noise: a hazard for the fetus and newborn, Pediatrics, 100(4): 724–727, doi: 10.1542/peds.100.4.724.
3. Basner M. et al. (2014), Auditory and non-auditory effects of noise on health, The Lancet, 383(9925): 1325– 1332, doi: 10.1016/S0140-6736(13)61613-X.
4. Berglund B., Lindvall T., Schwela H.D. (1999), Guidelines for community noise, [in:] Guidelines for Community Noise, retrieved on July 22, 2017, from http://www.who.int/docstore/peh/noise/guidelines2.html.
5. Carvalhais C., da Silva M.V., Xavier A., Santos J. (2019), Good practices to reduce noise levels in the neonatal intensive care unit, [in:] Occupational and Environmental Safety and Health. Studies in Systems, Decision and Control, P.M. Arezes et al. [Eds], Vol. 202, pp. 297–302, Springer, Cham, doi: 10.1007/978-3-030-14730-3_32.
6. Carvalhais C., Santos J., Vieira da Silva M., Xavier A. (2015), Is there sufficient training of healthcare staff on noise reduction in neonatal intensive care units? A pilot study from NeoNoise Project, Journal of Toxicology and Environmental Health, Part A, 78(13– 14): 897–903, doi: 10.1080/15287394.2015.1051204.
7. Carvalhais C., Silva M., Xavier A., Santos J. (2017), Newborns safety at neonatal intensive care units: are they exposed to excessive noise during routine health care procedures?, Global Environment Health and Safety, 1(1): 1–3.
8. Domanico R., Davis D.K., Coleman F., Davis B.O. (2011), Documenting the NICU design dilemma: comparative patient progress in open-ward and single family room units, Journal of Perinatology: Official Journal of the California Perinatal Association, 31(4): 281– 288, doi: 10.1038/jp.2010.120.
9. Gray L., Philbin M.K. (2000), Measuring sound in hospital nurseries, Journal of Perinatology, 20(8 Pt 2): S100–S104, doi: 10.1038/sj.jp.7200440.
10. Joshi R., Straaten H., van Mortel H., van de Long X., Andriessen P., van Pul C. (2018), Does the architectural layout of a NICU affect alarm pressure? A comparative clinical audit of a single-family room and an open bay area NICU using a retrospective study design, BMJ Open, 8(6): e022813, doi: 10.1136/bmjopen-2018-022813.
11. Kellam B., Bhatia J. (2008), Sound spectral analysis in the intensive care nursery: measuring highfrequency sound, Journal of Pediatric Nursing, 23(4): 317–323, doi: 10.1016/j.pedn.2007.09.009.
12. Kent W.T., Tan A.W., Clarke M.C., Bardell T. (2002), Excessive noise levels in the neonatal ICU: potential effects on auditory system development, The Journal of Otolaryngology, 31(6): 355–360, doi: 10.2310/7070.2002.34358.
13. Kol E., Aydin P., Dursun O. (2015), The effectiveness of environmental strategies on noise reduction in a pediatric intensive care unit: Creation of singlepatient bedrooms and reducing noise sources, Journal for Specialists in Pediatric Nursing, 20(3); 210–217, doi: 10.1111/jspn.12116.
14. Krueger C., Schue S., Parker L. (2007), Neonatal intensive care unit sound levels before and after structural reconstruction, MCN The American Journal of Maternal/Child Nursing, 32(6), 358–362, doi: 10.1097/01.NMC.0000298131.55032.76.
15. Lahav A. (2015), Questionable sound exposure outside of the womb: Frequency analysis of environmental noise in the neonatal intensive care unit, Acta Paediatrica, International Journal of Paediatrics, 104(1): e14–e19, doi: 10.1111/apa.12816.
