Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 7
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The present study investigates the 2D numerical analogies to the changes of the droplet shapes during the freefall for a wide range of droplet sizes through the stagnation air. The freefall velocity, shape change due to frictional force during free-fall is studied for different considered cases. With the elapse of time, a droplet with a larger initial diameter is changing its original shape more compared to droplets with a smaller diameter. In addition, the spreading of the droplet during the freefall seems more rapid for the larger-diameter droplet. When a droplet with an initial diameter of 15 mm starts to fall with gravitational force, the diameter ratio is decreasing for droplets with higher density and surface tension while droplets having lower density and surface tension show a diameter ratio greater than one. The spreading and splashing of the droplet on a solid surface and liquid storage at the time of impact are much influenced by the freefall memories of the droplet during the freefall from a certain height. These freefall memories are influenced by the fluid properties, drag force, and the freefall height. However, these freefall memories eventually regulate the deformation of the droplet during the freefall.
Go to article

Bibliography

[1] X. Cao, Y. Ye, Q. Tang, E. Chen, Z. Jiang, J. Pan, and T. Guo. Numerical analysis of droplets from multinozzle inkjet printing. The Journal of Physical Chemistry Letters, 11(19):8442–8450, 2020. doi: 10.1021/acs.jpclett.0c02250.
[2] H. Wijshoff. Drop dynamics in the inkjet printing process. Current Opinion in Colloid & Interface Science, 36:20–27, 2018. doi: 10.1016/j.cocis.2017.11.004.
[3] W. Zhou, D. Loney, A.G. Fedorov, F.L. Degertekin, and D.W. Rosen. Shape evolution of droplet impingement dynamics in ink-jet manufacturing. Proceedings for the 2011 International Solid Freeform Fabrication Symposium, pages 309–325, Austin, USA, 2011. doi: 10.26153/tsw/15297.
[4] L. Mouzai and M. Bouhadef. Water drop erosivity: Effects on soil splash. Journal of Hydraulic Research, 41(1):61–68, 2003. doi: 10.1080/00221680309499929.
[5] M. Hajigholizadeh, A.M. Melesse, and H.R. Fuentes. Raindrop-induced erosion and sediment transport modelling in shallow waters: A review. Journal of Soil and Water Science, 1(1):15–25, 2018. doi: 10.36959/624/427.
[6] P.C. Ekern. Raindrop impact as the force initiating soil erosion. Soil Science Society of America Journal, 15(C):7–10, 1951. doi: 10.2136/sssaj1951.036159950015000C0002x.
[7] R. Andrade, O. Skurtys, and F. Osorio. Drop impact behavior on food using spray coating: Fundamentals and applications. Food Research International, 54(1):397–405, 2013. doi: 10.1016/j.foodres.2013.07.042.
[8] M. Toivakka. Numerical investigation of droplet impact spreading in spray coating of paper. Proceedings of the 2003 Spring Advanced Coating Fundamentals Symposium, Atlanta, USA, 2003.
[9] A. Prasad and H. Henein. Droplet cooling in atomization sprays. Journal of Materials Science, 43(17):5930–5941, 2008. doi: 10.1007/s10853-008-2860-2.
[10] W. Jia and H.-H. Qiu. Experimental investigation of droplet dynamics and heat transfer in spray cooling. Experimental Thermal and Fluid Science, 27(7):829–838, 2003. doi: 10.1016/S0894-1777(03)00015-3.
[11] G. Duursma, K. Sefiane, and A. Kennedy. Experimental studies of nanofluid droplets in spray cooling. Heat Transfer Engineering, 30(13):1108–1120, 2009. doi: 10.1080/01457630902922467.
[12] W.-C. Qin, B.-J. Qiu, X.-Y. Xue, C. Chen, Z.-F. Xu, and Q.-Q. Zhou. Droplet deposition and control effect of insecticides sprayed with an unmanned aerial vehicle against plant hoppers. Crop Protection, 85:79–88, 2016. doi: 10.1016/j.cropro.2016.03.018.
[13] S. Chen, Y. Lan, Z. Zhou, F. Ouyang, G. Wang, X. Huang, X. Deng, and S. Cheng. Effect of droplet size parameters on droplet deposition and drift of aerial spraying by using plant protection UAV. Agronomy, 10(2):195, 2020. doi: 10.3390/agronomy10020195.
[14] D.T. Sheppard. Spray Characteristics of Fire Sprinklers. Ph.D. Thesis, Northwestern University, Evanston, USA, June 2002.
[15] H. Liu, C.Wang, I.M. De Cachinho Cordeiro, A.C.Y. Yuen, Q. Chen, Q.N. Chan, S. Kook, and G.H. Yeoh. Critical assessment on operating water droplet sizes for fire sprinkler and water mist systems. Journal of Building Engineering, 28:100999, 2020. doi: 10.1016/j.jobe.2019.100999.
[16] D.C. Blanchard. The behavior of water drops at terminal velocity in air. Eos, Transactions American Geophysical Union, 31(6):836–842, 1950. doi: 10.1029/TR031i006p00836.
[17] H.R. Pruppacher and K.V. Beard. A wind tunnel investigation of the internal circulation and shape of water drops falling at terminal velocity in air. Quarterly Journal of the Royal Meteorological Society, 96(408):247–256, 1970. doi: 10.1002/qj.49709640807.
[18] H.R. Pruppacher and R.L. Pitter. A semi-empirical determination of the shape of cloud and rain drops. Journal of the Atmospheric Sciences, 28(1):86–94, 1971. doi: 10.1175/1520-0469(1971)0280086:ASEDOT>2.0.CO;2.
[19] K.V. Beard and C. Chuang. A new model for the equilibrium shape of raindrops. Journal of the Atmospheric Sciences, 44(11):1509–1524, Jun. 1987. doi: 10.1175/1520-0469(1987)0441509:ANMFTE>2.0.CO;2.
[20] É.Reyssat, F. Chevy, A.L. Biance, L. Petitjean, and D. Quéré. Shape and instability of free-falling liquid globules. Europhysics Letters, 80(3):34005, 2007. doi: 10.1209/0295-5075/80/34005.
[21] R. Clift, J.R. Grace, and M.E. Weber. Bubbles, Drops and Particles. Academic Press, 1978.
[22] S.-C. Yao and V.E. Schrock. Heat and mass transfer from freely falling drops. Journal of Heat Transfer, 98(1):120–126, 1976. doi: 10.1115/1.3450453.
[23] T.J. Horton, T.R. Fritsch, and R.C. Kintner. Experimental determination of circulation velocities inside drops. The Canadian Journal of Chemical Engineering, 43(3):143–146, 1965. doi: 10.1002/cjce.5450430309.
[24] R.H. Magarvey and B.W. Taylor. Free fall breakup of large drops. Journal of Applied Physics, 27(10):1129–1135, 1956. doi: 10.1063/1.1722216.
[25] M.N. Chowdhury, F.Y. Testik, M.C. Hornack, and A.A. Khan. Free fall of water drops in laboratory rainfall simulations. Atmospheric Research, 168:158–168, 2016. doi: 10.1016/j.atmosres.2015.08.024.
[26] M. Abdelouahab and R. Gatignol. Study of falling water drop in stagnant air. European Journal of Mechanics - B/Fluids, 60:82–89, 2016. doi: 10.1016/j.euromechflu.2016.07.007.
[27] J.H. van Boxel. Numerical model for the fall speed of raindrops in a rainfall simulator. I.C.E Special Report, 1998/1, 77–85,
[28] A.K. Kamra and D.V Ahire. Wind-tunnel studies of the shape of charged and uncharged water drops in the absence or presence of an electric field. Atmospheric Research, 23(2):117–134, 1989. doi: 10.1016/0169-8095(89)90003-3.
[29] M. Thurai and V.N. Bringi. Drop axis ratios from a 2D video disdrometer. Journal of Atmospheric and Oceanic Technology, 22(7):966–978, 2005. doi: 10.1175/JTECH1767.1.
