Search results

Filters

  • Journals
  • Authors
  • Contributor
  • Keywords
  • Date
  • Type

Search results

Number of results: 76
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Energy storage, as a flexible resource that comprehensively supports network operation, will grow increasingly indispensable as the share of renewables increases.
Go to article

Authors and Affiliations

Krzysztof Rafał
Paweł Grabowski
Download PDF Download RIS Download Bibtex

Abstract

This article aims at presenting research on the sorption of carbon dioxide on shales, which will allow to estimate the possibility of CO2 injection into gas shales. It has been established that the adsorption of carbon dioxide for a given sample of sorbent is always greater than that of methane. Moreover, carbon dioxide is the preferred gas if adsorption takes place in the presence of both gases. In this study CO2 sorption experiments were performed on high pressure setup and experimental data were fitted into the Ambrose four components models in order to calculate the total gas capacity of shales as potential CO2 reservoirs. Other data necessary for the calculation have been identified: total organic content, porosity, temperature and moisture content. It was noticed that clay minerals also have an impact on the sorption capacity as the sample with lowest TOC has the highest total clay mineral content and its sorption capacity slightly exceeds the one with higher TOC and lower clay content. There is a positive relationship between the total content of organic matter and the stored volume, and the porosity of the material and the stored volume.
Go to article

Bibliography

[1] A. Szurlej, P. Janusz, Natural gas economy in the United States and European markets. Gospodarka Surowcami Mineralnymi (Mineral Resources Management) 29 (4), 77-94 (2013). DOI: https://doi.org/10.2478/gospo-2013-0043
[2] B. Dudley, BP Statistical Review of World Energy 4 (2019).
[3] J. Siemek, M. Kaliski, S. Rychlicki, P. Janusz, S. Sikora, A. Szurlej, Wpływ shale gas na rynek gazu ziemnego w Polsce. Rynek Energii 5, 118-124 (2011).
[4] K . Król, A. Dynowski, Eksploatacja gazu ziemnego z formacji łupkowych w Polsce – nadzieje i fakty (komunikat). Bezp. Pr. Ochr. Śr. w Gór. 10 (2015).
[5] M. Iijima, T. Nagayasu, T. Kamijyo, S. Nakatani, MHI’s Energy Efficient Flue Gas CO2 Capture Technology and Large Scale CCS Demonstration Test at Coal-fired Power Plants in USA. Mitsubishi Heavy Industries Technical Review 49 (1), 37-43 (2012).
[6] R . Khosrokhavar, Mechanisms for CO2 sequestration in geological formations and enhanced gas recovery. Springer Theses (2016). DOI: https://doi.org/10.4233/uuid:a27f5c1d-5fd2-4b1e-b757-8839c0c4726c
[7] D . Liu, Y. Li, S. Yang, R.K. Agarwal, CO2 sequestration with enhanced shale gas recovery. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 43 (24) 1-11 (2019). DOI: https://doi.org/10.1080/15567036.2019.1587069
[8] R . Heller, M. Zoback, Adsorption of methane and carbon dioxide on gas shale and pure mineral samples. Journal of Unconventional Oil and Gas Resources 8, 14-24 (2014). DOI: https://doi.org/10.1016/j.juogr.2014.06.001
[9] J.A. Cecilia, C. García‐Sancho, E. Vilarrasa‐García, J. Jiménez‐Jiménez, E. Rodriguez‐Castellón, Synthesis, Characterization, Uses and Applications of Porous Clays Heterostructures: A Review. Chem. Rec. 18, 1085-1104 (2018). DOI: https://doi.org/10.1002/tcr.201700107
[10] O.P. Ortiz Cancino, D. Peredo Mancilla, M. Pozo, E. Pérez, D. Bessieres, Effect of Organic Matter and Thermal Maturity on Methane Adsorption Capacity on Shales from the Middle Magdalena Valley Basin in Colombia. Energy Fuels 31, 11698-11709 (2017). DOI: https://doi.org/10.1021/acs.energyfuels.7b01849
[11] S. Zhou, H. Xue, Y. Ning, W. Guo, Q. Zhang, Experimental study of supercritical methane adsorption in Longmaxi shale: Insights into the density of adsorbed methane. Fuel 211, 140-148 (2018). DOI: https://doi.org/10.1016/j.fuel.2017.09.065
[12] H . Bi, Z. Jiang, J. Li, P. Li, L. Chen, Q. Pan, Y. Wu, The Ono-Kondo model and an experimental study on supercritical adsorption of shale gas: A case study on Longmaxi shale in southeastern Chongqing, China. J. Nat. Gas Sci. Eng. 35, 114-121 (2016). DOI: https://doi.org/10.1016/j.jngse.2016.08.047
[13] M. Gasparik, P. Bertier, Y. Gensterblum, A. Ghanizadeh, B.M. Krooss, R. Littke, Geological controls on the methane storage capacity in organic-rich shales. Int. J. Coal Geol., Special issue: Adsorption and fluid transport phenomena in gas shales and their effects on production and storage 123, 34-51 (2014). DOI: https://doi.org/10.1016/j.coal.2013.06.010
[14] X. Luo, S. Wang, Z. Wang, Z. Jing, M. Lv, Z. Zhai, T. Han, Adsorption of methane, carbon dioxide and their binary mixtures on Jurassic shale from the Qaidam Basin in China. Int. J. Coal Geol. 150, 210-223 (2015). DOI: https://doi.org/10.1016/j.coal.2015.09.004
[15] L . Wang, Q. Yu, The effect of moisture on the methane adsorption capacity of shales: A study case in the eastern Qaidam Basin in China. J. Hydrol. 542, 487-505 (2016). DOI: https://doi.org/10.1016/j.jhydrol.2016.09.018
[16] S.M. Kang, E. Fathi, R.J. Ambrose, I.Y. Akkutlu, R.F. Sigal, Carbon Dioxide Storage Capacity of Organic-Rich Shales. SPE J. 16, 842-855 (2011). DOI: https://doi.org/10.2118/134583-PA
[17] D .L. Gautier, J.K. Pitman, R.R. Charpentier, T. Cook, T.R. Klett, C.J. Schenk, Potential for Technically Recoverable Unconventional Gas and Oil Resources in the Polish-Ukrainian Foredeep. USGS Fact Sheet, 2012-3102 (2012).
[18] R . McCarthy, V. Arp, A New Wide Range Equation of State for Helium. Advances in Cryogenic Engineering 35, 1465-1475 (1990).
[19] R . Span, W. Wagner, A New Equation of State for Carbon Dioxide Covering the Fluid Region from the Triple‐Point Temperature to 1100 K at Pressures up to 800 MPa. Journal of Physical and Chemical Reference Data 25 (6), 1509-1596 (1996). DOI: https://doi.org/10.1063/1.555991
[20] U . Setzmann, W. Wagner, A New Equation of State and Tables of Thermodynamic Properties for Methane Covering the Range from the Melting Line to 625 K at Pressures up to 100 MPa. Journal of Physical and Chemical Reference Data 20, 1061-1155 (1991). DOI: https://doi.org/10.1063/1.555898
[21] M. Lutynski, M. A. Gonzalez Gonzalez, Characteristics of carbon dioxide sorption in coal and gas shale – The effect of particle size. Journal of Natural Gas Science and Engineering 28, 558-565. DOI: https://doi.org/10.1016/j.jngse.2015.12.037
[22] R . Aguilera, Shale gas reservoirs: Theoretical, practical and research issues. Petroleum Research 1 (1), 10-26 (2016). DOI: https://doi.org/10.1016/S2096-2495(17)30027-3
[23] H . Belyadi, E. Fathi, F. Belyadi, Hydraulic fracturing in unconventional reservoirs: theories, operations, and economic analysis. Gulf Professional Publishing (2016).
[24] K . Sepehrnoori, Y. Wei, Shale Gas and Tight Oil Reservoir Simulation. Elsevier (2018). DOI: https://doi.org/10.1016/ C2017-0-00263-X
[25] R .J. Ambrose, R.C Hartman, M. Diaz-Campos, I.Y. Akkutlu, C.H. Sondergeld, New Pore-scale Considerations for Shale Gas in Place Calculations. Presented at the SPE Unconventional Gas Conference, Society of Petroleum Engineers (2010). DOI: https://doi.org/10.2118/131772-MS
[26] R .J. Ambrose, R.C. Hartman, M. Diaz Campos, I.Y. Akkutlu, C.H. Sondergeld, Shale Gas-in-Place Calculations Part I: New Pore-Scale Considerations. Spe Journal 17 (01), 219-229 (2012). DOI: https://doi.org/10.2118/131772-PA
[27] P. Such, Co to właściwie znaczy porowatość skał łupkowych. Nafta-Gaz LXX (7), 411-415 (2014).
Go to article

Authors and Affiliations

Patrycja Waszczuk-Zellner
1
ORCID: ORCID
Marcin Lutyński
2
ORCID: ORCID
Aleksandra Koteras
3
ORCID: ORCID

  1. LNPC Patrycja Waszczuk, Pszczyna, Poland
  2. Silesian University of Technology, 2A Akademicka Str., 44-100 Gliwice, Poland
  3. Central Mining Institute (GIG), 1 Gwarków Sq., 40-166 Katowice, Poland
Download PDF Download RIS Download Bibtex

Abstract

Finite fossil fuel resources, as well as the instability of renewable energy production, make the sustainable management of energy production and consumption some of the key challenges of the 21st century. It also involves threats to the state of the natural environment, among others due to the negative impact of energy on the climate. In such a situation, one of the methods of improving the efficiency of energy management – both on the micro (dispersed energy) and macro (power system) scale, may be innovative technological solutions that enable energy storage. Their effective implementation will allow it to be collected during periods of overproduction and to be used in situations of scarcity. These challenges cannot be overestimated - modern science has a challenge to solve various types of problems related to storage, including the technology used or the control/ /management of energy storage. Heat storage technologies, on which research works are carried out regarding both storage based on a medium such as water, as well as storage using thermochemical transformations or phase-change materials. They give a wide range of applications and improve the efficiency of energy systems on both the macro and micro scale. Of course, the technological properties and economic parameters have an impact on the application of the chosen technology. The article presents a comparison of storage parameters or heat storage methods based on different materials with specification of their work parameters or operating costs.