16. Lester B.M. et al. (2014), Single-family room care and neurobehavioral and medical outcomes in preterm infants, Pediatrics, 134(4): 754–760, doi: 10.1542/peds.2013-4252.
17. Livera M.D. et al. (2008), Spectral analysis of noise in the neonatal intensive care unit, The Indian Journal of Pediatrics, 75(3): 217–222, doi: 10.1007/s12098-008-0048-z.
18. Meredith J.L., Jnah A., Newberry D. (2017), The NICU Environment: Infusing Single-Family Room Benefits into the Open-Bay Setting, Neonatal Network, 36(2): 69–76, doi: 10.1891/0730-0832.36.2.69.
19. Parra J., de Suremain A., Berne Audeoud F., Ego A., Debillon T. (2017), Sound levels in a neonatal intensive care unit significantly exceeded recommendations, especially inside incubators, Acta Paediatrica, 106(12): 1909–1914, doi: 10.1111/apa.13906.
20. Philbin M.K. (2004), Planning the acoustic environment of neonatal intensive care units, Clinical Perinatology, 31(2): 331–352, doi: 10.1016/j.clp.2004.04.014.
21. Philbin M.K., Gray L. (2002), Changing levels of quiet in an intensive care nursery, Journal of Perinatology , 22(6): 455–460, doi: 10.1038/sj.jp.7210756.
22. Ramm K., Mannix T., Parry Y., Gaffney M.P.C. (2017), A comparison of sound levels in open plan versus pods in a neonatal intensive care unit, Health Environments Research and Design Journal, 10(3): 30–39, doi: 10.1177/1937586716668636.
23. Robertson A., Kohn J., Vos P., Cooper-Peel C. (1998), Establishing a noise measurement protocol for neonatal intensive care units, Journal of Perinatology, 18(2): 126–130, http://www.ncbi.nlm.nih.gov/pubmed/9605303.
24. Romeu J., Cotrina L., Perapoch J., Linés M. (2016), Assessment of environmental noise and its effect on neonates in a Neonatal Intensive Care Unit, Applied Acoustics, 111: 161–169, doi: 10.1016/j.apacoust.2016.04.014.
25. Santos J., Carvalhais C., Xavier A., Silva M.V. (2018), Assessment and characterization of sound pressure levels in Portuguese neonatal intensive care units, Archives of Environmental and Occupational Health, 73(2): 121–127, doi: 10.1080/19338244.2017.1304883.
26. Smith S.W., Ortmann A.J., Clark W.W. (2018), Noise in the neonatal intensive care unit: a new approach to examining acoustic events, Noise & Health, 20(95): 121–130, doi: 10.4103/nah.NAH_53_17.
27. Szymczak S.E., Shellhaas R.A. (2014), Impact of NICU design on environmental noise, Journal of Neonatal Nursing, 20(2): 77–81, doi: 10.1016/j.jnn.2013.07.003.
28. United States Environmental Protection Agency (1974), Information on Levels of Environmental Noise Requisite to Protect Public Health and Welfare with an Adequate Margin of Safety (EPA/ONAC 550/9-74- 004).
29. Wachman E.M., Lahav A. (2011), The effects of noise on preterm infants in the NICU, Archives of Disease in Childhood-Fetal and Neonatal Edition, 96(4): F305–F309, doi: 10.1136/adc.2009.182014.
30. Wiese C.H., Wang L.M., Ronsse L.M. (2009), Comparison of noise levels between four hospital wings with different material treatments, The Journal of the Acoustical Society of America, 126(4): 2217, doi: 10.1121/1.3248811.
Go to article