[30] C. Josserand and S.T. Thoroddsen. Drop impact on a solid surface. Annual Review of Fluid Mechanics, 48:365–391, 2016. doi: 10.1146/annurev-fluid-122414-034401.
[31] J. Eggers, M.A. Fontelos, C. Josserand, and S. Zaleski. Drop dynamics after impact on a solid wall: Theory and simulations. Physics of Fluids, 22(6):062101, 2010. doi: 10.1063/1.3432498.
[32] S. Chandra and C.T. Avedisian. On the collision of a droplet with a solid surface. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 432(1884):13–41, 1991. doi: 10.1098/rspa.1991.0002.
[33] O.G. Engel. Waterdrop collisions with solid surfaces. Journal of Research of the National Bureau of Standards, 54(5):281–298, 1955. doi: 10.6028/jres.054.033.
[34] I.V. Roisman, R. Rioboo, and C. Tropea. Normal impact of a liquid drop on a dry surface: model for spreading and receding. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 458(2022):1411–1430, 2002. doi: 10.1098/rspa.2001.0923.
[35] Y. Renardy, S. Popinet, L. Duchemin, M. Renardy, S. Zaleski, C. Josserand, M.A. Drumright-Carke, D. Richard, C. Clanet, and D. Quéré. Pyramidal and toroidal water drops after impact on a solid surface. Journal of Fluid Mechanics, 484:69–83, 2003. doi: 10.1017/S0022112003004142.
[36] D. Bartolo, F. Bouamrirene, É. Verneuil, A. Buguin, P. Silberzan, and S. Moulinet. Bouncing or sticky droplets: Impalement transitions on superhydrophobic micropatterned surfaces. Europhysics Letters, 74(2):299–305, 2006. doi: 10.1209/epl/i2005-10522-3.
[37] D. Bartolo, C. Josserand, and D. Bonn. Singular jets and bubbles in drop impact. Physical Review Letters, 96:124501, 2006. doi: 10.1103/PhysRevLett.96.124501.
[38] C. Clanet, C. Béguin, D. Richard, and D. Quéré. Maximal deformation of an impacting drop. Journal of Fluid Mechanics, 517:199–208, 2004. doi: 10.1017/S0022112004000904.
[39] L.H.J. Wachters, L. Smulders, J.R. Vermeulen, and H.C. Kleiweg. The heat transfer from a hot wall to impinging mist droplets in the spheroidal state. Chemical Engineering Science, 21(12):1047–1056, 1966. doi: 10.1016/0009-2509(66)85042-X.
[40] C.O. Pedersen. An experimental study of the dynamic behavior and heat transfer characteristics of water droplets impinging upon a heated surface. International Journal of Heat and Mass Transfer, 13(2):369–381, 1970. doi: 10.1016/0017-9310(70)90113-4.
[41] M.A. Styricovich, Y.V. Baryshev, G.V. Tsiklauri and M E. Grigorieva. The mechanism of heat and mass transfer between a water drop and a heated surface. Proceedings of the Sixth International Heat Transfer Conference, Vol. 1, pages 239-243, Toronto, Canada, August 7-11, 1978.
[42] P. Savic and G.T. Boult. The fluid flow associated with the impact of liquid drops with solid surfaces. Proceedings of Heat Transfer Fluid Mechanics Institution, 43-84, 1957.
[43] S.E. Hinkle. Water drop kinetic energy and momentum measurement considerations. Applied Engineering in Agriculture, 5(3):386–391, 1989. doi: 10.13031/2013.26532.
[44] C.D. Stow and R.D. Stainer. The physical products of a splashing water drop. Journal of Meteorological Society of Japan, 55(5):518–532, 1977.
[45] Z. Levin and P.V. Hobbs. Splashing of water drops on solid and wetted surfaces, Hydrodynamics and charge separation. Philosophical Transactions of the Royal Society A Mathematical, Physical and Engineering Sciences, 269(1200):555–585, 1971. doi: 10.1098/rsta.1971.0052.
[46] C.D. Stow, M.G. Hadfield. An experimental investigation of fluid flow resulting from the impact of a water drop with an unyielding dry surface. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 37(1755):419–441, 1981. doi: 10.1098/rspa.1981.0002.
[47] C. Mundo, M. Sommerfeld, and C. Tropea. Droplet-wall collisions: Experimental studies of the deformation and breakup process. I nternational Journal of Multiphase Flow, 21(2):151–173, 1995. doi: 10.1016/0301-9322(94)00069-V.
[48] M. Bussmann, S. Chandra, and J. Mostaghimi. Modeling the splash of a droplet impacting a solid surface. Physics of Fluids, 12(12):3121–3132, 2000. doi: 10.1063/1.1321258.
[49] L. Xu, W.W. Zhang, and S.R. Nagel. Drop splashing on a dry smooth surface. Physical Review Letters, 94(18):184505, 2005. doi: 10.1103/PhysRevLett.94.184505.
[50] B.T. Helenbrook and C.F. Edwards. Quasi-steady deformation and drag of uncontaminated liquid drops. International Journal of Multiphase Flow, 28(10):1631–1657, 2002. doi: 10.1016/S0301-9322(02)00073-3.
[51] J.Q. Feng. A deformable liquid drop falling through a quiescent gas at terminal velocity. Journal of Fluid Mechanics, 658:438–462, 2010. doi: 10.1017/S0022112010001825.
[52] J.Q. Feng and K.V. Beard. Raindrop shape determined by computing steady axisymmetric solutions for Navier-Stokes equations. Atmospheric Research, 101(1–2):480–491, 2011. doi: 10.1016/j.atmosres.2011.04.012.
[53] J. Han and G. Tryggvason. Secondary breakup of axisymmetric liquid drops. I. Acceleration by a constant body force. Physics of Fluids, 11(12):3650–3667, 1999. doi: 10.1063/1.870229.
[54] J. Han and G. Tryggvason. Secondary breakup of a axisymmetric liquid drops. II. Impulsive acceleration. Physics of Fluids, 13(6):1554–1565, 2001. doi: 10.1063/1.1370389.
[55] P. Khare and V. Yang. Breakup of non-Newtonian liquid droplets. 44th AIAA Fluid Dynamics Conference, Atlanta, USA, 16-20 June 2014. doi: 10.2514/6.2014-2919.
[56] M. Sussman and E.G. Puckett. A Coupled level set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flows. Journal of Computational Physics, 162(2):301–337, 2000. doi: 10.1006/jcph.2000.6537.
[57] R. Scardovelli and S. Zaleski. Direct numerical simulation of free-surface and interfacial flow. Annual Review of Fluid Mechanics, 31:567–603, 1999. doi: 10.1146/annurev.fluid.31.1.567.
[58] S. Shin and D. Juric. Simulation of droplet impact on a solid surface using the level contour reconstruction method. Journal of Mechanical Science and Technology, 23:2434–2443, 2009. doi: 10.1007/s12206-009-0621-z.
[59] M. García Pérez and E. Vakkilainen. A comparison of turbulence models and two and three dimensional meshes for unsteady CFD ash deposition tools. Fuel, 237:806–811, 2019. doi: 10.1016/j.fuel.2018.10.066.
[60] M. Mezhericher, A. Levy, and I. Borde. Modeling of droplet drying in spray chambers using 2D and 3D computational fluid dynamics. Drying Technology, 27(3):359–370, 2009. doi: 10.1080/07373930802682940.
[61] S. Afkhami and M. Bussmann. Height functions for applying contact angles to 2D VOF simulations. International Journal for Numerical Methods in Fluids, 57(4):453-472, 2008. doi: 10.1002/fld.1651.
[62] J. Zheng, J. Wang, Y. Yu, and T. Chen. Hydrodynamics of droplet impingement on a thin horizontal wire. Mathematical Problems in Engineering, 2018:9818494, 2018. doi: 10.1155/2018/9818494.
[63] J. Thalackottore Jose and J.F. Dunne. Numerical simulation of single-droplet dynamics, vaporization, and heat transfer from impingement onto static and vibrating surfaces. Fluids, 5(4):188, 2020. doi: 10.3390/fluids5040188.
[64] H. Liu. Science and Engineering of Droplets: Fundamentals and Applications. Noyes Publications, USA, 1999.
Go to article

