Search results

Filters

  • Journals
  • Date

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The aim of this study was to estimate the measurement uncertainty for a material produced by additive manufacturing. The material investigated was FullCure 720 photocured resin, which was applied to fabricate tensile specimens with a Connex 350 3D printer based on PolyJet technology. The tensile strength of the specimens established through static tensile testing was used to determine the measurement uncertainty. There is a need for extensive research into the performance of model materials obtained via 3D printing as they have not been studied sufficiently like metal alloys or plastics, the most common structural materials. In this analysis, the measurement uncertainty was estimated using a larger number of samples than usual, i.e., thirty instead of typical ten. The results can be very useful to engineers who design models and finished products using this material. The investigations also show how wide the scatter of results is.

Go to article

Authors and Affiliations

Stanisław Adamczak
Jerzy Bochnia
Bożena Kaczmarska
Download PDF Download RIS Download Bibtex

Abstract

The aim of this study was to assess the innovation risk for an additive manufacturing process. The analysis was based on the results of static tensile tests obtained for specimens made of photocured resin. The assessment involved analyzing the measurement uncertainty by applying the FMEA method. The structure of the causes and effects of the discrepancies was illustrated using the Ishikawa diagram. The risk priority numbers were calculated. The uncertainty of the tensile test measurement was determined for three printing orientations. The results suggest that the material used to fabricate the tensile specimens shows clear anisotropy of the properties in relation to the printing direction.
Go to article

Authors and Affiliations

Stanisław Adamczak
Jerzy Bochnia
Bożena Kaczmarska
Download PDF Download RIS Download Bibtex

Abstract

The article presents tests results of the influence of deformation methods on the microstructure and properties of alloy WE43. There were direct extrusion tests and extrusion with KoBo method performed. An assessment of the influence of the methods of deformation on the microstructure and the mechanical properties of the achieved rods from alloy WE43 was conducted. There was an analysis of microstructure carried out with the use of light and scanning microscopy techniques in the initial state and after plastic deformation. Static tensile test was conducted in temperature of 350°C at a speed of 0.0001 m·s–1 and microhardness measurements were performed of HV0.2. On the basis of the achieved mechanical tests results it was stated that in the temperature of 350°C for samples deformed with the use of KoBo method there was an effect of superplastic flow found. The value of elongation achieved was 250% which was 3 times higher than in case of classic extrusion (80%).

Go to article

Authors and Affiliations

I. Bednarczyk
D. Kuc
M. Tkocz
A. Tomaszewska
Download PDF Download RIS Download Bibtex

Abstract

The article presents tests results of metalforming of magnesium alloy AZ61. Materials for tests were ingots sized  40×90 mm from magnesium alloy marked with symbol AZ61. Before the shaping process the ingots underwent heat treatment. As a result of conduction of the deformation processes there were rods achieved with diameter of 8 mm. There were axisymmetrical compression tests conducted on the samples taken from rods in temperature range from RT to 350ºC in order to determine the plasticity and formability of the alloy AZ61. Static tensile test was conducted in room temperature (RT), in 300ºC and in 350ºC. With the use of light and electron microscopy techniques the changes which occurred in the microstructure of AZ61alloy in initial condition and after plastic deformation (classic extrusion, KoBo method extrusion) were described. The deformation of alloy AZ61 using the KoBo method contributes to an increase in strength and plastic properties. The effect of superplastic flow was found at a temperature of 350ºC, where a 300% increase in plastic properties – elongation value was obtained. The analysis of the microstructure showed a significant grain size reduction in the microstructure of alloy AZ61 after deformation by the KoBo method and after an axisymmetric compression test, where grains of an average diameter of d = 13 µm were obtained.

Go to article

Authors and Affiliations

I. Bednarczyk

This page uses 'cookies'. Learn more