Go to article

Authors and Affiliations

Paweł Jastrzębski
Piotr W. Saługa
Download PDF Download RIS Download Bibtex

Abstract

Dr. Krzysztof Fic of the Poznań University of Technology discusses energy storage, aesthetic medicine’s quest for immortality, and how much time goes into being a scientist.

Go to article

Authors and Affiliations

Krzysztof Fic
Download PDF Download RIS Download Bibtex

Abstract

The mathematical model that described the relationship between cell-count decay and storage time in fixed bacterioplankton samples from three Antarctic lakes of differing trophic status was determined after a one-year experiment. Bacterial density was estimated by epifluorescence microscopy. Cell count data fitted a negative exponential model in all three cases (p < 0.00001). However, the slopes of their curves were significantly different (p < 0.01), as well as the percentage of bacterial loss after a period of two months. This fact might be related to the limnological characteristics of the water bodies, though the individual genetic variability of their bacterioplankton should not be left aside. Original bacterial numbers in the samples could also be a reason of the differences observed in the pattern of decay in cell counts. Thus, applying a general decay function to any sample and assuming the idea that freshwater bacterioplankton samples can be stored for a two month-period before the bacterial counts decay, can lead to an erroneous estimation of bacterial numbers with direct consequences in ecological investigations.

Go to article

Authors and Affiliations

Luz Allende
Download PDF Download RIS Download Bibtex

Abstract

The aim of the article is a preliminary assessment of the possibility of using ATES (Aquifer Thermal Energy Storage) technology for the seasonal storage of heat and cold in shallow aquifers in Poland. The ATES technology is designed to provide low-temperature heat and cold to big-area consumers. A study by researchers from the Delft University of Technology in the Netherlands indicates very favorable hydrogeological and climate conditions in most of Poland for its successful development. To confirm this, the authors used public hydrogeological data, including information obtained from 1324 boreholes of the groundwater observation and research network and 172 information sheets of groundwater bodies (GWBs). Using requirements for ATES systems, well-described in the world literature, the selection of boreholes was carried out in the GIS environment, which allowed aquifers that meet the required criteria to be captured. The preliminary assessment indicates the possibility of the successful implementation of ATES technology in Poland, in particular in the northern and western parts of the country, including the cities of: Gdańsk, Warsaw, Wrocław, Bydgoszcz, Słupsk, and Stargard.

Go to article

Authors and Affiliations

Maciej Miecznik
Robert Skrzypczak
Download PDF Download RIS Download Bibtex

Abstract

The energy sector is a majorarea that is responsible for the country development. Almost 40% of the total energy requirement of an EU country is consumed by the building sector and 60% of which is only used for heating and cooling requirements. This is a prime concern as fossil fuel stocks are depleting and global warming is rising. This is where thermal energy storage can play a major role and reduce the dependence on the use of fossil fuels for energy requirements (heating and cooling) of the building sector. Thermal energy storage refers to the technology which is related to the transfer and storage of heat energy predominantly from solar radiation, alternatively to the transfer and storage of cold from the environment to maintain a comfortable temperature for the inhabitants in the buildings by providing cold in the summer and heat in the winter. This work is an extensive study on the use of thermal energy storage in buildings. It discusses different methods of implementing thermal energy storage into buildings, specifically the use of phase change materials, and also highlights the challenges and opportunities related to implementing this technology. Moreover, this work explains the principles of different types and methods involved in thermal energy storage.
Go to article

Authors and Affiliations

Priyam Deka
1
Andrzej Szlęk
1

  1. Silesian University of Technology, Faculty of Energy and Environmental Engineering, Konarskiego 18, 44-100, Gliwice, Poland
Download PDF Download RIS Download Bibtex

Abstract

The utilization of mining waste is an important problem in Poland and Ukraine. The article presents one of the variants of waste mining in the quarry in Płaza. An analysis of the resource base of the deposit and their location at the area of Płaza deposit is carried out. The Płaza deposit is located in the western part of the Małopolskie province, in the entire Chrzanów commune. The Płaza deposit is constructed of Middle Triassic carbonates represented by the limestone-dolomite Olkusz Formation and the limestone-marlized Gogolin Formation. The deposit series lies on the dolomites of Röt age (Lower Triassic – Olenekian). The most valuable raw material was the pure limestone from the lower part of the Olkusz Formation, now almost completely exploited. The article presents the current state of mineable reserves of the deposit and their quality (chemical and physical characteristics). Moreover the article shows potential consumers of raw material and the possibility of extending the life of the mine work. According to the results of the environmental monitoring the ground and hydrogeological conditions were evaluated, the results of which allowed a more efficient use of the existing quarry area for mining waste disposal to be proposed. The paper presents a conceptual waste transport scheme, planned distribution and compaction of wastes belonging to the first, second and third group and then a surface reclamation. In view of the absence of similar decisions analogs, the consideration of the open-pit as a one solid geomechanical system functioning under the conditions of uncertainty is suggested. In order to examine the dynamics of the waste compaction process, some measures are foreseen to constantly observe their subsidence. The proposed measures for the synchronous disposal of mining waste in the worked-out area of the open-pit and the simultaneous mining operation in the quarry will allow the life cycle of the open-pit to be prolonged for 15–20 years.

Go to article

Authors and Affiliations

Michał Potempa
Artem Shyrin
Download PDF Download RIS Download Bibtex

Abstract

Increasing the share of energy production from renewable sources (RES) plays a key role in the sustainable and more competitive development of the energy sector. Among the renewable energy sources, the greatest increase can be observed in the case of solar and wind power generation. It should be noted that RES are an increasingly important elements of the power systems and that their share in energy production will continue to rise. On the other hand the development of variable generation sources (wind and solar energy) poses a serious challenge for power systems as operators of unconventional power plants are unable to provide information about the forecasted production level and the energy generated in a given period is sometimes higher than the demand for energy in all of the power systems. Therefore, with the development of RES, a considerable amount of the generated energy is wasted. The solution is energy storage, which makes it possible to improve the management of power systems. The objective of this article is to present the concept of electricity storage in the form of the chemical energy of hydrogen (Power to Gas) in order to improve the functioning of the power system in Poland. The expected growth in the installed capacity of wind power plants will result in more periods in which excess energy will be produced. In order to avoid wasting large amounts of energy, the introduction of storage systems is necessary. An analysis of the development of wind power plants demonstrates that the Power to Gas concept can be developed in Poland, as indicated by the estimated installed capacity and the potential amount of energy to be generated. In view of the above, the excess electricity will be available for storage in the form of chemical energy of hydrogen, which

Go to article

Authors and Affiliations

Aleksandra Komorowska
ORCID: ORCID
Lidia Gawlik
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

Currently, Prosopis laevigata (mesquite) has been affected by the Bruchinae coleoptera pest, whic feeds on its seed and causes significant losses in production and grain storage. In the Hñähñu community El Alberto (Ixmiquilpan, Hidalgo, Mexico), the use of aqueous extracts from garlic and nettle as botanical insecticides against different pests in agricultural fields is a known practice. Herein, we assess the efficacy of the method known by locals in the protection of mesquite seeds. Two tests were conducted: 1) Insecticidal effect on adult bruchins, and 2) Seed preservation test from Bruchinae infestation, with a germination test in seeds exposed to the treatments. There are probable insecticidal effects on immature stages of Bruchinae since there were no mortality effects on their adults during the first test. Mortality on adults in the second test was 75.6% with garlic and 50% with nettle. Nettle extract had more efficacy in seed protection with an infestation rate of 4%, whereas 27.5% of the seeds exposed to garlic extract were infested. Seed germination rate was 2.38% with nettle extract, and 1.19% with garlic extract. The method known by local inhabitants requires modifications to increase its efficacy and possible use in Integrated Pest Management in the future.
Go to article

Authors and Affiliations

Mariana González-Macedo
1
Nathalie Cabirol
1
Marcelo Rojas-Oropeza
1

  1. Functional Soil Microbial Ecology and Environmental Protection Group − Department of Ecology and Natural Resources, Facultad de Ciencias − Universidad Nacional Autonoma de Mexico, Mexico
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the methodology of designing a system for accumulating waste heat from industrial processes. The research aimed to analyse the fluid’s movement in the heat accumulator to unify the temperature field in the volume of water constituting the heat buffer. Using the computer program Ansys Fluent, a series of computational fluid dynamics simulations of the process of charging the heat storage with water at 60°C, 70°C, and 80°C was carried out. The selected temperatures correspond to the temperature range of unmanaged waste heat. In the presented solution, heat storage is loaded with water from the cooling systems of industrial equipment to store excess heat and use it at a later time. The results of numerical calculations were used to analyse the velocity and temperature fields in the selected structure of the modular heat storage. A novelty in the presented solution is the use of smaller modular heat storage units that allow any configuration of the heat storage system. This solution makes it possible to create heat storage with the required heat capacity.
Go to article