Authors and Affiliations

Carlos Carvalhais
1 2
Célia Rodrigues
3
Ana Xavier
1
Manuela V. Silva
1
Joana Santos
1 4 5

  1. Scientific Area of Environmental Health, Health and Environment Research Center (CISA), School of Health of Polytechnic Institute of Porto (ESS P.Porto), Porto, Portugal
  2. Epidemiology Research Unit (EPIUnit), Institute of Public Health, University of Porto, Porto, Portugal
  3. PROA/LABIOMEP, Faculdade de Engenharia, Universidade do Porto, Porto, Portugal
  4. Institute of Science and Innovation in Mechanical and Industrial Engineering, Associated Laboratory for Energy, Transports and Aeronautics (INEGI/LAETA), Faculdade de Engenharia, Universidade do Porto, Porto, Portugal
  5. Center for Rehabilitation Research (CIR), School of Health of Polytechnic Institute of Porto (ESS P.Porto), Porto, Portugal
Download PDF Download RIS Download Bibtex

Abstract

The purpose of this study was to evaluate the psychoacoustic annoyance (PA) that the tractor drivers are exposed to, and investigate its effects on their brain signals during their work activities. To this aim, the sound of a garden tractor was recorded. Each driver’s electroencephalogram (EEG) was then recorded at five different engine speeds. The Higuchi method was used to calculate the fractal dimension of the brain signals. To evaluate the amount of acoustic annoyance that the tractor drivers were exposed to, a psychoacoustic annoyance (PA) model was used. The results showed that as the engine speed increased, the values of PA increased as well. The results also indicated that an increase in the Higuchi’s fractal dimension (HFD) of alpha and beta bands was due to the increase of the engine speed. The regression results also revealed that there was a high correlation between the HFD of fast wave activities and PA, in that, the coefficients of determination were 0.92 and 0.91 for alpha and beta bands, respectively. Hence, a good correlation between the EEG signals and PA can be used to develop a mathematical model which quantifies the human brain response to the external stimuli.
Go to article

Authors and Affiliations

Majid Lashgari
1
Mohammad Reza Arab
2
Mohsen Nadjafi
3
Rafiee Mojtaba
1

  1. Department of Biosystems Engineering, Arak University Arak, Iran
  2. Department of Medical Engineering, Arak University of Medical Sciences Arak, Iran
  3. Department of Electrical Engineering, Arak University of Technology Arak, Iran
Download PDF Download RIS Download Bibtex

Abstract

The radar device for measurement of thickness and structure of "warm" glaciers was used in this work. The measurement of thickness of dielectric is based here on the examination of transit time of hight frequency electromagnetic pulse throught the measured stratum. A total ice volume of "warm" glaciers is in the melting temperature here. Such glaciers are characterized by a large number of internal structure defects. The electromagnetic wave reflections are caused not only b the glacier base but, additionally by ice crevasses, more imbided water layers and by all other defects of the internal glacier structure, too. The simple statistical method was elaborated for differentiation of essential layers reflections from random reglections caused by less extented objects. This method was used to obtain the two transversal profiles of the Hans Glacier (South Spitsbergen).

Go to article

Authors and Affiliations

Ryszard Czajkowski
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the new solution to a road acoustic screen consisting of elements which are highly diffusing and simultaneously resistant to weathering, but also characterised by a sound absorption. There is described the comprehensive research of such the road acoustic screen with absorbing and diffusing surface. The study includes screen’s resistance to wind load and snow removal, impact tests and mea- surements of some acoustic parameters
Go to article

Authors and Affiliations

Tadeusz Kamisiński
Roman Kinasz
Agata Szeląg
Jarosław Rubacha
Adam Pilch
Artur Flach
Katarzyna Baruch
Download PDF Download RIS Download Bibtex

Abstract

This paper deals with the problem of the effect of discretization level and certain other parameters characterizing the measurement setup on accuracy of the process of determination of the sound radiation efficiency by means of the Discrete Calculation Method (DCM) described by Hashimoto (2001). The idea behind DCM consists in virtual division of an examined sound radiating structure into rectangular elements each of which is further assumed to contribute to the total radiation effect in the same way as a rigid circular piston having the surface area equal to this of the corresponding virtual element and vibrating in an infinite rigid baffle. The advantage of the method over conventional sound radiation efficiency measurement techniques consists in the fact that instead of acoustic pressure values, source (plate) vibration velocity amplitude values are measured in a selected number of regularly distributed points. In many cases, this allows to determine the sound radiation efficiency with sufficient accuracy, especially for the low frequency regime. The key part of the paper is an analysis of the effect of discretization level (i.e. the choice of the number of points at which vibration amplitude measurements are to be taken with the use of accelerometers) on results obtained with the use of the method and their accuracy. The problem of determining an optimum level of discretization for given excitation frequency range is a very important issue as the labor intensity (time-consuming aspect) of the method is one of its main flaws. As far as the technical aspect of the method is concerned, two different geometrical configurations of the measurement setup were tested.
Go to article

