Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 7
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This study focuses to develop a new hybrid Engineered Cementitious Composite (ECC) and assesses the performance of a new hybrid ECC based on the steel short random fiber reinforcement. This hybrid ECC aims to improve the tensile strength of cementitious material and enhance better flexural performance in an RC beam. In this study, four different mixes have been investigated. ECC with Poly Vinyl Alcohol (PVA) fiber and PolyPropylene (PP) fiber of 2.0% volume fraction are the two Mono fiber mixes; ECC mix with PVA fiber of 0.65% volume fraction hybridized with steel fiber of 1.35% volume fraction, PP fiber of 0.65% volume fraction hybridized with steel of 1.35% volume fraction are the two additional different hybrid mixes. The material properties of mono fiber ECC with 2.0 % of PVA is kept as the reference mix in this study. The hybridization with fibers has a notable achievement on the uniaxial tensile strength, compressive strength, Young’s modulus, and flexural behavior in ECC layered RC beams. From the results, it has been observed that the mix with PVA fiber of 0.65% volume fraction hybrid with steel fiber of 1.35% volume fraction exhibitimprovements in tensile strength, flexural strength, andenergy absorption. ThePP fiber of 0.65% volume fraction hybridized with steel of 1.35% volume fraction mix has reasonable flexural performance and notable achievement in displacement ductility overthe reference mix.

Go to article

Authors and Affiliations

A.R. Krishnaraja
Dr.S. Kandasamy
Download PDF Download RIS Download Bibtex

Abstract

This study summarised the recent achievement in developing fiber reinforced geopolymer concrete. The factor of replacing Ordinary Portland Cement (OPC) which is due to the emission of carbon dioxide that pollutes the environment globally is well discussed. The introduction towards metakaolin is presented. Besides, the current research trend involved in geopolymer also has been reviewed for the current 20 years to study the interest of researchers over the world by year. Factors that contribute to the frequency of geopolymer research are carried out which are cost, design, and the practicality of the application for geopolymer concrete. Besides, the importance of steel fibers addition to the geopolymer concrete is also well discussed. The fundamental towards metakaolin has been introduced including the source of raw material, which is calcined kaolin, calcined temperature, chemical composition, geopolymerisation process, and other properties. Alkali activators which are mixing solution between sodium hydroxide (NaOH) and sodium silicate (Na2SiO3) have been reviewed. The mechanical properties of fibers reinforced metakaolin-based geopolymer concrete which is compressive and flexural are thoroughly reviewed. The compressive and flexural strength of fiber-reinforced metakaolin geopolymer concrete shows some improvement to the addition of steel fibers. The reviews in this field demonstrate that reinforcement of metakaolin geopolymer concrete by steel fibers shows improvement in mechanical performance.
Go to article

Authors and Affiliations

Meor Ahmad Faris
1 2
ORCID: ORCID
Mohd Mustafa Al Bakri Abdullah
1 3
ORCID: ORCID
Ratnasamy Muniandy
ORCID: ORCID
Shamala Ramasamy
1 2
ORCID: ORCID
Mohammad Firdaus Abu Hashim
1 2
ORCID: ORCID
Subaer Junaedi
4
ORCID: ORCID
Andrei Victor Sandu
5
ORCID: ORCID
Muhammad Faheem Mohd Tahir
1 3
ORCID: ORCID

  1. University Malaysia Perlis, Faculty of Chemical Engineering Technology, Center of Excellent Geopolymer and Green Technology, Perlis, Malaysia
  2. University Malaysia Perlis (UniMAP), Faculty of Mechanical Engineering Technology, Perlis, Malaysia
  3. University Malaysia Perlis (UniMAP), Faculty of Chemical Engineering Technology, Perlis, Malaysia
  4. Universitas Negeri Makasssar, Faculty of Mathematics and Natural Sciences, Indonesia
  5. Gheorge Asachi Technical University of Lasi, Faculty of Materials Science and Engineering, Lasi, Romania
Download PDF Download RIS Download Bibtex