Authors and Affiliations

Abid Hasan Rafi
1
ORCID: ORCID
Mohammad Rejaul Haque
1
ORCID: ORCID
Dewan Hasan Ahmed
1
ORCID: ORCID

  1. Department of Mechanical and Production Engineering, Ahsanullah University of Science and Technology, Dhaka, Bangladesh
Download PDF Download RIS Download Bibtex

Abstract

Rhizoctonia solani was isolated from 91 % of alder and birch seedlings with stem rot symptoms and 2-3% of seeds. Sowing of seeds to substratum infested with R. solani resulted in pre-and postemergence damping off. On leaves and stem parts of alder and birch, inoculated with 3 isolates of R. solani, necrosis spread from 0.22 to 0.52 mm/hr.
Go to article

Authors and Affiliations

Leszek B. Orlikowski
Barbara Duda
Download PDF Download RIS Download Bibtex

Abstract

In times of the COVID-19, reliable tools to simulate the airborne pathogens causing the infection are extremely important to enable the testing of various preventive methods. Advection-diffusion simulations can model the propagation of pathogens in the air. We can represent the concentration of pathogens in the air by “contamination” propagating from the source, by the mechanisms of advection (representing air movement) and diffusion (representing the spontaneous propagation of pathogen particles in the air). The three-dimensional time-dependent advection-diffusion equation is difficult to simulate due to the high computational cost and instabilities of the numerical methods. In this paper, we present alternating directions implicit isogeometric analysis simulations of the three-dimensional advection-diffusion equations. We introduce three intermediate time steps, where in the differential operator, we separate the derivatives concerning particular spatial directions. We provide a mathematical analysis of the numerical stability of the method. We show well-posedness of each time step formulation, under the assumption of a particular time step size. We utilize the tensor products of one-dimensional B-spline basis functions over the three-dimensional cube shape domain for the spatial discretization. The alternating direction solver is implemented in C++ and parallelized using the GALOIS framework for multi-core processors. We run the simulations within 120 minutes on a laptop equipped with i7 6700 Q processor 2.6 GHz (8 cores with HT) and 16 GB of RAM.
Go to article

Bibliography

  1.  “Coronavirus disease (COVID-19): How is it transmitted?”. [Online] Available: https://www.who.int/emergencies/diseases/novel- coronavirus-2019/question-and-answers-hub/q-a-detail/q-a-how-is-covid-19-transmitted.
  2.  D.W. Peaceman and H.H. Rachford Jr., “The numerical solution of parabolic and elliptic differential equations’’, J. Soc. Ind. Appl. Math., vol. 3, no. 1, pp. 28‒41, 1955.
  3.  J. Douglasand and H. Rachford, “On the numerical solution of heat conduction problems in two and three space variables’’, Trans. Am. Math. Soc., vol. 82, no. 2, pp. 421‒439, 1956.
  4.  E.L. Wachspress and G. Habetler, “An alternating-direction-implicit iteration technique’’, J. Soc. Ind. Appl. Math., vol. 8, no. 2, pp. 403‒423, 1960.
  5.  G. Birkhoff, R.S. Varga, and D. Young, “Alternating direction implicit methods’’, Adv. Comput., vol. 3, pp. 189‒273, 1962.
  6.  J.L. Guermond and P. Minev, “A new class of fractional step techniques for the incompressible Navier-Stokes equations using direction splitting’’, C.R. Math., vol. 348, pp. 581‒585, 2010.
  7.  J.L. Guermond, P. Minev, and J. Shen, “An overview of projection methods for incompressible flows’’, Comput. Methods Appl. Mech. Eng., vol. 195, pp. 6011‒6054, 2006.
  8.  J.A. Cottrell, T. J. R. Hughes, and Y. Bazilevs, Isogeometric Analysis: Toward Unification of CAD and FEA, John Wiley and Sons, 2009.
  9.  M.-C. Hsu, I. Akkerman, and Y. Bazilevs, “High-performance computing of wind turbine aerodynamics using isogeometric analysis’’, Comput. Fluids, vol. 49, pp. 93‒100, 2011.
  10.  K. Chang, T.J.R. Hughes, and V.M. Calo, “Isogeometric variational multiscale large-eddy simulation of fully-developed turbulent flow over a wavy wall’’, Comput. Fluids, vol. 68, pp. 94‒104, 2012.
  11.  L. Dedè, T.J.R. Hughes, S. Lipton, and V.M. Calo, “Structural topology optimization with isogeometric analysis in a phase field approach’’, USNCTAM2010, 16th US National Congree of Theoretical and Applied Mechanics, 2010.
  12.  L. Dedè, M.J. Borden, and T.J.R. Hughes, “Isogeometric analysis for topology optimization with a phase field model’’, Arch. Comput. Methods Eng., vol. 19, pp. 427‒465, 2012.