Authors and Affiliations

Piotr Górszczak
1
Marcin Rywotycki
1
Marcin Hojny
1
Grzegorz Filo
2

  1. AGH University of Krakow, Mickiewicza 30, 30-059 Kraków, Poland
  2. Cracow University of Technology, Jana Pawła II 37, 31-864 Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

The aim of this research was to model the performances of energy and exergy on a Trombe wall system to enable an adequate thermal comfort. The main equations for the heat transfer mechanisms were developed from energy balances on subcomponents of the Trombe wall with the specification of the applicable initial and boundary conditions. During the incorporation of the PCM on the Trombe wall, the micro-encapsulation approach was adopted for better energy conservation and elimination of leakage for several cycling of the PCM. The charging and discharging of the PCM were equally accommodated and incorporated in the simulation program. The results of the study show that an enhanced energy storage could be achieved from solar radiation using PCM-augmented system to achieve thermal comfort in building envelope. In addition, the results correspond with those obtained from comparative studies of concrete-based and fired-brick augmented PCM Trombe wall systems, even though a higher insolation was used in the previous study.
Go to article

Bibliography

[1] I. Blasco Lucas, L. Hoesé, and D. Pontoriero. Experimental study of passive systems thermal performance. Renewable Energy, 19(1-2):39–45, 2000. doi: 10.1016/S0960-1481(99)00013-0.
[2] A. Mastrucci. Experimental and Numerical Study on Solar Walls for Energy Saving, Thermal Comfort and Sustainability of Residential Buildings. Ph.D. Thesis, University Politecnica delle Marche, Italy, 2013.
[3] A. Chel, J.K. Nayak, and G. Kaushik. Energy conservation in honey storage building using Trombe wall. Energy and Building, 40(9):1643–1650, 2008. doi: 10.1016/j.enbuild.2008.02.019.
[4] L. Zalewski, A. Joulin, S. Lassue, Y. Dutil, and D. Rousse. Experimental study of small-scale solar wall integrating phase change material. Solar Energy, 86(1):208–219, 2012. doi: 10.1016/j.solener.2011.09.026.
[5] C.M. Lai and C.M. Chiang. How phase change materials affect thermal performance: hollow bricks. Building Research & Information, 34(2):118–130, 2011. doi: 10.1080/09613210500493197.
[6] K. Sankaranarayanan, H.J. van der Kooi, and J. de Swaan Arons. Efficiency and Sustainability in the Energy and Chemical Industries. Scientific Principles and Case Studies. CRC Press, Boca Raton, 2010. doi: 10.1201/EBK1439814703.
[7] F. Kuznik and J. Virgone. Experimental assessment of a phase change material for wall building use. Applied Energy, 86(10):2038–2046, 2009. doi: 10.1016/j.apenergy.2009.01.004.
[8] D. Feldman, M.M. Shapiro, D. Banu, and C.J. Fuks. Fatty acids and their mixtures as phase-change materials for thermal energy storage. Solar Energy Materials, 18(3-4):201–216, 1989. doi: 10.1016/0165-1633(89)90054-3.
[9] W.I. Okonkwo and C.O. Akubuo. Trombe wall system for poultry brooding. International Journal of Poultry Science, 6(2):125–130, 2007. doi: 10.3923/ijps.2007.125.130.
[10] L. Cao, F. Tang, and G. Fang. Synthesis and characterization of microencapsulated paraffin with titanium dioxide shell as shape-stabilized thermal energy storage materials in buildings. Energy and Buildings, 72:31–37, 2014. doi: 10.1016/j.enbuild.2013.12.028.
[11] F. Abbassi and L. Dehmani. Experimental and numerical study on thermal performance of an unvented Trombe wall associated with internal thermal fins. Energy and Buildings, 105:119–128, 2015. doi: 10.1016/j.enbuild.2015.07.042.
[12] M.J. Huang, P.C. Eames, and N. J. Hewitt. The application of a validated numerical model to predict the energy conservation potential of using phase change materials in the fabric of a building. Solar Energy Materials and Solar Cells, 90(13):1951–1960, 2006. doi: 10.1016/j.solmat.2006.02.002.
[13] S.A. Ajah, B.O. Ezurike, and H.O. Njoku. A comparative study of energy and exergy performances of a PCM-augmented cement and fired-brick Trombe wall systems. International Journal of Ambient Energy, 1–18, 2020. doi: 10.1080/01430750.2020.1718753.
[14] H.O. Njoku, B.E. Agashi, and S.O. Onyegegbu. A numerical study to predict the energy and exergy performances of a salinity gradient solar pond with thermal extraction. Solar Energy, 157:744–761, 2017. doi: 10.1016/j.solener.2017.08.079.
[15] C. Ji, Z. Qin, S. Dubey, F.H. Choo, and F. Duan. Three-dimensional transient numerical study on latent heat thermal storage for waste heat recovery from a low temperature gas flow. Applied Energy, 205:1–12, 2017. doi: 10.1016/j.apenergy.2017.07.101.
Go to article

Authors and Affiliations

Benjamin O. Ezurike
1
ORCID: ORCID
Stephen A. Ajah
1
ORCID: ORCID
Uchenna Nwokenkwo
1
ORCID: ORCID
Chukwunenye A. Okoronkwo
1
ORCID: ORCID

  1. Department of Mechanical/Mechatronics Engineering, Alex Ekwueme Federal University Ndufu-Alike, Nigeria
Download PDF Download RIS Download Bibtex

Abstract

Baculoviruses are widely used as bioagents for controlling insect populations. Although they are successfully replicated in cell cultures, still the production in laboratory reared larvae is the cheapest way for large-scale production of viral agents. Commercial products are prepared as liquid suspensions and as dried powders. We investigated the stability of two formulations of S. exigua nuclear polyhedrosis virus (SeMNPV) stored at +4°C for over twenty years as a powder (prepared by aceton precipitation) and in a suspension. The biological activity and biochemical properties of these formulations were examinated. Viral biological activity of the suspension was 1 OOO times better than the activity of powdered virus. Aceton precipitation method caused the significant loss of virus activity. Electrophoretic analysis of proteins showed degradation of polyhedrin peptide. There was also partial DNA degradation. These changes may lead to decreased bioactivity of powdered SeMNPV virus.
Go to article

Authors and Affiliations

Agata Jakubowska
Jadwiga Ziemnicka
Download PDF Download RIS Download Bibtex

Abstract

Using the Konary anticlinal structure in central Poland as an example, a geological model has been built of the Lower Jurassic reservoir horizon, and CO2 injection was simulated using 50 various locations of the injection well. The carbon dioxide storage dynamic capacity of the structure has been determined for the well locations considered and maps of CO2 storage capacity were drawn, accounting and not accounting for cap rock capillary pressure. Though crucial for preserving the tightness of cap rocks, capillary pressure is not always taken into account in CO2 injection modeling. It is an important factor in shaping the dynamic capacity and safety of carbon dioxide underground storage. When its acceptable value is exceeded, water is expelled from capillary pores of the caprock, making it permeable for gas and thus may resulting in gas leakage. Additional simulations have been performed to determine the influence of a fault adjacent to the structure on the carbon dioxide storage capacity.

The simulation of CO2 injection into the Konary structure has shown that taking capillary pressure at the summit of the structure into account resulted in reducing the dynamic capacity by about 60%. The greatest dynamic capacity of CO2 storage was obtained locating the injection well far away from the structure’s summit. A fault adjacent to the structure did not markedly increase the CO2 storage capacity. A constructed map of CO2 dynamic storage capacity may be a useful tool for the optimal location of injection wells, thus contributing to the better economy of the enterprise.

Go to article

Authors and Affiliations

Katarzyna Luboń
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The phase change materials (PCM) are widely used in several applications, especiallyi n the latent heat thermal energy storage system (LHTESS). Due to the very low thermal conductivity of PCMs. A small mass fraction of hybrid nanoparticles TiO 2–CuO (50%–50%) is dispersed in PCM with five mass concentrations of 0%, 0.25%, 0.5%, 0.75% and 1 mass % to improve its thermal conductivity. This article is focused on thermal performance of the hybrid nano-PCM (HNPCM) used for the LHTESS. A numerical model based on the enthalpy-porosity technique is developed to solve the Navier-Stocks and energy equations. The computations were conducted for the melting and solidification processes of the HNPCM in a shell and tube latent heat storage (LHS). The developed numerical model was validated successfully with experimental data from the literature. The results showed that the dispersed hybrid nanoparticles improved the effective thermal conductivity and density of the HNPCM. Accordingly, when the mass fraction of a HNPCM increases by 0.25%, 0.5%, 0.75% and 1 mass %, the average charging time improves by 12.04 %, 19.9 %, 23.55%, and 27.33 %, respectively. Besides, the stored energy is reduced by 0.83%, 1.67%, 2.83% and 3.88%, respectively. Moreover, the discharging time was shortened by 18.47%, 26.91%, 27.71%, and 30.52%, respectively.
Go to article

