Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Optimization of cooling systems is of major importance due to the economy of cooling water and energy in thermal installations in the industry. The hydrodynamic study of the film is a prerequisite for the study of the intensity of the heat transfer during the cooling of a horizontal plate by a liquid film. This experimental work made it possible to quantify the hydrodynamic parameters by a new approach, a relation linking the thickness of the film to the velocity was found as a function of the geometrical and hydrodynamic characteristics of the sprayer.
A new statistical approach has been developed for the measurement of the velocity, the liquid fluid arriving at the edge of the plate and having velocity V is spilled out like a projectile. The recovering of the liquid in tubes allowed us to quantify flow rates for different heights positions relative to the plate, statistical processing permitted us to assess the probable velocity with a margin of error.

Go to article

Bibliography

[1] B. Abbasi. Pressure-based predection of spray cooling heat transfer. Ph.D. Thesis, University of Maryland, College Park, USA, 2010.
[2] E.G. Bratuta and L. Zanotchkine. Intensification of heat transfer by dispersed fluids. Machinostraenia Energy, 38(84):71--75, 1984. (in Russian).
[3] M. Tebbal. Correlation of the thermal transfer coefficient and the dispersion of the fluid on a surface at high temperature. In: 5th International Meeting on Heat Transfer, Monastir, Tunisia, 1991.
[4] W. Ambrosini, N. Forgione, F. Oriolo, P. Vigni, and S. Baessler. Experimental investigation on wave velocity in a falling film. In: 2nd International Symposium on Two-phase Flow Modelling and Experimentation, Pisa, Italy, May 23-26, 1999.
[5] W. Ambrosini, N. Forgione, and F. Oriolo. Statistical characteristics of a water film falling down a flat plate at different inclinations and temperatures. International Journal of Multiphase Flow, 28(9):1521-1540, 2002. doi: 10.1016/S0301-9322(02)00039-3.
[6] P. Adomeit and U. Renz. Hydrodynamics of three-dimensional waves in laminar falling films. International Journal of Multiphase Flow, 26(7):1183-1208, 2000. doi: 10.1016/S0301-9322(99)00079-8.
[7] S.V. Alekseenko, V.A. Antipin, A.V. Bobylev, and D.M. Markovich. Application of PIV to velocity measurements in a liquid film flowing down an inclined cylinder. Experiments in Fluids, 43:197-207, 2007. doi: 10.1007/s00348-007-0322-2.
[8] W. Aouad, J.R. Landel, S.B. Dalziel, J.F. Davidson, and D.I. Wilson. Particle image velocimetry and modelling of horizontal coherent liquid jets impinging on and draining down a vertical wall. Experimental Thermal and Fluid Science, 74:429-443, 2016. doi: 10.1016/j.expthermflusci.2015.12.010.
[9] A.C. Ashwood, S.J. Vanden Hogen, M.A. Rodarte, C.R. Kopplin, D.J. Rodríguez, E.T. Hurlburt, and T.A. Shedd. A multiphase, micro-scale PIV measurement technique for liquid film velocity measurements in annular two-phase flow. International Journal of Multiphase Flow, 68:27-39, 2015. doi: 10.1016/j.ijmultiphaseflow.2014.09.003.
[10] T. Takamasa and T. Hazuku. Measuring interfacial waves on film flowing down a vertical plate wall in the entry region using laser focus displacement meters. International Journal of Heat and Mass Transfer, 43(15):2807-2819, 2000. doi: 10.1016/S0017-9310(99)00335-X.
[11] K. Moran, J. Inumaru, and M. Kawaji. Instantaneous hydrodynamics of a laminar wavy liquid film. International Journal of Multiphase Flow, 28(5):731-755, 2002. doi: 10.1016/S0301-9322(02)00006-X.
[12] M. Tebbal and H. Mzad. An hydrodynamic study of a water jet dispersion beneath liquid sprayers. Forschung im Ingenieurwesen, 68(3):126-132, 2004. doi: 10.1007/s10010-003-0118-3. (in German).
[13] H. Mzad and M. Tebbal. Thermal diagnostics of highly heated surfaces using water-spray cooling. Heat and Mass Transfer, 45(3):287-295, 2009. doi: 10.1007/s00231-008-0431-3.
[14] E.S. Benilov, S.J. Chapman, J.B. McLeod, J.R. Ockendon, and V.S. Zubkov. On liquid films on an inclined plate. Journal of Fluid Mechanics, 663(25):53-69, 2010. doi: 10.1017/S002211201000337X.
[15] X.G. Huang, Y.H. Yang, P. Hu, and K. Bao. Experimental study of water-air countercurrent flow characteristics in large scale rectangular channel. Annals of Nuclear Energy, 69:125-133, 2014. doi: 10.1016/j.anucene.2014.02.005.
[16] Y.Q. Yu and X. Cheng. Experimental study of water film flow on large vertical and inclined flat plate. Progress in Nuclear Energy, 77:176-186, 2014.doi: 10.1016/j.pnucene.2014.07.001.
[17] H. Mzad and M. Elguerri. Simulation of twin overlapping sprays underneath hydraulic atomizers: influence of spray hydrodynamic parameters. Atomization and Sprays, 22(5):447-460, 2012. doi: 10.1615/AtomizSpr.2012006076.
[18] K. Choual, R. Benzeguir, and M. Tebbal. Experimental study of the dispersion beneath liquid sprayers in the intersection area of jets on a horizontal plate. Mechanika, 23(6):835-844, 2017. doi: 10.5755/j01.mech.23.6.17243.
[19] W-F. Du, Y-H. Lu, R-C. Zhao, L. Chang, and H-J. Chang. Film thickness of free falling water flow on a large-scale ellipsoidal surface. Progress in Nuclear Energy, 105:1-7, 2018. doi: 10.1016/j.pnucene.2017.12.007.
[20] C.B. Tibiriçá, F.J. do Nascimento, and G. Ribatski. Film thickness measurement techniques applied to micro-scale two-phase flow systems. Experimental Thermal and Fluid Science, 34(4):463-473, 2010. doi: 10.1016/j.expthermflusci.2009.03.009.
[21] H. Ouldrebai, E.K. Si-Ahmed, M. Hammoudi, J. Legrand, Y. Salhi, and J. Pruvost. A laser multi-reflection technique applied for liquid film flow measurements. Experimental Techniques, 43:213-223, 2019. doi: 10.1007/s40799-018-0279-5.
[22] J. Cai and X. Zhuo. Researches on hydrodynamics of liquid film flow on inclined plate using diffuse-interface method. Heat and Mass Transfer, 56:1889-1899, 2020. doi: 10.1007/s00231-020-02829-6.
[23] E.G Bratuta and M. Tebbal. Influence of the jet on the fluid dispersion. IzvestiaVouzob, Métallurgie, 12:108-111, 1983.
[24] B. Patrick, B. Barber, and D. Brown. Practical aspects of the design, operation and performance of caster spray systems. Revue de Métallurgie, 98(4):383-390, 2001. doi: 10.1051/metal:2001192.
Go to article