  13.  H. Gómez, V.M. Calo, Y. Bazilevs, and T.J.R. Hughes, “Isogeometric analysis of the {Cahn-Hilliard} phase-field model’’, Comput. Methods Appl. Mech. Eng., vol. 197, pp. 4333‒4352, 2008.
  14.  H. Gómez, T.J.R. Hughes, X. Nogueira, and V.M. Calo, “Isogeometric analysis of the isothermal Navier-Stokes-Korteweg equations’’, Comput. Methods Appl. Mech. Eng., vol. 199, pp. 1828‒1840, 2010.
  15.  R. Duddu, L. Lavier, T.J.R. Hughes, and V.M. Calo, “A finite strain Eulerian formulation for compressible and nearly incompressible hyper-elasticity using high-order NURBS elements’’, Int. J. Numer. Methods Eng., vol. 89, pp. 762‒785, 2012.
  16.  S. Hossain, S.F.A. Hossainy, Y. Bazilevs, V.M. Calo, and T.J.R. Hughes, “Mathematical modeling of coupled drug and drug-encapsulated nanoparticle transport in patient-specific coronary artery walls’’, Comput. Mech., vol. 49, pp. 213‒242, 2012.
  17.  Y. Bazilevs, V.M. Calo, Y. Zhang, and T.J.R. Hughes, “Isogeometric fluid-structure interaction analysis with applications to arterial blood flow’’, Comput. Mech., vol. 38, pp. 310‒322, 2006.
  18.  Y. Bazilevs, V.M. Calo, J.A. Cottrell, T.J.R. Hughes, A. Reali, and G. Scovazzi, “Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows’’, Comput. Methods Appl. Mech. Eng., vol. 197, pp. 173‒201, 2007.
  19.  V.M. Calo, N. Brasher, Y. Bazilevs, and T.J.R. Hughes, “Multiphysics Model for Blood Flow and Drug Transport with Application to Patient-Specific Coronary Artery Flow’’, Comput. Mech., vol. 43, pp. 161‒177, 2008.
  20.  M. Łoś, M. Paszyński, A. Kłusek, and W. Dzwinel, “Application of fast isogeometric L2 projection solver for tumor growth simulations’’, Comput. Methods Appl. Mech. Eng., vol. 316, pp. 1257‒1269, 2017.
  21.  M. Łoś, A. Kłusek, M. Amber Hassam, K. Pingali, W. Dzwinel, and M. Paszyński, “Parallel fast isogeometric L2 projection solver with GALOIS system for 3D tumor growth simulations’’, Comput. Methods Appl. Mech. Eng., vol. 343, pp. 1‒22, 2019.
  22.  A. Paszyńska, K. Jopek. M. Woźniak, and M. Paszyński, “Heuristic algorithm to predict the location of C0 separators for efficient isogeometric analysis simulations with direct solvers’’, Bull. Pol. Acad. Sci. Tech. Sci., vol. 66, no. 6, pp. 907‒917, 2018.
  23.  L. Gao and V.M. Calo, “Fast Isogeometric Solvers for Explicit Dynamics’’, Comput. Methods Appl. Mech. Eng., vol. 274, pp. 19‒41, 2014.
  24.  L. Gao and V.M. Calo, “Preconditioners based on the alternating-direction-implicit algorithm for the 2D steady-state diffusion equation with orthotropic heterogeneous coefficients’’, J. Comput. Appl. Math., vol. 273, pp. 274‒295, 2015.
  25.  L. Gao, “Kronecker Products on Preconditioning’’, PhD. Thesis, King Abdullah University of Science and Technology, 2013.
  26.  M. Łoś, M. Woźniak, M. Paszyński, L. Dalcin, and V.M. Calo, “Dynamics with Matrices Possessing Kronecker Product Structure’’, Procedia Comput. Sci., vol. 51, pp. 286‒295, 2015.
  27.  M. Woźniak, M. Łoś, M. Paszyński, L. Dalcin, and V. Calo, “Parallel fast isogeometric solvers for explicit dynamics’’, Comput. Inform., vol. 36, no. 2, pp. 423‒448, 2017.
  28.  M. Łoś, M. Woźniak, M. Paszyński, A. Lenharth, and K. Pingali, “IGA-ADS : Isogeometric Analysis FEM using ADS solver’’, Comput. Phys. Commun., vol. 217, pp. 99‒116, 2017.
  29.  G. Gurgul, M. Woźniak, M. Łoś, D. Szeliga, and M. Paszyński, “Open source JAVA implementation of the parallel multi-thread alternating direction isogeometric L2 projections solver for material science simulations’’ Comput. Methods Mater. Sci., vol. 17, no.1, pp. 1‒11, 2017.
  30.  M. Łoś, J. Munoz-Matute, K. Podsiadło, M. Paszyński, and K. Pingali, “Parallel shared-memory isogeometric residual minimization (iGRM) for three-dimensional advection-diffusion problems’’, Lect. Notes Comput. Sci., vol. 12143, pp. 133‒148, 2020.
  31.  A. Alonso, R. Loredana Trotta, and A. Valli, “Coercive domain decomposition algorithms for advection-diffusion equations and systems’’, J. Comput. Appl. Math., vol. 96, no. 1, pp. 51‒76, 1998.
  32.  K. Pingali, D. Nguyen, M. Kulkarni, M. Burtscher, M.A. Hassaan, R. Kaleem, T.-H. Lee, A. Lenharth, R. Manevich, M. Mendez-Lojo, D. Prountzos, and X. Sui, “The tao of parallelism in algorithms’’, SIGPLAN, vol. 46, 2011, doi: 10.1145/1993316. 1993501.
  33.  A. Takhirov, R. Frolov, and P. Minev, “Direction splitting scheme for Navier-Stokes-Boussinesq system in spherical shell geometries’’, arXiv:1905.02300, 2019.
Go to article