Bibliography

[1] L.F. Cabeza, A. Castell, C. Barreneche, A. de Gracia, and A. Fernández. Materials used as PCM in thermal energy storage in buildings: A review. Renewable and Sustainable Energy Reviews, 15(3):1675–1695, 2011. doi: 10.1016/j.rser.2010.11.018.
[2] K. Nedjem, M. Teggar, K.A.R. Ismail, and D. Nehari. Numerical investigation of charging and discharging processes of a shell and tube nano-enhanced latent thermal storage unit. Journal of Thermal Science and Engineering Applications, 12(2):021021, 2020. doi: 10.1115/1.4046062.
[3] K. Hosseinzadeh, M.A. Efrani Moghaddam, A. Asadi, A.R. Mogharrebi, and D.D. Ganji. Effect of internal fins along with hybrid nano-particles on solid process in star shape triplex latent heat thermal energy storage system by numerical simulation. Renewable Energy, 154:497–507, 2020. doi: 10.1016/j.renene.2020.03.054.
[4] M.M. Joybari, S. Seddegh, X. Wang, and F. Haghighat. Experimental investigation of multiple tube heat transfer enhancement in a vertical cylindrical latent heat thermal energy storage system. Renewable Energy,} 140:234–244, 2019. doi: 10.1016/j.renene.2019.03.037.
[5] A.A. Al-Abidi, S. Mat, K. Sopian, M.Y. Sulaiman, and A.T. Mohammad. Internal and external fin heat transfer enhancement technique for latent heat thermal energy storage in triplex tube heat exchangers. Applied Thermal Engineering, 53(1):147–156, 2013. doi: 10.1016/j.applthermaleng.2013.01.011.
[6] X. Yang, Z. Lu, Q. Bai, Q. Zhang, L. Jin, and J. Yan. Thermal performance of a shell-and-tube latent heat thermal energy storage unit: Role of annular fins. Applied Energy, 202:558–570, 2017. doi: 10.1016/j.apenergy.2017.05.007.
[7] C. Zhao, M. Opolot, M. Liu, F. Bruno, S. Mancin, and K. Hooman. Numerical study of melting performance enhancement for PCM in an annular enclosure with internal-external fins and metal foams. International Journal of Heat and Mass Transfer, 150:119348, 2020. doi: 10.1016/j.ijheatmasstransfer.2020.119348.
[8] M. Longeon, A. Soupart, J.-F. Fourmigué, A. Bruch, and P. Marty. Experimental and numerical study of annular PCM storage in the presence of natural convection. Applied Energy, 112:175–184, 2013. doi: 10.1016/j.apenergy.2013.06.007.
[9] S. Seddegh, S.S.M. Tehrani, X. Wang, F. Cao, and R.A. Taylor. Comparison of heat transfer between cylindrical and conical vertical shell-and-tube latent heat thermal energy storage systems. Applied Thermal Engineering, 130:1349–1362, 2018. doi: 10.1016/j.applthermaleng.2017.11.130.
[10] I. Al Siyabi, S. Khanna, T. Mallick, and S. Sundaram. An experimental and numerical study on the effect of inclination angle of phase change materials thermal energy storage system. Journal of Energy Storage, 23:57–68, 2019. doi: 10.1016/j.est.2019.03.010.
[11] S. Sebti, S. Khalilarya, I. Mirzaee, S. Hosseinizadeh, S. Kashani, and M. Abdollahzadeh. A numerical investigation of solidification in horizontal concentric annuli filled with nano-enhanced phase change material (NEPCM). World Applied Sciences Journal, 13(1):9–15, 2011.
[12] N. Dhaidan, J. Khodadadi, T.A. Al-Hattab, and S. Al-Mashat. Experimental and numerical investigation of melting of NePCM inside an annular container under a constant heat flux including the effect of eccentricity. International Journal of Heat and Mass Transfer, 67:455–468, 2013. doi: 10.1016/j.ijheatmasstransfer.2013.08.002.
[13] Q. Ren, F. Meng, and P. Guo. A comparative study of PCM melting process in a heat pipe-assisted LHTES unit enhanced with nanoparticles and metal foams by immersed boundary-lattice Boltzmann method at pore-scale. International Journal of Heat and Mass Transfer, 121:1214–1228, 2018. doi: 10.1016/j.ijheatmasstransfer.2018.01.046.
[14] C. Nie, J. Liu, and S. Deng. Effect of geometric parameter and nanoparticles on PCM melting in a vertical shell-tube system. Applied Thermal Engineering, 184:116290, 2020. doi: 10.1016/j.applthermaleng.2020.116290.
[15] M. Gorzin, M.J. Hosseini, M. Rahimi, and R. Bahrampoury. Nano-enhancement of phase change material in a shell and multi-PCM-tube heat exchanger. Journal of Energy Storage, 22:88–97, 2019. doi: 10.1016/j.est.2018.12.023.
[16] M. Khatibi, R. Nemati-Farouji, A. Taheri, A. Kazemian, T. Ma, and H. Niazmand. Optimization and performance investigation of the solidification behavior of nano-enhanced phase change materials in triplex-tube and shell-and-tube energy storage units. Journal of Energy Storage, 33:102055, 2020. doi: 10.1016/j.est.2020.102055.
[17] P. Manoj Kumar, K. Mylsamy, and P.T. Saravanakumar. Experimental investigations on thermal properties of nano-SiO 2/paraffin phase change material (PCM) for solar thermal energy storage applications. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 42(19):2420–2433, 2020. doi: 10.1080/15567036.2019.1607942.
[18] P. Manoj Kumar, K. Mylsamy, K. Alagar, and K. Sudhakar. Investigations on an evacuated tube solar water heater using hybrid-nano based organic phase change material. International Journal of Green Energy, 17(13):872–883, 2020. doi: 10.1080/15435075.2020.1809426.
[19] S. Ebadi, S.H. Tasnim, A.A. Aliabadi, and S. Mahmud. Melting of nano-PCM inside a cylindrical thermal energy storage system: Numerical study with experimental verification. Energy Conversion and Management, 166:241–259, 2018. doi: 10.1016/j.enconman.2018.04.016.
[20] J.M. Mahdi and E.C. Nsofor. Solidification enhancement of PCM in a triplex-tube thermal energy storage system with nanoparticles and fins. Applied Energy, 211:975–986, 2018. doi: 10.1016/j.apenergy.2017.11.082.
[21] M.J. Hosseini, A.A. Ranjbar, K. Sedighi, and M. Rahimi. A combined experimental and computational study on the melting behavior of a medium temperature phase change storage material inside shell and tube heat exchanger. International Communications in Heat and Mass Transfer, 39(9):1416–1424, 2012. doi: 10.1016/j.icheatmasstransfer.2012.07.028.
[22] S. Harikrishnan, K. Deepak, and S. Kalaiselvam. Thermal energy storage behavior of composite using hybrid nanomaterials as PCM for solar heating systems. Journal of Thermal Analysis and Calorimetry, 115:1563–1571, 2014. doi: 10.1007/s10973-013-3472-x.
[23] ANSYS. Fluent. (2017), Copyright 2017 SAS IP, Inc.
[24] Z. Khan, Z.A. Khan, and P. Sewell. Heat transfer evaluation of metal oxides based nano-PCMs for latent heat storage system application. International Journal of Heat and Mass Transfer, 144:118619, 2019. doi: 10.1016/j.ijheatmasstransfer.2019.118619.
[25] J.C. Maxwell. Electricity and Magnetism. Clarendon Press, Oxford, 1873.
[26] S. Ghadikolaei, K. Hosseinzadeh, and D.D. Ganji. Investigation on three dimensional squeezing flow of mixture base fluid (ethylene glycol-water) suspended by hybrid nanoparticle (Fe 3O 4-Ag) dependent on shape factor. Journal of Molecular Liquids, 262:376–388, 2018. doi: 10.1016/j.molliq.2018.04.094.
[27] S.S. Ghadikolaei, M. Yassari, H. Sadeghi, K. Hosseinzadeh, and D.D. Ganji. Investigation on thermophysical properties of TiO 2–Cu/H 2O hybrid nanofluid transport dependent on shape factor in MHD stagnation point flow. Powder Technology, 322:428–438, 2017. doi: 10.1016/j.powtec.2017.09.006.
[28] A.D. Brent, V.R. Voller, and K. Reid. Enthalpy-porosity technique for modeling convection-diffusion phase change: application to the melting of a pure metal. Numerical Heat Transfer, 13(3):297–318, 1988. doi: 10.1080/10407788808913615.
[29] S.V. Patankar. Numerical Heat Transfer and Fluid Flow. CRC Press, 1980.
[30] M.L. Benlekkam, D. Nehari, and N. Cheriet. Numerical investigation of latent heat thermal energy storage system. Recueil de Mécanique, 3:229-235, 2018. doi: 10.5281/zenodo.1490505.
[31] M.A. Kibria, M.R. Anisur, M.H. Mahfuz, R. Saidur, and I.H.S.C. Metselaar. Numerical and experimental investigation of heat transfer in a shell and tube thermal energy storage system. International Communications in Heat and Mass Transfer, 53:71–78, 2014. doi: 10.1016/j.icheatmasstransfer.2014.02.023.
[32] M.J. Hosseini, M. Rahimi, and R. Bahrampoury. Experimental and computational evolution of a shell and tube heat exchanger as a PCM thermal storage system. International Communications in Heat and Mass Transfer, 50:128–136, 2014. doi: 10.1016/j.icheatmasstransfer.2013.11.008.
Go to article