Authors and Affiliations

Karolina Kolber
Anna Snakowska
Michał Kozupa
Download PDF Download RIS Download Bibtex

Abstract

Noise propagation within ducts is of practical concern in many areas of industrial processes where a fluid has to be transported in piping systems. The paper presents experimental data and visualization of flow in the vicinity of an abrupt change in cross-section of a circular duct and on obstacles inside where the acoustic wave generates nonlinear separated flow and vortex fields. For noise produced by flow wave of low Mach number, laminar and turbulent flows are studied us- ing experimental sound intensity (SI) and laser particle image velocimetry (PIV) technique adopted to acoustics (A-PIV). The emphasis is put on the development and application of these methods for better understanding of noise generation inside the acoustic ducts with different cross-sections. The intensity distribution inside duct is produced by the action of the sum of modal pressures on the sum of modal particle velocities. However, acoustic field is extremely complicated because pressures in non-propagating (cut-off) modes cooperate with particle velocities in propagating modes, and vice versa. The discrete frequency sound is strongly influenced by the transmission of higher order modes in the duct. By under- standing the mechanism of energy in the sound channels and pipes we can find the best solution to noise abatement technology. In the paper, numerous methods of visualization illustrate the vortex flow as an acoustic velocity or sound intensity stream which can be presented graphically. Diffraction and scattering phenomena occurring inside and around the open-end of the acoustic duct are shown.
Go to article

Authors and Affiliations

Stefan Weyna
Witold Mickiewicz
Michał Pyła
Michał Jabłoński
Download PDF Download RIS Download Bibtex

Abstract

A system setup for measurements of acoustic field, together with the results of 3D visualisations of acoustic energy flow are presented in the paper. Spatial sampling of the field is performed by a Cartesian robot. Automatization of the measurement process is achieved with the use of a specialized control system. The method is based on measuring the sound pressure (scalar) and particle velocity(vector) quantities. The aim of the system is to collect data with a high precision and repeatability. The system is employed for measurements of acoustic energy flow in the proximity of an artificial head in an anechoic chamber. In the measurement setup an algorithm for generation of the probe movement path is included. The algorithm finds the optimum path of the robot movement, taking into account a given 3D object shape present in the measurement space. The results are presented for two cases, first without any obstacle and the other - with an artificial head in the sound field.

Go to article

Authors and Affiliations

Maciej Szczodrak
Bożena Kostek
Andrzej Czyżewski
Józef Kotus
Adam Kurowski
Download PDF Download RIS Download Bibtex

Abstract

The purpose of the study was to compare auditory judgments of sound clarity of music examples recorded in a concert hall with predictions of clarity made from the impulse response signal recorded in the same hall. Auditory judgments were made with the use of two methods: by rating sound clarity on a numerical scale with two endpoints, and by absolute magnitude estimation. Results obtained by both methods were then compared against the values of clarity indices, C80 and C50, determined from the impulse response of the concert hall, measured in places in which the microphone was located during recording of music examples. Results show that auditory judgments of sound clarity and predictions made from the C80 index yield a similar rank order of data, but the relation between the C80 scale and perceived sound clarity is nonlinear. The data also show that the values of C80 and C50 indices are in very close agreement.

Go to article

Authors and Affiliations

Teresa Rościszewska
Andrzej Miśkiewicz
Tomira Rogala
Tomasz Rudzki
Tadeusz Fidecki
Download PDF Download RIS Download Bibtex

Abstract

A gear system transmits power by means of meshing gear teeth and is conceptually simple and effective in power transmission. Thus typical applications include electric utilities, ships, helicopters, and many other industrial applications. Monitoring the condition of large gearboxes in industries has attracted increasing interest in the recent years owing to the need for decreasing the downtime on production machinery and for reducing the extent of secondary damage caused by failures. This paper addresses the development of a condition monitoring procedure for a gear transmission system using artificial neural networks (ANNs) and support vector machines (SVMs). Seven conditions of the gear were investigated: healthy gear and gear with six stages of depthwise wear simulated on the gear tooth. The features extracted from the measured vibration and sound signals were mean, root mean square (rms), variance, skewness, and kurtosis, which are known to be sensitive to different degrees of faults in rotating machine elements. These characteristics were used as an input features to ANN and SVM. The results show that the multilayer feed forward neural network and multiclass support vector machines can be effectively used in the diagnosis of various gear faults.