Authors and Affiliations

Marcin Łoś
1
ORCID: ORCID
Maciej Woźniak
1
ORCID: ORCID
Ignacio Muga
2
ORCID: ORCID
Maciej Paszynski
1
ORCID: ORCID

  1. AGH University of Science and Technology, Faculty of Computer Science, Electronics and Telecommunications, al. Mickiewicza 30, 30-059 Krakow, Poland
  2. Instituto de Matemáticas, Pontificia Universidad Católica de Valparaíso, Chile
Download PDF Download RIS Download Bibtex

Abstract

The paper presents detailed comparisons for numerical simulations of fire development along the facade, with particular emphasis on the so-called “leap frog effect”, for different variations of window opening sizes and storey heights. A total of 9 models were subjected to numerical analysis. The problem occurred in most of the analyzed models – i.e., the fire penetrated through the facade to the higher storey. It should be noted that the adopted hearth was identified by standard parameters, and materials on the facade were non-combustible – as a single-layer wall. In the case of real fires, the parameters of the release rate can also vary greatly, but the values are usually higher. It has been shown that the most dangerous situation is with small size windows, where the discharge of warm gases and flames, causes a fairly easy fire jump between floors. The leap frog effect can be limited by increasing windows and storey height – this changes the shape of the flames escaping from the interior of the building and limits the possibility of fire entering the storeys above. In addition, increasing the size of windows results in a reduction of fire power per unit window dimension [KW/m2] at constant fire power (fuel-controlled fire), which is also of key importance for the fire to penetrate with the leap frog effect.
Go to article