Abstract

The strength of recycled aggregate (RA) is low, which makes the performance of recycled aggregate concrete (RAC) poor, and the addition of fiber can make up for the shortcoming of RAC. In this paper, the mechanical properties of RAC which was added with steel fiber were studied. The specimens with RA content of 0%, 40%, 70% 100% and steel fiber content of 0%, 0.5% and 1% were prepared, and their mechanical properties were tested. The results showed that the slump reduced 73.75% after the addition of 100% RA and 37.5% after the addition of 1% steel fiber compared to R0S0; from the perspective of mechanical properties, the larger the content of steel fiber, the better the mechanical properties of the specimen; the improvement of the tensile strength was the most obvious after the addition of steel fiber. The experimental results show that steel fiber can improve the performance of RAC and make it perform better in practical application.

Go to article

Authors and Affiliations

Qing Su
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

Ceramic waste generated by demolition and manufacturing processes is a kind of widely discharged solid waste; its sustainable use can reduce resource extraction, energy consumption, and carbon emissions, thereby reducing the environmental impact. In this study, ceramic powder and ceramic sand were prepared using waste ceramic wall tiles. By using three water-to-binder ratios of 0.30, 0.32, and 0.34, five ceramic powder replacement rates of 10% to 50%, and completely using ceramic sand as the fine aggregate, specimens with large differences in mechanical properties were prepared. Firstly, the compressive strength was investigated. On this basis, hybrid fibers were employed to strengthen the new matrix material, and its bending resistance was experimentally studied. It was found that the incorporation of ceramic powder reduced the compressive strength of the matrix. The water-binder ratio significantly affects compressive strength at an early age. The effect of PVA fiber on improving the ductility of the new composite is distinct. Increasing the amount of steel fiber can effectively enhance the bending bearing capacity.With a ceramic powder dosage of 50%, the new composite has shown ductile failure characteristics, even with low total fiber content. The bending properties of this new composite material, which makes extensive use of ceramic waste, are well adjustable. The bearing capacity and ductility balance can be achieved with the steel fiber content of 1% and the PVA fiber content of 1.2% to 1.50%.
Go to article

Authors and Affiliations

Lipeng Wu
1
ORCID: ORCID
Xuanhao Li
1
ORCID: ORCID
Hai Deng
1
ORCID: ORCID

  1. Shijiazhuang Tiedao University, School of Civil Engineering, 17 Northeast Second Inner Ring, Changan District, Shijiazhuang City, China
Download PDF Download RIS Download Bibtex

Abstract

The flexural toughness of chopped steel wool fiber reinforced cementitious composite panels was investigated. Reinforced cementitious composite panels were produced by mixing of chopped steel wool fiber with a ratio range between 0.5% to 6.0% and 0.5% as a step increment of the total mixture weight, where the cement to sand ratio was 1:1.5 with water to cement ratio of 0.45. The generated reinforced cementitious panels were tested at 28 days in terms of load-carrying capacity, deflection capacities, post-yielding effects, and flexural toughness. The inclusion of chopped steel wool fiber until 4.5% resulted in gradually increasing load-carrying capacity and deflection capacities while, provides various ductility, which would simultaneously the varying of deflection capability in the post-yielding stage. Meanwhile, additional fiber beyond 4.5% resulted in decreased maximum load-carrying capacity and increase stiffness at the expense of ductility. Lastly, the inclusion of curves gradually.
Go to article