Go to article

Authors and Affiliations

Muniyappa Amarnath
Download PDF Download RIS Download Bibtex

Abstract

The paper shows a study on the relationship between noise measures and sound quality (SQ) features that

are related to annoyance caused by the traffic noise. First, a methodology to perform analyses related to

the traffic noise annoyance is described including references to parameters of the assessment of road noise

sources. Next, the measurement setup, location and results are presented along with the derived sound quality

features. Then, statistical analyses are performed to compare the measurement results and sound quality

features. The included conclusions are focused on showing that the obtained loudness values, regardless of

the used system, are similar in a statistical sense. Contrarily, sharpness, roughness and fluctuation strength

values differ for the tools employed.

Go to article

Authors and Affiliations

Waldemar Paszkowski
Józef Kotus
Tomasz Poremski
Bożena Kostek
Download PDF Download RIS Download Bibtex

Abstract

This paper discusses the concept of the reverberation radius, also known as critical distance, in rooms with non-uniformly distributed sound absorption. The reverberation radius is the distance from a sound source at which the direct sound level equals the reflected sound level. The currently used formulas to calculate the reverberation radius have been derived by the classic theories of Sabine or Eyring. However, these theories are only valid in perfectly diffused sound fields; thus, only when the energy density is constant throughout a room. Nevertheless, the generally used formulas for the reverberation radius have been used in any circumstance. Starting from theories for determining the reverberation time in non- diffuse sound fields, this paper firstly proposes a new formula to calculate the reverberation radius in rooms with non-uniformly distributed sound absorption. Then, a comparison between the classic formulas and the new one is performed in some rectangular rooms with non-uniformly distributed sound absorption. Finally, this paper introduces a new interpretation of the reverberation radius in non-diffuse sound fields. According to this interpretation, the time corresponding to the sound to travel a reverberation radius should be assumed as the lower limit of integration of the diffuse sound energy
Go to article

Authors and Affiliations

Higini Arau-Puchades
Umberto Berardi
Download PDF Download RIS Download Bibtex

Abstract

Urethane foam mattresses are commonly used as cushioning when placing panel flooring on the floor slab of a building. Urethane foam consists of elastic fibres with pores. Both elements can affect the performance of the insulation against impact sounds. However, these effects have not yet been detailed, and they may change if the material properties or constitution of the fibres and pores in the cushioning change. In this paper, we propose an analytical model for use in evaluating the performance of insulation against floor impact sound. This model was used to examine the contribution of the pores versus the elastic fibres to wave transmissions from the flooring surface to the slab. The results reveal that the constitution of the foam (either open or closed cells of pores) and the thickness and hardness of the cushion layer strongly affect the sound insulation performance of the floor.
Go to article

Authors and Affiliations

RuiLin Mu
Masahiro Toyoda
Daiji Takahashi
Download PDF Download RIS Download Bibtex

Abstract

The condition monitoring techniques like acoustic emission, vibration analysis, and infrared thermography, used for the failure diagnosis of bearings, require longer processing time, as they have to perform acoustical measurement followed by signal processing and further analysis using special software. However, for any bearing, its period of usage can be easily determined within an hour, by measuring the bearing sound, using sound level meter (SLM). In this paper the acoustical analysis of the spindle bearing of a radial drilling machine was performed using SLM, by measuring the sound pressure level of the bearing in decibels, for different frequencies, while muting all the other noises. Then using an experimental set up, two database readings were taken, one for new bearing and the other for completely damaged bearing, both are SKF6207, which itself is the spindle bearing. From these three sets of sound pressure level readings, the period of usage of the spindle bearing, was calculated using an interpolation equation, by substituting the life of the bearing from the manufacturer’s catalogue. Therefore, for any machine with a SKF6207 bearing, its usage time can be estimated using the database readings and one measurement on that machine, all with the same speed.