Authors and Affiliations

Mohamed Lamine Benlekkam
1 2
ORCID: ORCID
Driss Nehari
3
ORCID: ORCID

  1. Department of Science and Technology, University of Tissemsilt, Tissemsilt, Algeria
  2. Laboratory of Smart Structure, University of Ain Temouchent, Ain Temouchent, Algeria
  3. Laboratory of Hydrology and Applied Environment, University of Ain Temouchent, Algeria
Download PDF Download RIS Download Bibtex

Abstract

The results of investigations in the field of CO2 storage in water-bearing horizons in the area of the Upper Silesian Coal Basin were presented. It has been stated that the CO2 injection process will appear in the area of the storage site and beyond its boundaries. The determination of protective zones for underground CO2 storage and other structural elements, e.g. big tectonic zones, was proposed. These zones will constitute a safety buffer between the underground storage site and utilitarian undertakings conducted in its neighbourhood. In the work the proposal of CO2 injection intensification through controlled fracturing of formations of the future storage site was presented. This action should increase the CO2 injection effectiveness, especially in rock series characterised by average values of reservoir parameters.
Go to article

Authors and Affiliations

Eleonora Solik-Heliasz
Download PDF Download RIS Download Bibtex

Abstract

The objective of the European Green Deal is to change Europe into the world’s first climate- -neutral continent by 2050. Therefore, European countries are developing technological solutions to increase the production of energy from renewable sources of energy. In order to universally implement energy production from renewable energy sources, it is necessary to solve the problem of energy storage. The authors discussed the issue of energy storage and renewable energy sources, reviewing applied thermal and mechanical energy storage solutions. They referred to the energy sector in Poland which is based mainly on mining activities. The method that was used in this paper is a review of thermal and mechanical energy storage solutions. In industrial practice, various solutions on energy storage are developed around the world. The authors reviewed those solutions and described the ones which currently function in practice. Hence, the authors presented the good practices of energy storage technology. Additionally, the authors conducted an analysis of statistical data on the energy sector in Poland. The authors presented data on prime energy production in Poland in 2004–2019. They described how the data has changed over time. Subsequently, they presented and interpreted data on renewable energy sources in Poland. They also showed the situation of Poland compared to other European countries in the context of the share of renewables in the final gross energy consumption.
Go to article