Bibliography


[1] Rajak D.K., Pagar D. D., Menezes P. L., and Linul E, “ Fiber-reinforced polymer composites: Manufacturing, properties, and applications”, Polymers 11: p. 1667, 2019. https://doi.org/10.3390/polym11101667
[2] Rajak D.K., Pagar D.D., Kumar R., and Pruncu C.I., “Recent progress of reinforcement materials: A comprehensive overview of composite materials”, Journal of Materials Research and Technology, 8: pp. 6354–6374, 2019. https://doi.org/10.1016/j.jmrt.2019.09.068
[3] Cejuela E., Negro V., and del Campo J.M., “Evaluation and Optimization of the Life Cycle in Maritime Works”, Sustainability 12: 4524, 2020. https://doi.org/10.3390/su12114524
[4] Pushkar S. and Ribakov Y., “Life-Cycle Assessment of Strengthening Pre-Stressed Normal-Strength Concrete Beams with Different Steel-Fibered Concrete Layers”, Sustainability 12: p. 7958. 2020. https://doi.org/10.3390/su12197958
[5] Rashiddadash P., Ramezanianpour A.A., and Mahdikhani M., “Experimental investigation on flexural toughness of hybrid fiber reinforced concrete (HFRC) containing metakaolin and pumice”, Construction and Building Materials 51: pp. 313–320, 2014. https://doi.org/10.1016/j.conbuildmat.2013.10.087
[6] Felekoğlu B.,Türkel S.,and Altuntaş Y., “Effects of steel fiber reinforcement on surface wear resistance of self-compacting repair mortars”, Cement and Concrete Composites 29: pp. 391–396, 2007. https://doi.org/10.1016/j.cemconcomp.2006.12.010
[7] Abdulkareem M., Havukainen J., and Horttanainen M., “How environmentally sustainable are fibre reinforced alkali-activated concretes?”, Journal of Cleaner Production 236: p. 117601, 2019. https://doi.org/10.1016/j.jclepro.2019.07.076
[8] Zhang P., Zhao Y-N, Li Q-F, Wang P., and Zhang T.H., “Flexural toughness of steel fiber reinforced high performance concrete containing nano-SiO2 and fly ash”, The Scientific World Journal 1–11 2014. https://doi.org/10.1155/2014/403743
[9] Faris, M.A., Abdullah, M.M.A.B., Ismail, K.N., Mortar, N.A.M., Hashim, M.F.A. and Hadi, A. “Pull-Out Strength of Hooked Steel Fiber Reinforced Geopolymer Concrete”, In IOP Conference Series: Materials Science and Engineering 55: pp. 012–080, 2019. https://doi:10.1088/1757-899X/551/1/012080
[10] Aggelis D.G., Soulioti D., Barkoula N.M., Paipetis A.S., Matikas T.E., and Shiotani T., “Acoustic emission behavior of steel fibre reinforced concrete under bending”, Construction and Building Materials 23: pp. 32–40, 2009. https://doi.org/10.1016/j.conbuildmat.2009.06.042
[11] Ragalwar K., Heard W.F., Williams B.A., Kumar D., and Ranade R., “On enhancing the mechanical behavior of ultra-high performance concrete through multi-scale fiber reinforcement”, Cement and Concrete Composites 105: p. 103422, 2020. https://doi.org/10.1016/j.cemconcomp.2019.103422
[12] Amer, Akrm A. Rmdan, Mohd Mustafa Al Bakri Abdullah, Yun Ming Liew, Ikmal Hakem A Aziz, Jerzy J. Wysłocki, Muhammad Faheem Mohd Tahir, Wojciech Sochacki, Sebastian Garus, Joanna Gondro, and Hetham AR Amer, “Optimizing of the Cementitious Composite Matrix by Addition of Steel Wool Fibers (Chopped) Based on Physical and Mechanical Analysis”, Materials 14: p. 1094, 2021. https://doi.org/10.3390/ma14051094
[13] Sharma, A.K., Bhandari, R., Aherwar, A. and Rimašauskienė, R, “Matrix materials used in composites: A comprehensive study”, Materials Today: Proceedings 21: pp. 1559–1562, 2020. https://doi.org/10.1016/j.matpr.2019.11.086
[14] García A., Norambuena-C. J., and Partl, M.N., “A parametric study on the influence of steel wool fibers in dense asphalt concrete”, Materials and Structures 47: 1559–1571, 2014. https://doi.10.1617/s11527-013-0135-0
[15] Ponikiewski T., Katzer J., Bugdol M., and Rudzki M., “Determination of 3D porosity in steel fibre reinforced SCC beams using X-ray computed tomography”, Construction and Building Materials 68: pp. 333–340, 2014. https://doi.org/10.1016/j.conbuildmat.2014.06.064
[16] Koenig A., “Analysis of air voids in cementitious materials using micro X-ray computed tomography (µXCT)”, Construction and Building Materials 244:118313, 2020. https://doi.org/10.1016/j.conbuildmat.2020.118313
[17] Chajec A., and Sadowski L., “The Effect of Steel and Polypropylene Fibers on the Properties of Horizontally Formed Concrete”, Materials 13: p. 5827, 2020. https://doi.org/10.3390/ma13245827
[18] Zhou S., Xie L., Jia Y., and Wang C., “Review of cementitious composites containing polyethylene fibers as repairing materials”, Polymers 12: p. 2624, 2020. https://doi.org/10.3390/polym12112624
[19] Martinelli E., Pepe M., and Fraternali F., “Meso-Scale Formulation of a Cracked-Hinge Model for Hybrid Fiber-Reinforced Cement Composites”, Fibers 8: p. 56, 2020. https://doi.org/10.3390/fib8090056
[20] Zhou H., Jia B., Huang H., and Mou Y., “Experimental study on basic mechanical properties of basalt fiber reinforced concrete “, Materials (Basel) 13: p. 1362, 2020. https://doi.org/10.3390/ma13061362
Go to article