Go to article

Authors and Affiliations

S. Charles
Joslin D. Vijaya

Authors and Affiliations

Piotr Karwat
1

  1. Department of Ultrasound, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

Indoor noise can greatly affect the health and comfort of users, so the significance of the right assessment of the compliance with the requirements is obvious. But noise level testing is carried out using different methods, which may not ensure consistency in assessments.
The paper presents the influence of test methods on measurement results determined based on an analysis of inter-laboratory comparative studies. The analyses presented in the paper apply to an equivalent sound pressure level determined for a permanent source of sound – an air-conditioning device. The test methods were characterised according to their precision. In order to compare them, their compatibility was analysed based on the methodology described in the literature, alongside a single-factor analysis of variance. It was determined that there were no grounds for rejecting the hypothesis about lack of statistical differences between the results obtained via different methods. Each of the methods is characterised by different precision, so consequently the same result obtained with each method carries a different risk in regards to noise assessment.
The reason for taking up this kind of research was the decision of the Polish Technical Committee in 2018 about introducing new acoustic requirements in Poland concerning the admissible indoor sound pressure levels. It was decided to implement new international methods of testing indoor sound pressure levels emanating from the service equipment in the building. It was necessary to show the differences between the current method and its new counterparts.
Go to article

Bibliography

1. Batko W.M., Stepien B. (2014), Type a standard uncertainty of long-term noise indicators, Archives of Acoustics, 39(1): 25–36, doi: 10.2478/aoa-2014-0004.
2. Berardi U. (2012), A comparison of measurement standard methods for the sound insulation of building façades, Building Acoustics, 19: 267–282, doi: 10.1260/1351-010X.19.4.267.
3. Czichos H., Saito T., Smith L. (2011), Springer Handbook of Metrology and Testing, Springer Berlin– Heidelberg, doi: 10.1007/978-3-642-16641-9.
4. Daszykowski M., Kaczmarek K., Vander Heyden Y., Walczak B. (2007), Robust statistics in data analysis – A review: basic concepts, Chemometrics and Intelligent Laboratory Systems, 85: 203–219, doi: 10.1016/J.CHEMOLAB.2006.06.016.
5. Di Bella A., Pontarollo C.M., Granzotto N., Remigi F. (2013), Interlaboratory test for field evaluation of noise from equipment in residential buildings, [in:] AIA-DAGA 2013 Merano, Merano, pp. 1880–1883.
6. EA-4/16 G:2003 (2003), EA guidelines on the expression of uncertainty in quantitative testing, EA, https://european-accreditation.org/publications/ea-4- 16-g/ (retrieved 18.01.2021).
7. Flores M., Fernández-Casal R., Naya S., Tarrío- Saavedra J., Bossano R. (2018), ILS: An R package for statistical analysis in interlaboratory studies, Chemometrics and Intelligent Laboratory Systems, 181: 11–20, doi: 10.1016/j.chemolab.2018.07.013.
8. ISO-10052 (2004), Acoustics – Field measurements of airborne and impact sound insulation and of service equipment sound – Survey method.
9. ISO-16032 (2004), Acoustics – Measurement of sound pressure level from service equipment in buildings – Engineering method.
10. ISO 13528 (2015), Statistical methods for use in proficiency testing by interlaboratory comparison.
11. ISO 5725-2 (1994), Accuracy (trueness and precision) of measurement methods and results – Part 2: Basic method for the determination of repeatability and reproducibility of a standard measurement method.
12. Jagan K., Forbes A.B. (2019), Assessing interlaboratory comparison data adjustment procedures, International Journal of Metrology and Quality Engineering, 10: 1–8, doi: 10.1051/ijmqe/2019003.
13. JCGM 100:2008 (2008), Evaluation of measurement data – Guide to the expression of uncertainty in measurement, JCGM. 14. JCGM 106:2012 (2012), Evaluation of measurement data: The role of measurement uncertainty in conformity assessment, JCGM.
