Search results

Filters

  • Journals

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the verification of a solution to the narrow sound frequency range problem of flat reflective panels. The analytical, numerical and experimental studies concerned flat panels, panels with curved edges and also semicircular elements. There were compared the characteristics of sound reflected from the studied elements in order to verify which panel will provide effective sound reflection and also scattering in the required band of higher frequencies, i.e. above the upper limit frequency. Based on the conducted analyzes, it was found that among some presented solutions to narrow sound frequency range problem, the array composed of panels with curved edges is the most preferred one. Nevertheless, its reflection characteristic does not meet all of the requirements, therefore, it is necessary to search for another solution of canopy which is effective over a wide frequency range.
Go to article

Authors and Affiliations

Agata Szeląg
Tadeusz Kamisiński
Mirosława Lewińska
Jarosław Rubacha
Adam Pilch
Download PDF Download RIS Download Bibtex

Abstract

High−frequency acoustic measurements supplemented by a modern optical method, Laser Optical Plankton Counter (LOPC), allowed us to perform a comparative analysis through the application of a mathematical model. We have studied the correspondence between measured and modelled echoes from zooplankton aggregations consisted mainly of two Calanus species. Data were collected from the upper 50 m water layer within the hydrographical frontal zone on the West Spitsbergen Shelf. The application of a “high− −pass” model of sound scattering by fluid−like particles to the distribution of zooplankton sizes measured by LOPC resulted mostly in very good agreement between the measured (420 kHz BioSonics) and modelled values, except for cases with very low zooplankton abundance or with occurrence of stronger scatterers ( e.g. macrozooplankton, fish). An acoustic model validated for the elastic parameters of zooplankton confirmed that particles smaller than 1 mm in diameter, although highly abundant, did not contribute significantly to the sound scattering process at a frequency of 420 kHz. The implementation of diverse complementary methods has great potential to obtain high spatial and temporal resolution in zooplankton distribution studies; however, their compatibility has to be tested first.
Go to article

Authors and Affiliations

Joanna Szczucka
Katarzyna Błachowiak-Samołyk
Emilia Trudnowska
Łukasz Hoppe
Download PDF Download RIS Download Bibtex

Abstract

The scattering of plane steady-state sound waves from a viscous fluid-filled thin cylindrical shell weak- ened by a long linear slit and submerged in an ideal fluid is studied. For the description of vibrations of elastic objects the Kirchhoff-Love shell-theory approximation is used. An exact solution of this problem is obtained in the form of series with cylindrical harmonics. The numerical analysis is carried out for a steel shell filled with oil and immersed in seawater. The modules and phases of the scattering amplitudes versus the dimensionless wavenumber of the incident sound wave as well as directivity patterns of the scattered field are investigated taking into consideration the orientation of the slit on the elastic shell surface. The plots obtained show a considerable influence of the slit and viscous fluid filler on the diffraction process.
Go to article

Authors and Affiliations

Olexa Piddubniak
Nadia Piddubniak

This page uses 'cookies'. Learn more