Authors and Affiliations

Akrm A. Rmdan Amer
1
ORCID: ORCID
Mohd Mustafa Al Bakri Abdullah
2
ORCID: ORCID
Yun Ming Liew
2
ORCID: ORCID
Ikmal Hakem A. Aziz
1
ORCID: ORCID
Muhammad Faheem Mohd Tahir
2
Shayfull Zamree Abd Rahim
3
ORCID: ORCID
Hetham A.R. Amer
4
ORCID: ORCID

  1. Geopolymer & Green Technology, Center of Excellence (CEGeoGTech), Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia
  2. Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis, Malaysia
  3. Faculty of Mechanical Engineering Technology, Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia
  4. Omar Al-Mukhtar Universiti, Civil Engineering Department, Libya
Download PDF Download RIS Download Bibtex

Abstract

Experimental tests were carried out to assess the failure model of steel and basalt fiber reinforced concrete two-span beams. Experimental research was focused on observing the changes in behavior of tested elements in dependence on the ratio of shear reinforcement and type of fiber. The beams had varied stirrup spacing. The steel fiber content was 78.5 kg/m3 (1.0% by vol.) and basalt fiber content was 5.0 kg/m3 (0.19% by vol.). Concrete beams without fibers were also examined. Two-span beams with a cross-section of 120×300 mm and a length of 4150 mm were loaded in a five-point bending test. Shear or flexural capacity of tested members was recorded. The effectiveness of both sorts of fibers as shear reinforcement was assessed and the differences were discussed. It was shown that fibers control the cracking process and the values of deflections and strains. Fibers clearly enhance the shear capacity of reinforced concrete beams.

Go to article

Authors and Affiliations

J. Krassowska
M. Kosior-Kazberuk
Download PDF Download RIS Download Bibtex

Abstract

Confinement in concrete can improve the descending branch of the stress-strain relationship of concrete. The addition of steel fiber in concrete can also improve the descending branch of the stress-strain relationship of concrete. The combination of the use of both can double the impact significantly on the post-peak response. It can be seen from the trend of the post-peak response that the values of both 0.85fccf and 0.5fccf can be well predicted. The study involved an experimental investigation on the effect of confinement on square column specimens reinforced with steel fiber. From the experimental program, it is proven that the use of combination of confining steel and steel fiber works very well which is indicated by the better improvement on the post-peak response. The proposed equations can predict the actual stress-strain curves quite accurately which include the effects of confinement parameters (Zm) and steel fiber volumetric parameter (Vf).

Go to article

Authors and Affiliations

Bambang Sabariman
Agoes Soehardjono
Wisnumurti
Ari Wibowo
Tavio

This page uses 'cookies'. Learn more