15. JCGM 200:2012 (2008), International vocabulary of metrology – Basic and general concepts and associated terms (VIM), 3rd ed., JCGM.
16. Kacker R.N., Kessel R., Sommer K.D. (2010), Assessing differences between results determined according to the guide to the expression of uncertainty in measurement, Journal of Resarch of the National Institute of Standards and Technology, 115: 453–459, doi: 10.6028/jres.115.031
17. Kessel R., Kacker R.N., Sommer K.D. (2011), Combining results from multiple evaluations of the same measurand, Journal of Resarch of the National Institute of Standards and Technology, 116: 809–820, doi: 10.6028/jres.116.023
18. Molenaar J., Cofino W.P., Torfs P.J.J.F. (2018), Efficient and robust analysis of interlaboratory studies, Chemometrics and Intelligent Laboratory Systems, 175: 65–73, doi: 10.1016/j.chemolab.2018.01.003
19. NIST/SEMATECH (2013), e-Handbook of Statistical Methods, Ch. 1.3.5.10, http://www.itl.nist.gov/div898/handbook/ (retrieved 12.08.2020).
20. PN-B-02151-02 (1987), Building acoustics – Noise protection of apartments in buildings – Permissible values of sound level in apartments [in Polish: Akustyka budowlana – Ochrona przed hałasem pomieszczen w budynkach – Dopuszczalne wartosci poziomu dzwieku w pomieszczeniach].
21. PN-B-02156 (1987), Building acoustics – Methods for measurement of sound power of A-level in buildings [in Polish: Akustyka budowlana – Metody pomiaru poziomu dzwieku A w budynkach].
22. Pozzer T., Wunderlich P., Monteneiro C., de Frias J. (2019), Interlaboratory and proficiency tests for field measurements in Brazil, [in:] INTER-NOISE and NOISE-CON Congress and Conference Proceedings, Vol. 259, No. 1, pp. 8120–8130, Institute of Noise Control Engineering, http://www.sea-acustica.es/filead min/INTERNOISE_2019/Fchrs/Proceedings/2200.pdf.
23. Prezelj J., Murovec J. (2017), Traffic noise modelling and measurement: Inter-laboratory comparison, Applied Acoustics, 127: 160–168, doi: 10.1016/j.apacoust.2017.06.010.
24. Przysucha B., Batko W., Szelag A. (2015), Analysis of the accuracy of uncertainty noise measurement, Archives of Acoustics, 40(2): 183–189, doi: 10.1515/aoa-2015-0020.
25. Przysucha B., Szelag A., Pawlik P. (2020), Probability distributions of one-day noise indicators in the process of the type A uncertainty evaluation of longterm noise indicators, Applied Acoustics, 161: 107158, doi: 10.1016/j.apacoust.2019.107158.
26. Scamoni F. et al. (2009), Repeatability and reproducibility of field measurements in buildings, [in:] Proceedings of 8th European Conference on Noise Control 2009, EuroNoise09, Edinburgh, Scotland, UK, 26–28 October, 2009.
27. Scrosati C. et al. (2015), Uncertainty of faqade sound insulation measurements obtained by a round robin test: The influence of the low frequencies extension, [in:] Proceedings of the 22nd International Congress on Sound and Vibration (ICSV22), Florence, Italy, pp. 12– 16.
28. Scrosati C. et al. (2020), Towards more reliable measurements of sound absorption coefficient in reverberation rooms: An Inter-Laboratory Test, Applied Acoustics, 165: 107298, doi: 10.1016/j.apacoust.2020.107298
29. Seddeq H.S., Medhat A.A. (2011), Indoor noise measurements evaluations for HVAC-Unit using interlaboratory comparisons, International Journal of Metrology and Quality Engineering, 2(2): 75–81, doi: 10.1051/ijmqe/2011104
30. Szewczak E., Bondarzewski A. (2016), Is the assessment of interlaboratory comparison results for a small number of tests and limited number of participants reliable and rational?, Accreditation and Quality Assurance, 21(2): 91–100, doi: 10.1007/s00769-016-1195-y.
31. Trzpiot G. (2015), Some remarks of type III error for directional two-tailed test, Studia Ekonomiczne. Zeszyty Naukowe Uniwersytetu Ekonomicznego w Katowicach, 219: 5–16.
32. Walker W.E. et al. (2003), Defining uncertainty: a conceptual basis for uncertainty management in model-based decision support, Integrated Assessment, 4(3): 5–17, doi: 10.1076/iaij.4.1.5.16466
33. Wszolek T. (2006), Effect of traffic noise statistical distribution on LAeq;T measurement uncertainty, Archives of Acoustics, 31(3): 311–318.
Go to article