Bibliography

Abbas et al. 2020 – Abbas, Z., Chen, D., Li, Y., Yong, L. and Wang, R.Z. 2020. Experimental investigation of underground seasonal cold energy storage using borehole heat exchangers based on laboratory scale sandbox. Geothermics 87, 101837.
Agencja Rynku Energii SA 2020. Primary Energy Balance in 2004–2019 (Bilans Energii Pierwotnej w latach 2004–2019). Warszawa (in Polish).
Airly, 2020. Oddychaj Polsko. Raport o stanie powietrza. [Online] https://airly.org/pl/raport-jakosci-powietrza/ [Accessed: 2021-09-09].
Bartoszek et al. 2021 – Bartoszek, S., Stankiewicz, K., Kost, G., Ćwikła, G. and Dyczko, A. 2021. Research on Ultrasonic Transducers to Accurately Determine Distances in a Coal Mine Conditions. Energies 14(9), 2532.
Belu, R. 2019. Energy storage for electric grid and renewable energy application. In: Energy Storage, Grid Integration, Energy Economics, and the Environment. CRC Press Taylor & Francis Group, Boca Raton, FL, USA, pp. 29–33.
Cabała et al. 2020 – Cabała, J., Warchulski R., Rozmus, D., Środek, D. and Szełęg, E. 2020. Pb-rich slags, minerals, and pollution resulted from a medieval Ag-Pb smelting and mining operation in the Silesian-Cracovian region (southern Poland). Minerals 10, p. 28.
Cader et al. 2021a – Cader, J., Koneczna, R. and Olczak, P. 2021a. The Impact of Economic, Energy, and Environmental Factors on the Development of the Hydrogen Economy. Energies 14(16), p. 4811.
Cader et al. 2021b – Cader, J., Olczak, P. and Koneczna, R. 2021b. Regional dependencies of interest in the “My Electricity” photovoltaic subsidy program in Poland. Polityka Energetyczna – Energy Policy Journal 24(2), pp. 97–116.
Ciapała et al. 2021 – Ciapała, B., Jurasz, J., Janowski, M. and Kępińska, B. 2021. Climate factors influencing effective use of geothermal resources in SE Poland: the Lublin trough. Geotherm. Energy 9, p. 3. CSO 2020. Energy from renewable sources in 2019. Warsaw.
Davies, R. 2020. Peak performance: could mountains create long-term energy storage? Power Technol. [Online] https://power.nridigital.com/future_power_technology_feb20/peak_performance_could_mountains_ create_long-term_energy_storage [Accessed: 2021-04-20].
Dychkovskyi et al. 2019 – Dychkovskyi, R., Tabachenko, M., Zhadiaieva, K. and Cabana, E. 2019. Some aspects of modern vision for geoenergy usage. E3S Web Conf. 123, 01010.
Dyczko, A. and Malec, M. 2021. Innovative Concept of Production Support System for the {LW} Bogdanka Mine. {IOP} Conf. Ser. Mater. Sci. Eng. 1134, 12004.
Energy Instrat 2021. No Title. [Online] https://www.energy.instrat.pl [Accessed: 2021-03-23].
Euractive 2021. EU’s draft renewables law confirms 38–40% target for 2030. [Online] https://www.euractiv.com/section/energy/news/leak-eus-draft-renewables-law-confirms-38-40-target-for-2030/ [Accessed: 2021-05-18].
European Commission 2019. Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions. The European Green Deal. Brussels.
European Environmental Agency 2021. Share of energy consumption from renewable sources in Europe. EEA. [Online] https://www.eea.europa.eu/data-and-maps/indicators/renewable-gross-final-energyconsumption-5/assessment [Accessed: 2021-06-21].
Frankowski, J. 2020. Attention: Smog alert! Citizen engagement for clean air and its consequences for fuel poverty in Poland. Energy Build. 207, 109525.
Gawlik, L. ed. 2013. Coal for the Polish energy sector in the perspective of 2050 – scenario analyzes (Węgiel dla polskiej energetyki w perspektywie 2050 roku – analizy scenariuszowe). Katowice: Górnicza Izba Przemysłowo-Handlowa (in Polish).
Graboś, A. and Żymanowska-Kumon, S. 2014. Counteracting low emissions in dense residential areas (Przeciwdziałanie niskiej emisji na terenach zwartej zabudowy mieszkalnej) [ed.] R. Sadlok. Bochnia: HELIOS (in Polish).
Gravitricity 2020. Gravitricity. [Online] https://gravitricity.com/ [Accessed: 2021-07-27].
Holder, M. 2020. Gravitricity to pilot £1m gravity-based energy storage system in Edinburgh. Bus. Green. [Online] https://www.businessgreen.com/news/4015015/gravitricity-pilot-gbp-gravity-energy-storage-edinburgh [Accessed: 2021-07-22].
Hunt et al. 2020 – Hunt, J.D., Zakeri, B., Falchetta, G., Nascimento, A., Wada, Y. and Riahi, K. 2020. Mountain Gravity Energy Storage: A new solution for closing the gap between existing short- and longterm storage technologies. Energy 190, 116419.
Hussein et al. 2004 – Hussein, H.M.S., Ahmad, G.E. and El-Ghetany, H.H. 2004. Performance evaluation of photovoltaic modules at different tilt angles and orientations. Energy Convers. Manag. 45, pp. 2441–2452.
Kadar, P. 2014. Pros and Cons of the Renewable Energy Application. Acta Polytechnica Hungarica 11(4), pp. 211–224.
Kamiński, P. 2021a. A New Method of Regulation of Loads Acting on the Shaft Lining in Sections Located in the Salt Rock Mass. Energies 14(1), p. 0042.
Kamiński, P. 2021b. Development of New Mean of Individual Transport for Application in Underground Coal Mines. Energies 14(7), p. 2022.
Kamiński et al. 2021 – Kamiński, P., Dyczko, A. and Prostański, D. 2021. Virtual Simulations of a New Construction of the Artificial Shaft Bottom (Shaft Safety Platform) for Use in Mine Shafts. Energies 14(8), 2110.
Kaszyński et al. 2019 – Kaszyński, P., Komorowska, A. and Kamiński, J. 2019. Regional distribution of hard coal consumption in the power sector under selected forecasts of EUA prices. Gospodarka Surowcami Mineralnymi – Mineral Resources Management 35(4), pp. 113–134.
Klojzy-Karczmarczyk, B. and Mazurek, J. 2009. Local government responsibilities in the process of reducing low emission (Zadania samorządów lokalnych w procesie likwidacji niskiej emisji). Polityka Energetyczna 12(2.2), pp. 277–284 (in Polish).
Komorowska et al. 2020 – Komorowska, A., Benalcazar, P., Kaszyński, P. and Kamiński, J. 2020. Economic consequences of a capacity market implementation: The case of Poland. Energy Policy 144, 111683.
Kopacz et al. 2020 – Kopacz, M., Kulpa, J., Galica, D. and Olczak, P. 2020. The influence of variability models for selected geological parameters on the resource base and economic efficiency measures – Example of coking coal deposit. Resour. Policy 68, 101711.
Koval et al. 2019 – Koval, V., Sribna, Y., Mykolenko, O. and Vdovenko, N. 2019. Environmentalconcept of energy security solutions of local communities based on energy logistics. [In:] 19th International Multidisciplinary Scientific GeoConference SGEM 2019, International Multidisciplinary Scientific GeoConference-SGEM. STEF92 Technology, 51 Alexander Malinov blvd, Sofia, 1712, Bulgaria, pp. 283–290.
Kryzia, D. and Pepłowska, M. 2019. The impact of measures aimed at reducing low-stack emission in Poland on the energy efficiency and household emission of pollutants. Polityka Energetyczna – Energy Policy Journal 22(2), pp. 121–132.
Kubiński, K. and Szabłowski, Ł. 2020. Dynamic model of solar heating plant with seasonal thermal energy storage. Renew. Energy 145, pp. 2025–2033.
Kwestarz, M. 2016. Thermal energy storage – types of energy storage (Magazynowanie ciepła – rodzaje magazynów). Czysta Energ. 12, pp. 29–35 (in Polish).
Mangold, D. and Deschaintre, L. 2016. Seasonal thermal energy storage. Report on state of the art and necessary further R+D. [Online] http://task45.iea-shc.org/data/sites/1/publications/IEA_SHC_Task45_ B_Report.pdf {accessed: 2021.09.09].
Matuszewska et al. 2017 – Matuszewska, D., Kuta, M. and Górski, J. 2017. Cogeneration – Development and prospect in Polish energy sector. E3S Web Conf. 14, p. 01021.
Matuszewska et al. 2020 – Matuszewska, D., Kuta, M. and Olczak, P. 2020. Techno-Economic Assessment of Mobilized Thermal Energy Storage System Using Geothermal Source in Polish Conditions. Energies 13(13), p. 3404.
Matuszewska, D. and Olczak, P. 2020. Evaluation of Using Gas Turbine to Increase Efficiency of the Organic Rankine Cycle (ORC). Energies 13(6), p. 1499.
Mikhno et al. 2021 – Mikhno, I., Koval, V., Shvets, G., Garmatiuk, O. and Tamosiuniene, R. 2021. Green Economy in Sustainable Development and Improvement of Resource Efficiency. Cent. Eur. Bus. Rev. 10, pp. 99–113.
Mirowski et al. 2020 – Mirowski, T., Jach-Nocoń, M., Jelonek, I. and Nocoń, A. 2020. The new meaning of solid fuels from lignocellulosic biomass used in low-emission automatic pellet boilers. Polityka Energetyczna – Energy Policy Journal 23(1), pp. 75–86.
Mokrzycki, E. and Gawlik, L. 2013. Strategy for the security of energy resources in Poland-renewable energy sources. [In:] Environmental Engineering IV.
Olczak, P. and Komorowska, A. 2021. An adjustable mounting rack or an additional PV panel? Cost and environmental analysis of a photovoltaic installation on a household: A case study in Poland. Sustain. Energy Technol. Assessments 47, 101496.
Olczak et al. 2020 – Olczak, P., Matuszewska, D. and Kryzia, D. 2020. ”Mój Prąd” as an example of the photovoltaic one off grant program in Poland. Polityka Energetyczna – Energy Policy Journal 23(2), pp. 123–138.
Olczak et al. 2021a – Olczak, P., Jaśko, P., Kryzia, D., Matuszewska, D., Fyk, M.I. and Dyczko, A. 2021a. Analyses of duck curve phenomena potential in polish PV prosumer households’ installations. Energy Reports 7, pp. 4609–4622.
Olczak et al. 2021b – Olczak, P., Kryzia, D., Matuszewska, D. and Kuta, M. 2021b. “My Electricity” Program Effectiveness Supporting the Development of PV Installation in Poland. Energies 14(1), p. 0231.
Olczak et al. 2021c – Olczak, P., Olek, M., Matuszewska, D., Dyczko, A. and Mania, T. 2021c. Monofacial and Bifacial Micro PV Installation as Element of Energy Transition – The Case of Poland. Energies 14(2), p. 0499.
Orzeł, B. 2020. Non-financial Value Creation Due to Non-financial Data Reporting Quality. Zesz. Nauk. Organ. i Zarządzanie 148, pp. 605–617.
Palka, D. and Stecuła, K. 2019. Concept of technology assessment in coal mining. IOP Conf. Ser. Earth Environ. Sci. 261, 012038.
Państwowy Instytut Geologiczny 2020. Balance of mineral deposits resources in Poland (Bilans zasobów złóż kopalin w Polsce). Warszawa: Państwowy Instytut Geologiczny (in Polish).
Paszkowski, W. and Loska, A. 2017. The use of data mining methods for the psychoacoustic assessment of noise in urban environment. Int. Multidiscip. Sci. GeoConference SGEM 17, pp. 1059–1066.
Pedchenko et al. 2018 – Pedchenko, M., Pedchenko, L., Nesterenko, T. and Dyczko, A. 2018. Technological Solutions for the Realization of NGH-Technology for Gas Transportation and Storage in Gas Hydrate Form. Solid State Phenom. 277, pp. 123–136.
Possemiers, M. 2014. Aquifer Thermal Energy Storage under different hydrochemical and hydrogeological conditions. [Online] https://limo.libis.be/primo-explore/fulldisplay?docid=LIRIAS1930575&context= L&vid=Lirias&search_scope=Lirias&tab=default_tab〈=en_US&fromSitemap=1 [Accessed: 2021-09-09].
Rafał, K. and Grabowski, P. 2021. Energy storage (Magazynowanie energii). Academia – Mag. Pol. Akad. Nauk, DOI: 10.24425/academiaPAN.2021.136844 34–40 (in Polish).
REHAU 2011. Underground Thermal Energy Storage. Improving efficiency through seasonal heat storage. Canada.
Schmidt et al. 2018 – Schmidt, T., Pauschinger, T., Sørensen, P.A., Snijders, A., Djebbar, R., Boulter, R. and Thornton, J. 2018. Design Aspects for Large-scale Pit and Aquifer Thermal Energy Storage for District Heating and Cooling. Energy Procedia 149, pp. 585–594.
Soliński, J. 2004. Energy sector – world and Poland. Development 1971–2000, prospects to 2030. Statistics Poland 2019. Energia ze źródeł odnawialnych w 2018 roku. Informacje sygnalne. Statistics Poland 2020a. Energy 2020. Warszawa.
Statistics Poland 2020b. Energia ze źródeł odnawialnych w 2019 roku. Informacje sygnalne.
Stecuła, K. 2018. Decision-making Dilemmas in Mining Enterprise and Environmental Issues, i. e. Green Thinking in Mining. 18th Int. Multidiscip. Sci. Geoconference SGEM 2018, pp. 357–364.
Stecuła, K. and Brodny, J. 2017a. Perspectives on renewable energy development as alternative to conventional energy in Poland. [In:] International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM, pp. 717–724.
Stecuła, K. and Brodny, J. 2017b. Generating knowledge about the downtime of the machines in the example of mining enterprise. [In:] International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM, pp. 359–366.
Stecuła, K. and Brodny, J. 2018a. Role and meaning of coal mining in Poland. [In:] International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM. pp. 801–808.
Stecuła, K. and Brodny, J. 2018b. Decision-making possibilities in the field of excavated material quality shaping in terms of environmental protection, I. E. how to be greener in mining. [In:] International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM, pp. 243–250. Stecuła, K. and Tutak, M. 2018. Causes and effects of low-stack emission in selected regions of Poland. [In:] International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM, pp. 357–364.
Steinmann et al. 2019 – Steinmann, W.-D., Bauer, D., Jockenhöfer, H. and Johnson, M. 2019. Pumped thermal energy storage (PTES) as smart sector-coupling technology for heat and electricity. Energy 183, pp. 185–190.
Woźniak, J. and Pactwa, K. 2018. Responsible Mining – The Impact of the Mining Industry in Poland on the Quality of Atmospheric Air. Sustainability 10, p. 1184.
Wróbel et al. 2019 – Wróbel, J., Sołtysik, M. and Rogus, R. 2019. Selected elements of the Neighborly Exchange of Energy – Profitability evaluation of the functional model. Polityka Energetyczna – Energy Policy Journal 22(4), pp. 53–64.
Wyrwicki, G. 2004. Thermogravimetric analysis – unappreciated method for determination of rock type and quality (Analiza termograwimetryczna – niedoceniana metoda określania rodzaju i jakości kopaliny). Górnictwo Odkryw. 46, pp.120–125 (in Polish).
Żelazna et al. 2020 – Żelazna, A., Gołębiowska, J., Zdyb, A. and Pawłowski, A. 2020. A hybrid vs. on-grid photovoltaic system: Multicriteria analysis of environmental, economic, and technical aspects in life cycle perspective. Energies 13(15), p. 3978.
Go to article

Authors and Affiliations

Artur Dyczko
1
ORCID: ORCID
Paweł Kamiński
2
Kinga Stceuła
3
Dariusz Prostański
4
Michał Kopacz
1
ORCID: ORCID
Daniel Kowol
4
ORCID: ORCID

  1. Mineral and Energy Economy Research Institute of the Polish Academy of Sciences, Kraków, Poland
  2. Faculty of Mining and Geoengineering, AGH University of Science and Technology, Kraków, Poland
  3. Przedsiębiorstwo Budowy Szybów SA, Tarnowskie Góry, Poland
  4. KOMAG Institute of Mining Technology, Gliwice, Poland
Download PDF Download RIS Download Bibtex