Bibliography

[1] EN 13501-1:2019-02. Fire classification of construction products and building elements – Part 1: Classification using data from reaction to fire tests.
[2] M. Bonner, G. Rein, “Flammability and multi-objective performance of building: towards optimum design”, International Journal of High-Rise Buildings, 2018, vol. 7, pp. 363–374, DOI: 10.21022/IJHRB.2018.7.4.363.
[3] K. Livkiss, S. Svensson, “Flame Heights and Heat Transfer in Façade System Ventilation Cavities”, Fire Technology, 2018, no 54, pp. 689–713, DOI: 10.1007/s10694-018-0706-2.
[4] D.I. Kolaitis, E.K. Asimakopoulou, M.A. Founti, “A Full-scale fore test to investigate the fire behaviour of the “ventilated facade” system”, in Interflam 2016, Windsor, 2016.
[5] S. Colwell, T. Baker, Fire Performance of external thermal insulation for walls of multistorey buildings, 3rd ed., Garston: IHS BRE Press, 2013.
[6] S. Boström, D. McNamee, “Fire test of ventilated and unventilated wooden facades”, SP Report 2016:16, Boras, 2016.
[7] J. Anderson, R. Jensson, “Experimental and numerical investigation of fire”, in Fire Computer Modeling Santander, 18-19th October 2012, Spain, 2012.
[8] J. Andersson, L. Boström, R. Jansson McNamee, “Fire Safety of Facades”, RISE Research Institutes of Sweden, SP Rapport 2017:37, Brandforsk 2017:3.
[9] R. Rogan, E. Shipper, ASTM Leap Frog Effect. The design and analysis of a computer fire model to test for flame spread through a building’s exterior, 2010.
[10] BS 8414-1:2015¸A1:2017 Fire performance of external cladding systems. Test method for non-loadbearing external cladding systems applied to the masonry face of a building, Building Research Establishment.
[11] PN-90/B-02867:1990¸Az1:2001 Fire protection of buildings. The method of testing the degree of fire spread through walls (in Polish).
[12] EOTA No 761/PP/GRO/IMA/19/1133/11140, European Commision, 2019.
[13] ISO 13785-2:2002 Reaction-to-fire tests for façades – Part 2: Large-scale test.
[14] M. Smolka, E. Anselmi, T. Crimi, B. Le Madec, I.F. Moder, K.W. Park, R. Rupp, Y.-H. Yoo, H. Yoshioka, “Semi-natural test methods to evaluate fire safety ofwall claddings:Update”, inMATECWeb of Conferences, 2016, vol. 46, DOI: 10.1051/matecconf/20164601003.
[15] D. Chen, S.M. Lo,W. Lu, K.K. Yuen, Z. Fang, “A numerical study of the effect of window configuration on the external heat and smoke spread in building fire”, Numerical Heat Transfer, 2001, no. 40, pp. 821–839, DOI: 10.1080/104077801753344286.
[16] M. Ibrahim, A.M. Sharaf Eldin, M. Ayoub, “Effect ofWindow Configurations on Fire Spread in Buildings”, in 11th International Energy Conversion Engineering Conference, 2013, DOI: 10.2514/6.2013-3947.
[17] I. Oleszkiewicz, “Heat transfer from a window fire plume to a building facade”, ASME HTD, 1989, vol. 123, pp. 163–170, DOI: 10.4224/40001813.
[18] I. Korrhoff, “ETICS and fire safety Basic principles and framework conditions”, in Third ETICS Forum, Milan, 2015.
[19] J. Anderson, L. Boström, R. Jansson McNamee, B. Milovanovic, “Modeling of fire exposure in facade fire testing”, Fire and Materials, 2018, vol. 42, pp. 475–483, DOI: 10.1002/fam.2485.
[20] SP FIRE 105. Method for fire testing of façade materials, Department of Fire Technology, Swedish National Testing and Research Institute, 1994.
[21] ISO 13785-2:2002 Reaction-to-fire tests for façades – Part 2: Large-scale test, International Organization for Standardization.
[22] W.K. Chow, W.Y. Hung, Y. Gao, G. Zou, H. Dong, “Experimental study on smoke movement leading to glass damages in double-skinned facade”, Construction and Building Materials, 2007, vol. 21, no. 3, pp. 556–566, DOI: 10.1016/j.conbuildmat.2005.09.005.
[23] Z. Ni, S. Lu, L. Peng, “Experimental study on fire performance of double-skin glass facades”, Journal of Fire Sciences, 2012, vol. 30, no. 5, pp. 457–472, DOI: 10.1177/0734904112447179.
[24] I. Kotthoff, “Mechanismen der Brandausbreitung an der Gebäudeaußenwand, Brandverhalten von WDVS unter besonderer Berücksichtigung von Polystyrol-Hartschaum”, in 9. Hessischer Energieberatertag, Frankfurt, 2012.
[25] F. Incropera, D. DeWitt, T. Bergman, A. Lavine, Fundamentals of Heat and Mass Transfer, 6th ed., John Wiley & Sons, 2007.
[26] M. Hurley, SFPE Handbook of Fire Protection Engineering, 5th ed., vol. 1, Springer New York, 2016.
[27] J. Degler, A. Ellasson, J. Anderson, D. Lange, “A-priopri modelling of the tisova fire test as input to the experimentalwork”, in The First International Conference on Structural Safety under Fire&Blast, Glasgow, 2015.
[28] K. McGrattan, S. Hostikka, J. Floyd, R. McDermott, M. Vanella, Fire Dynamics Simulator Technical Reference Guide Volume 3: Validation, NIST Special Publication 1018-3, 6th ed., National Institute of Standards and Technology and VTT Technical Research Centre of Finland, 2019.
[29] C.H. Lin, Y. M. Ferng, W.S. Hsu, “Investigating the effect of computational grid sizes on the predicted characteristics of thermal radiation for a fire”, Applied Thermal Engineering, 2009, vol. 29, pp. 2243–2250, DOI: 10.1016/j.applthermaleng.2008.11.010.
[30] P. Sulik, J. Kinowski, “Operational safety of façades" (in Polish), Materiały Budowlane, 2014, no. 9, pp. 38–39.
[31] B. Sedłak, J. Kinowski, P. Sulik, G. Kimbar, “The risks associated with falling parts of glazed façades”, Open Engineering, 2018, vol. 8, pp. 147–155, DOI: 10.1515/eng-2018-0011.
[32] J. Kinowski, B. Sedłak, P. Roszkowski P. Sulik, “The effect of the way of fixing exterior wall cladding on its behaviour in fire conditions” (in Polish), Materiały Budowlane, 2018, no. 8, pp. 204–205.
Go to article