Authors and Affiliations

Elżbieta Nowicka
1
Ewa Szewczak
1

  1. Building Research Institute, Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

The main problem in the measurement of airborne sound insulation is the measurement of the sound power radiated by the barrier, in practice performed by measuring the sound pressure level and the acoustic absorption in the receiving room. Large variations of the sound pressure level in a reverberation room indicate the presence of dominating strong standing waves, so that it becomes necessary to install diffusing elements. In ISO 10140, the limits have been defined in which the reverberation time at frequencies at and above 100 Hz should be included. Sometimes, however, in the case of rooms with a large volume, obtaining the required parameters is difficult and sometimes even impossible. It should then be checked whether the measured sound insulation depends on the reverberation time.

The paper presents the results of sound insulation measurements at various reverberation time lengths in subsequent stages of diffusing elements installation in the receiving room. An analysis of diffusing materials amount and arrangement influence on the uniformity of the sound pressure level distribution and reverberation time in the room as well as the value of the measured sound insulation was carried out. Uncertainty of sound insulation measurement with partial uncertainties was adopted as a criterion supporting the assessment of the obtained results.

Go to article

Authors and Affiliations

Dominik Mleczko
Tadeusz Wszołek
Download PDF Download RIS Download Bibtex

Abstract

The article analyzes the phonetic system of the Bulaeshty dialect of the Ukrainian language as used in the village of Bulaeshty in the Republic of Moldova. This had been established until the 15th century by the natives of Bukovyna in the Ukraine. A system of contemporary sound derivatives from a Proto-Slavic ancient phonetic system of consonants has been identified. The full or partial conservation of archaic phonetic forms has become fixed. The Bulaeshty dialect retains a number of relict forms, including phonetic archaisms which have long been lost in the Ukrainian literary language and are increasingly fixed in modern Ukrainian dialects. An record of consonant phonemes in the dialect has been compiled. There are 38 phonemes and according to the differential basis of the “place of creation” of the sound manifestations, traditionally they are classified into groups: 1) labials (/б/, /п/, /в/, /м/, /ф/); 2) front tongue (/д/, /д’/, /т/, /т’/, /з/, /з’/, /с/, /с’/, /ц/, /ц’/, /л/, /л’/, /н/, /н’/, /дз/, /дз’/, /р/, /р’/, /дж’/, /ɕ/, /ч/, /ч’/, /ж/, /ш/); 3) medium tongue (/й/); 4) back tongue /(ґ/, /ґ’/, /к/, /к’/, /х/, /х’/); 5) pharyngeal (/г/, /г’/). Тheir functional load and conditions of positional and combinatorial variation have been determined.

Go to article

Authors and Affiliations

Інна Гороф’янюк
Download PDF Download RIS Download Bibtex

Abstract

In this article some key events concerning founding Polish Section of the Audio Engineering Society were presented. In addition, the history covering International Symposia on Sound Engineering and Mastering was outlined. Also, papers contained in this issue were shortly reviewed.

Go to article

Authors and Affiliations

Bożena Kostek
Marianna Sankiewicz

This page uses 'cookies'. Learn more