Abstract

Every developing country is beginning to rely on “green” energy in connection with environmental problems, including the global warming of our planet. It is expected that in the future, the production of electricity using the conversion of sunlight would take the dominant place in the energy infrastructure around the world. However, photovoltaic converters mainly generate intermittent energy due to natural factors (weather conditions) or the time of day in a given area. Therefore, the purpose of this study is to consider options for eliminating the interrupted nature of the operation of a solar installation through innovative additional applications. To achieve this goal, issues of the prospect of using energy storage devices and the choice of the most efficient and reliable of them are considered, as are the environmental friendliness of accumulators/batteries and the economic benefits of their use. The results of the analyses provide an understanding of the factors of using existing technologies with regard to their technical and economic aspects for use in solar energy. It was determined that the most common and predominant types of energy storage are lithium-ion and pumped storage plants. Such accumulation systems guarantee high efficiency and reliability in the operation of solar installation systems, depending on the scale of the solar station. Storage devices that are beginning to gain interest in research are also considered – storage devices made of ceramics of various kinds and thermochemical and liquid-air technologies. This study contributes to the development of an energy-storage system for renewable energy sources in the field of technical and economic optimization.
Go to article

Authors and Affiliations

Anzhela A. Barsegyan
1
ORCID: ORCID
Irina R. Baghdasaryan
1
ORCID: ORCID

  1. Department of Civil Engineering, Architecture, Energetics and Water Systems, Shushi University of Technology, Stepanakert, Armenia
Download PDF Download RIS Download Bibtex

Abstract

The article discusses the problem of the supply of a by-product, which is synthetic gypsum produced as a result of flue gas desulphurization in conventional power plants. The state of production and forecast for the future are presented. Currently, synthetic gypsum is almost entirely used as a raw material in the gypsum products plant located in the immediate vicinity of the power plant. Since the mid-1990s, in Poland, an increase in the production of synthetic gypsum associated with the construction of a flue gas desulphurization installation in Polish conventional power plants has been observed. In the near future, the upward trend will continue in connection with the construction of new coal units in power plants. Significant surpluses of this raw material will appear on the market, which will not be used on an ongoing basis in the production of gypsum components. However, due to the EU’s restrictive policy towards energy based on coal and lignite, within the next few decades, the share of conventional power plants in energy production will be gradually reduced. As a consequence, the supply of synthetic gypsum will also gradually decrease. Therefore, it is advisable to properly store the surplus of this raw material so that it can be used in the future. Taking this into account, it is already necessary to prepare methods for storing the expected surpluses of synthetic gypsum. For this purpose, post-mining open pits are particularly suitable, especially in mines of rock raw materials. The article proposes a legal path enabling the post-mining open pits to be transformed into a anthropogenic gypsum deposit.

Go to article

Authors and Affiliations

Ryszard Uberman
Wojciech Naworyta
Download PDF Download RIS Download Bibtex

Abstract

The article presents the current state of the CNG market used as an alternative fuel for car engines. Attention was paid to European Union directives requirements and the current state of the directives’ fulfillment. The economic aspect of CNG usage was analyzed and the approximate costs of driving 10,000 km on different fuels in the last four years were presented. The PtG process which uses electric energy (hydrogen production) and carbon dioxide captured from the flue gas for the production of synthetic methane were discussed. The scheme of the SNG plant with the indication of its most important components was presented, and attention was paid to the mutual complementation of PtG technologies with carbon dioxide capture technology. The benefits of synthetic methane production are presented and the use of compressed natural gas to power engines in vehicles has been described. First, the focus was on the single-fuel use of CNG in bus and truck engines, paying particular attention to the ecological aspect of the implemented solutions. It has been shown that the use of compressed natural gas will reduce almost 100% of the particulates emission from the combustion process. The advantages and disadvantages of the alternative fuel supply are given. Next, the aspect of dual-fuel use in diesel engines was analyzed on the example of a smaller engine. The degree of reduction of harmful compounds emission from the combustion process is shown. Finally, attention was paid to the possible scale effect, referring to the number of motor vehicles in Poland.

Go to article

Authors and Affiliations

Szymon Dobras
Lucyna Więcław-Solny
Andrzej Wilk
Adam Tatarczuk
Download PDF Download RIS Download Bibtex

Abstract

In this article, the contribution of renewable energy sources (RES) to the worldwide electricity production was analyzed. The scale of development and the importance of RES in the global economy as well as the issues and challenges related to variability of these sources were studied. In addition, the chemical conversion of excess energy to renewable methanol has been presented. The European Union regulations and targets for the years 2020 and 2030 concerning greenhouse gases reduction were taken into consideration. These EU restrictions exact the further development of renewable energy sources, in particular, the improvement of their efficiency which is closely related to economics. Moreover, as a part of this work, energy storage were described as one of the ways to increase the competitiveness of renewable energy sources with respect to conventional energy. A method for the conversion of carbon dioxide separated from high-carbon industries with hydrogen obtained by the over-production of green energy were described. The use of methanol in the chemical industry and global market have been reviewed and thus an increasing demand was observed. Additionally, the application of renewable methanol as fuels, in pure form and after a conversion of methanol to dimethyl ether and fatty acid methyl esters has been discussed. Hence, the necessity of modifying car engines in order to use pure methanol and its combination with petrol also was analyzed.

Go to article

Authors and Affiliations

Szymon Dobras
Lucyna Więcław-Solny
Tadeusz Chwoła
Aleksander Krótki
Andrzej Wilk
Adam Tatarczuk
Download PDF Download RIS Download Bibtex

Abstract

A problem of optimization for production and storge costs is studied. The problem consists in manufacture of n types of products, with some given restrictions, so that the total production and storage costs are minimal. The mathematical model is built using the framework of driftless control affine systems. Controllability is studied using Lie geometric methods and the optimal solution is obtained with Pontryagin Maximum Principle. It is proved that the economical system is not controllable, in the sense that we can only produce a certain quantity of products. Finally, some numerical examples are given with graphical representation.
Go to article

Bibliography

[1] A. Agrachev and Y.L. Sachkov: Control theory from the geometric viewpoint. Encyclopedia of Mathematical Sciences, Control Theory and Optimization, 87, Springer, 2004.
[2] K.J. Arrow: Applications of control theory of economic growth. Mathematics of Decision Sciences, 2, AMS, 1968.
[3] S. Axsater: Control theory concepts in production and inventory control. International Journal of Systems Science, 16(2), (1985), 161–169, DOI: 10.1080/00207728508926662.
[4] R. Bellmann: Adaptive control processes: a guided tour. Princeton Univ. Press: Princeton, 1972.
[5] S. Benjaafar, J.P. Gayon, and S. Tepe: Optimal control of a productioninventory system with customer impatience. Operations Research Letters, 38(4), (2010), 267–272, DOI: 10.1016/j.orl.2010.03.008.
[6] R. Brocket: Lie algebras and Lie groups in control theory. In: Mayne D.Q., Brockett R.W. (eds) Geometric Methods in System Theory. NATO Advanced Study Institutes Series (Series C – Mathematical and Physical Sciences), vol. 3. Springer, Dordrecht, 1973, 43–82, DOI: 10.1007/978-94-010-2675-8_2.
[7] M. Caputo: Foundations of Dynamic Economic Analysis: Optimal Control Theory and Applications. Cambridge Univ. Press, 2005, DOI: 10.1017/CBO9780511806827.
[8] M. Danahe, A. Chelbi, and N. Rezg: Optimal production plan for a multiproducts manufacturing system with production rate dependent failure rate. International Journal of Production Research, 50(13), (2012), 3517–3528, DOI: 10.1080/00207543.2012.671585.
[9] G. Feichtinger and R. Hartl: Optimal pricing and production in an inventory model. European Journal of Operational Research, 19 (1985), 45–56, DOI: 10.1016/0377-2217(85)90307-8.
[10] C. Gaimon: Simultaneous and dynamic price, production, inventory and capacity decisions. European Journal of Operational Research, 35 (1988), 426–441.
[11] J.P. Gayon, S. Vercraene, and S.D. Flapper: Optimal control of a production-inventory system with product returns and two disposal options. European Journal of Operational Research, 262(2), (2017), 499–508, DOI: 10.1016/j.ejor.2017.03.018.
[12] C. Hermosilla, R. Vinter, and H. Zidani: Hamilton–Jacobi–Bellman equations for optimal control processes with convex state constraints. Systems & Control Letters, 109 (2017), 30–36, DOI: 10.1016/j.sysconle.2017.09.004.
[13] V. Jurdjevic: Geometric Control Theory. Cambridge Studies in Advanced Mathematics, 52, Cambridge Univ. Press, 1997, DOI: 10.1017/CBO9780511530036.
[14] M.I. Kamien and N.L. Schwartz: Dynamic optimization: The Calculus of Variations and Optimal Control in Economics and Management, 31 Elsevier, 1991.
[15] K. Kogan and E. Khmelnitsky: An optimal control model for continuous time production and setup scheduling. International Journal of Production Research, 34(3), (1996), 715–725.
[16] Y. Qiu, J. Qiao, and P. Pardalos: Optimal production, replenishment, delivery, routing and inventory management policies for products with perishable inventory. Omega-International Journal of Management Science, 82 (2019), 193–204, DOI: 10.1016/j.omega.2018.01.006.
[17] S.M. LaValle: Planning Algorithms. Cambridge University Press, 2006.
[18] M. Li and Z. Wang: An integrated replenishment and production control policy under inventory inaccuracy and time-delay. Computers&Operations Research, 88 (2017), 137–149, DOI: 10.1016/j.cor.2017.06.014.
[19] B. Li and A. Arreola-Risa: Optimizing a production-inventory system under a cost target. Computers&Operations Research, 123 (2020), 105015, DOI: 10.1016/j.cor.2020.105015.
[20] M. Ortega and L. Lin: Control theory applications to the productioninventory problem: a review. International Journal of Production Research, 42(11), (2004), 2303–2322, DOI: 10.1080/00207540410001666260.
[21] V. Pando and J. Sicilia: A new approach to maximize the profit/cost ratio in a stock-dependent demand inventory model. Computers & Operations Research, 120 (2020), 104940, DOI: 10.1016/j.cor.2020.104940.
[22] L. Popescu: Applications of driftles control affine sytems to a problem of inventory and production. Studies in Informatics and Control, 28(1), (2019), 25–34, DOI: 10.24846/v28i1y201903.
[23] L. Popescu: Applications of optimal control to production planning. Information Technology and Control, 49(1), (2020), 89–99, DOI: 10.5755/j01.itc.49.1.23891.
[24] L. Popescu, D. Militaru, and O. Mituca: Optimal control applications in the study of production management. International Journal of Computers, Communications & Control, 15(2), (2020), 3859, DOI: 10.15837/ijccc.2020.2.3859.
[25] A. Seierstad and K. Sydsater: Optimal Control Theory with Economic Applications. North-Holland, Amsterdam, NL, 1987.
[26] S.P. Sethi: Applications of the Maximum Principle to Production and Inventory Problems. Proceedings Third International Symposium on Inventories, Budapest, Aug. 27-31, (1984), 753–756.
[27] S.P. Sethi and G.L.Thompson: Optimal Control Theory: Applications to Management Science and Economics. Springer, New York, 2000.
[28] J.D. Schwartz and D.E. Rivera: A process control approach to tactical inventory management in production-inventory systems. International Journal of Production Economics, 125(1), (2010), 111–124, DOI: 10.1016/j.ijpe.2010.01.011.
[29] D.R. Towill, G.N. Evans, and P. Cheema: Analysis and design of an adaptive minimum reasonable inventory control system. Production Planning & Control, 8(6), (1997), 545–557, DOI: 10.1080/095372897234885.
[30] T.A. Weber, Optimal control theory with applications in economics. MIT Press, 2011.
Go to article