Authors and Affiliations

Krzysztof Schabowicz
1
ORCID: ORCID
Paweł Sulik
2
ORCID: ORCID
Tomasz Gorzelańczyk
1
ORCID: ORCID
Łukasz Zawiślak
1
ORCID: ORCID

  1. Wrocław University of Science and Technology, Faculty of Civil Engineering, Department of Construction Technology, Wybrzeze Wyspianskiego 27, 50-370 Wrocław, Poland
  2. Instytut Techniki Budowlanej, Filtrowa 1, 00-611 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

The objective of the present study was to identify the dynamics of Alternaria blight spread on spring oilseed rape lower, middle and upper leaves and siliques, to determine the disease incidence (DI) and severity (DS) on leaves, stems, siliques and seeds under the effect of prochloraz and tebuconazole. Efficiency of the fungicides was compared in relation to their application time. Field experiments with the spring oilseed rape cv. 'Star' were conducted at the Lithuanian Institute of Agriculture during 1997-1999.
Go to article

Authors and Affiliations

Irena Brazauskiene
Egle Petraitiene
Download PDF Download RIS Download Bibtex

Abstract

In this paper, the effect of an indoor visible light communication channel is studied. Moreover, the analysis of the received power distribution of the photodiode in the line of sight and the first reflection of the channel without line of sight with several parameters is simulated. Two different waveforms are explained in detail. Orthogonal frequency division multiplexing has been widely adopted in radio frequency and optical communication systems. One of the most important disadvantages of the orthogonal frequency division multiplexing signal is the high peak-to-average power ratio. Therefore, it is important to minimize the peak-to-average power ratio in the visible light communication systems more than in radio-frequency wireless applications. In the visible light communication systems, the high peak-to-average power ratio produces a high DC bias which reduces power efficiency of the system. A discrete Fourier transform spread orthogonal frequency division multiplexing is proposed to be used in wireless communication systems; its ability to minimize peak-to-average power ratio has been tested. The analysis of two different subcarrier allocation methods for the discrete Fourier transform-spread subcarriers, as well as the examination of two distinct subcarrier allocation strategies, distributed and localized mapping, are investigated and studied. The effects of an accurate new sub-band mapping for the localized discrete Fourier transform spread orthogonal frequency division multiplexing scheme are presented in this paper. The light-fidelity system performance of the orthogonal frequency division multiplexing and discrete Fourier transform spread orthogonal frequency division multiplexing with different sub-mapping techniques are simulated with Matlab™. A system performance size of bit error rate and peak-to-average power ratio are obtained, as well.
Go to article