Authors and Affiliations

Abdelbaki Elmahi
1
ORCID: ORCID
Touhami Baki
1
ORCID: ORCID
Mohamed Tebbal
1

  1. Faculty of Mechanics, Gaseous Fuels and Environment Laboratory, University of Sciences and Technology of Oran Mohamed Boudiaf (USTO-MB), El Mnaouer, Oran, Algeria.
Download PDF Download RIS Download Bibtex

Abstract

Nozzle type and herbicide application timing can affect herbicide efficacy. Prickly sida ( Sida spinosa) and barnyardgrass ( Echinochloa crus-galli) are problematic weeds in eastern Mississippi cotton production and have reduced yield in recent years. Field studies were conducted at two locations – Brooksville, MS (2018, 2019) and Starkville, MS (2019) to understand the nozzle type and herbicide application timing effects on prickly sida and barnyardgrass control in cotton. Studies also compared applications made by an eight-nozzle tractor-mounted sprayer with a four-nozzle backpack sprayer. Herbicide applications were made at four timings: preemergence (PRE), early-postemergence (EPOST), mid-postemergence (MPOST), and late-postemergence (LPOST) corresponding to the preemergence (immediately after planting), two-to-three leaf, four-to-six leaf, and early-bloom stages, respectively. Treatments were made at 140 l · ha−1 applied at each growth stage, with nozzle type and sprayer as variables by each timing. Results showed no differences in treatments applied with backpack and tractor-mounted sprayers. Control of barnyardgrass was significantly affected by nozzle type, but control of prickly sida was not significantly influenced by nozzle type. In all three site-years, plots receiving a MPOST only herbicide application resulted in less weed control than areas receiving a two-pass POST herbicide program. Cotton yield was significantly affected by the herbicide program at one site-year, but was not significantly affected by the herbicide program except where cotton injury exceeded 15%. A two- or three-pass herbicide program was most effective in controlling prickly sida and barnyardgrass in Mississippi cotton.
Go to article

Authors and Affiliations

J. Connor Ferguson
1 2
ORCID: ORCID
Justin S. Calhoun
3 2
Kayla L. Broster
2
Luke H. Merritt
4 2
Zachary R. Treadway
5 2
Michael T. Wesley Jr.
6 2
Nicholas Fleitz
7

  1. Weed Science and Technical Agronomy, Sesaco Corporation, Yukon, Oklahoma, United States
  2. Plant and Soil Sciences, Mississippi State University, Mississippi State, Mississippi, United States
  3. Plant Science and Technology, University of Missouri, Portageville, Missouri, United States
  4. Orr Agricultural Research & Demonstration Center, University of Illinois, Baylis, Illions, United States
  5. Plant and Soil Sciences, Oklahoma State University, Ardmore, Oklahoma, United States
  6. Agronomy, Bayer Crop Science, Jerseyville, Illions, United States
  7. Application Agronomist, Pentair-Hypro, New Brighton, Minnesota, United States

This page uses 'cookies'. Learn more