Bibliography

  1. Armstrong, OFDM for optical communications. J. Light. Technol. 27, 189–204 (2009). https://doi.org/10.1109/JLT.2008.2010061
  2. Noé, Essentials of Modern Optical Fiber Communication. (Springer International Publishing, 2010). https://doi.org/10.1007/978-3-642-04872-2
  3. Sufyan Islim, M. & Haas, H. Modulation techniques for Li⁃ ZTE Commun. 14, 29–40 (2016).
  4. DoCoMo, NTT, NEC, SHARP, R1-050702: DFT-spread OFDM with pulse shaping filter in frequency domain in evolved UTRA uplink (2005).
  5. Myung, H. G., Lim, J. & Goodman, D. J. (2006). Peak-to-average power ratio of single carrier fdma signals with pulse shaping. in IEEE 17th International Symposium on Personal, Indoor and Mobile Radio Communications 1–5 (IEEE, Helsinki, Finland 2006). https://doi.org/10.1109/PIMRC.2006.254407
  6. Lomba, C., Valades, R. & Duarte, A. Efficient simulation of the impulse response of the indoor wireless optical channel. Int. J. Commun. Syst. 13, 537–549 (2000). https://doi.org/10.1002/1099-1131(200011/12)13:7/8%3C537::AID-DAC455%3E3.0.CO;2-6
  7. Haas, H. et al. Introduction to indoor networking concepts and challenges in Li-Fi., J. Opt. Commun. Netw. 12, A190–A203 (2020). https://doi.org/10.1364/JOCN.12.00A190
  8. Alonso-Gonzales, I. et al. Discrete indoor three-dimensional locali-zation system based on neural networks using visible light communi-cation. Sensors 18, 1040 (2018). https://doi.org/10.3390/s18041040
  9. Wu, X., Safari, M. & Haas, H. Access point selection for hybrid li-fi and Wi-Fi networks. IEEE Trans. Commun. 65, 5375–5385 (2017). https://doi.org/10.1109/TCOMM.2017.2740211
  10. Barry, J. R. et al. Simulation of multipath impulse response for indoor wireless optical channels. IEEE J. Sel. Areas Commun. 11, 367–379 (1993). https://doi.org/10.1109/49.219552
  11. Zeng, L. et al. improvement of date rate by using equalization in an indoor visible light communication system. in 4th IEEE Inter-national Conference on Circuits and Systems for 678–682 (IEEE, Shanghai, China 2008). https://doi.org/10.1109/ICCSC.2008.149
  12. Kahn, J. & Barry, J. R. Wireless infrared communications. Proc. IEEE 85, 265–298 (1997). https://doi.org/10.1109/5.554222
  13. Jungnickel, V. et al. A physical model of the wireless infrared communication channel. IEEE J. Sel. Areas Commun. 20, 631–640 (2002). https://doi.org/10.1109/49.995522
  14. Zhan, X. et al. Comparison and analysis of DCO-OFDM, ACO-OFDM and ADO-OFDM in IM/DD systems. Appl. Mech. Mater. 701-702, 1059–1062 (2015). https://doi.org/10.4028/www.scientific.net/AMM.701-702.1059
  15. Zhang, M. & Zhang, Z. An optimum DC-biasing for DCO-OFDM system. IEEE Commun. Lett. 18, 1351–1354 (2014) https:/doi.org/10.1109/LCOMM.2014.2331068
  16. Carruthers, J. B. & Kahn, J. Multiple subcarrier modulation for nondirected wireless infrared communication. IEEE J. Sel. Areas Commun. 14, 538–546 (1996). https://doi.org/10.1109/49.490239
  17. Lee, S. H., Jung, S.-Y. & Kwon, J. K. Modulation and coding for dimmable visible light communication. IEEE Commun. Mag. 53, 136–143 (2015). https://doi.org/10.1109/MCOM.2015.7045402
  18. Acolatse , Bar-Ness, Y. & Wilson, S. K. Novel techniques of single carrier frequency domain equalization for optical wireless communications. EURASIP J.Adv. Signal Process. 2011, 393768 (2011). https://doi.org/10.1155/2011/393768
  19. Myung, H. G., Lim, J. & Goodman, D. J. Single carrier FDMA for uplink wireless transmission. IEEE Veh. Technol. Mag. 1, 30–38 (2006). https://doi.org/10.1109/MVT.2006.307304
  20. Sorger, U., De Broeck, I. & Schnell, M. Interleaved FDMA-a new spread-spectrum multiple-access scheme. in 1998 IEEE International Conference on Communications. Conference Record (ICC). Affiliated with SUPERCOMM'98. 2, 1013–1017 (IEEE, Atlanta, USA 1998). https://doi.org/10.1109/ICC.1998.685165
  21. Wu, Z.-Y. et al. Optimized DFT-spread OFDM based visible light communications with multiple lighting sources. Opt. Express 25, 26468–26482 (2017). https:/doi.org/10.1364/OE.25.026468
  22. Ch., Zhang, H. & Xu, W. On visible light communication using led array with DFT-spread OFDM. in 2014 IEEE International Conference on Communications (ICC) 3325–33302014 (IEEE, Sydney, Australia 2014). https://doi.org/10.1109/ICC.2014.6883834
  23. Puntsri, K. & Ekkaphol, K. Experimental comparison of OFDM SC-FDM and PAM for low speed optical wireless communication systems. In 7th International Electrical Engineering Congress (iEECON) 1–4 (IEEE, Hua Hin, Thailand 2019). https://doi.org/10.1109/iEECON45304.2019.8938969
Go to article

Authors and Affiliations

Saleh Hussin
1
Eslam M. Shalaby
2

  1. Electronics and Communication Engineering Department, Faculty of Engineering, Zagazig University, Zagazig, 44519 Egypt
  2. Electronics and Communication Engineering Department, Higher Technological institute, 10th of Ramadan City, Megawra 1, 44629 Egyp
Download PDF Download RIS Download Bibtex

Abstract

The underwater acoustic communication (UAC) operating in very shallow-water should ensure reliable transmission in conditions of strong multipath propagation, significantly disturbing the received signal. One of the techniques to achieve this goal is the direct sequence spread spectrum (DSSS) technique, which consists in binary phase shift keying (BPSK) according to a pseudo-random spreading sequence.
This paper describes the DSSS data transmission tests in the simulation and experimental environment, using different types of pseudo-noise sequences: m-sequences and Kasami codes of the order 6 and 8. The transmitted signals are of different bandwidth and the detection at the receiver side was performed using two detection methods: non-differential and differential.
The performed experiments allowed to draw important conclusions for the designing of a physical layer of the shallow-water UAC system. Both, m-sequences and Kasami codes allow to achieve a similar bit error rate, which at best was less than 10 −3. At the same time, the 6th order sequences are not long enough to achieve an acceptable BER under strong multipath conditions. In the case of transmission of wideband signals the differential detection algorithm allows to achieve a significantly better BER (less than 10 −2) than nondifferential one (BER not less than 10 −1). In the case of narrowband signals the simulation tests have shown that the non-differential algorithm gives a better BER, but experimental tests under conditions of strong multipath propagation did not confirm it. The differential algorithm allowed to achieve a BER less than 10 −2 in experimental tests, while the second algorithm allowed to obtain, at best, a BER less than 10 −1. In addition, two indicators have been proposed for a rough assessment which of the detection algorithms under current propagation conditions in the channel will allow to obtain a better BER.
Go to article

Authors and Affiliations

Jan H. Schmidt
1
Iwona Kochańska
1
Aleksander M. Schmidt
1

  1. Faculty of Electronics, Telecommunication and Informatics, Department of Signals and Systems Gdansk University of Technology Gdansk, Poland

This page uses 'cookies'. Learn more