Authors and Affiliations

Liviu Popescu
1
Ramona Dimitrov
1

  1. University of Craiova, Faculty of Economics and Business Administration, Department of Statistics and Economic Informatics, Al. I. Cuza st., No. 13, Craiova 200585, Romania
Download PDF Download RIS Download Bibtex

Abstract

Salt caverns are used for the storage of natural gas, LPG, oil, hydrogen, and compressed air due to rock salt advantageous mechanical and physical properties, large storage capacity, flexible operations scenario with high withdrawal and injection rates. The short- and long-term mechanical behaviour and properties of rock salt are influenced by mineral content and composition, structural and textural features (fabrics). Mineral composition and fabrics of rock salt result from the sedimentary environment and post sedimentary processes. The impurities in rock salt occur in form of interlayers, laminae and aggregates. The aggregates can be dispersed within the halite grains or at the boundary of halite grains. Mineral content, mineral composition of impurities and their occurrence form as well as halite grain size contribute to the high variability of rock salt mechanical properties. The rock or mineral impurities like claystone, mudstone, anhydrite, carnallite and sylvite are discussed. Moreover, the influence of micro fabrics (in micro-scale) like fluid inclusions or crystals of other minerals on rock salt mechanical performance is described. In this paper the mechanical properties and behaviour of rock salt and their relation to mineral composition and fabrics are summarised and discussed. The empirical determination of impurities and fabrics impact on deformation mechanism of rock salt, qualitative description and formulation of constative models will improve the evaluation and prediction of cavern stability by numerical modelling methods. Moreover, studying these relations may be useful in risk assessment and prediction of cavern storage capacity.
Go to article

Bibliography

[1] F . Crotogino, Compressed Air Energy Storage in Underground Formations. Letcher T.M. (ed.), Storing Energy, Elsevier, 391-409 (2016).
[2] S. Donadei, G.S. Schneider, Compressed Air Energy Storage in Underground Formations. Letcher T.M. (ed.), Storing Energy, Elsevier, 113-133 (2016).
[3] J.G. Speight, Recovery, storage, and transportation. Speight J.G. (ed.) Natural Gas (Second Edition), Gulf Professional Publishing, 149-186 (2019).
[4] J. Chen, D. Lu, W. Liu, J. Fan et al., Stability study and optimization design of small-spacing two-well (SSTW) salt caverns for natural gas storages. Journal of Energy Storage 27, 101131 (2020). DOI: https://doi.org/10.1016/j.est.2019.101131
[5] S. Mokhatab, W.A. Poe, J.Y. Mak, Natural gas fundamentals. In: Mokhatab S., Poe W.A., Mak J.Y. (eds.), Handbook of natural gas transmission and processing (Fourth Edition), Gulf Professional Publishing, 1-35 (2019).
[6] H. Yin, C. Yang, H. Ma, Study on damage and repair mechanical characteristics of rock salt under uniaxial compression. Rock Mech. Rock Eng. 52, 659-671 (2019). DOI: https://doi.org/10.1007/s00603-018-1604-0
[7] Q. Zhang, J. Liu, L. Wang, M. Luo et al., Impurity efects on the mechanical properties and permeability characteristics of salt rock. Energies 13, 1366 (2020). DOI: https://doi.org/10.3390/en13061366
[8] K.M. Looff, K.M. Looff, C.A. Rautman, Salt spines, boundary shear zones and anomalous salts: their characteristics, detection and influence on salt dome storage caverns. SMRI Spring Technical Conference, April 26-27, 2010, Grand Junction, Colorado, (2010).
[9] K.M. Looff, K.M. Looff, C.A. Rautman, Inferring the geologic significance and potential imapact of salt fabric and anomalous salt on the development and long-term operation of salt storage caverns on gulf coast salt domes. SMRI Spring Technical Conference, 26-27 April 2010, Grand Junction, Colorado (2010).
[10] Q. Zhang, Z. Song, J. Wang, Y. Zhang et al., Creep properties and constitutive model of salt rock. Advances in Civil Engineering 8867673 (2021). DOI: https://doi.org/10.1155/2021/8867673
[11] J.K. Warren, Evaporites: sediments, resources and hydrocarbons. Springer Springer-Verlag Berlin Heidelberg (2006).
[12] J.K. Warren, Salt usually seals, but sometimes leaks: Implications for mine and cavern stabilities in the short and long term. Earth-Science Reviews 165, 302-341 (2017). DOI: https://doi.org/10.1016/j.earscirev.2016.11.008
[13] A. Luangthip, N. Wilalak, T. Thongprapha, K. Fuenkajorn, Effects of carnallite content on mechanical properties of Maha Sarakham rock salt. Arab. J. Geosc. 10, 149, (2017).
[14] R .C.M. Franssen, C.J. Spiers, Deformation of polycrystalline salt in compression and in shear at 250-350°C. In: R.J. Knipe, E.H. Rutter (eds), Deformation mechanisms, rheology and tectonics. Geological Society, London, Special Publications 54, 201-213 (1990).
[15] S.V. Raj, G.M. Pharr, Effect of temperature on the formation of creep substructure in sodium chloride single crystal. J. Amer. Cer. Soc. 75, 347-352 (1992).
[16] P.E. Senseny, J.W. Handin, F.D. Hansen, J.E. Russell, Mechanical behavior of rock salt: phenomenology and micro-mechanisms. Int. J. Rock Mech. Min. Sc. 29, 363-378 (1992).
[17] M.S. Bruno, Geomechanical analysis and design considerations for thin-bedded salt caverns: final report. Arcadia, CA: Terralog Technologies USA (2005).
[18] M.S. Bruno, L. Dorfmann, G. Han K, Lao. Et al., 3D geomechanical analysis of multiple caverns in bedded salt. SMRI Fall Technical Conference, 1-5 October 2005, Nancy, France, 1-25 (2005).
[19] K.L. De Vries, K.D. Mellegard, G.D. Callahan, W.M. Goodman, Cavern roof stability for natural gas storage in bedded salt. RESPEC final report 26 September 2002 – 31 March 2005 for United States Department of Energy National Energy Technology Laboratory (2005).
[20] C. Jie, L. Dan, L. Wei, F. Jinyang et al., Stability study and optimization design of smallspacing two-well (SSTW) salt caverns for natural gas storage. J. Ener. Stor. 27, 101131 (2020). DOI: https://doi.org/10.1016/j.est.2019.101131
[21] J.L. Li, Y. Tang, X.L. Shi, W. Xu et al., Modelling the construction of energy storage salt caverns in bedded salt. Appl. Energ. 255, 113866 (2019). DOI: https://doi.org/10.1016/j.apenergy.2019.113866
[22] T . Wang, X. Yan, H. Yang, X. Yang et al., A new shape design method of salt cavern used as underground gas storage. Appl. Energ. 104, 50-61 (2013). DOI: https://doi.org/10.1016/j.apenergy.2012.11.037
[23] T .T. Wang, C.H. Yang, X.L. Shi, H.L. Ma, Y.P. et al., Failure analysis of thick interlayer from leaching of bedded salt caverns. Int. J. Rock Mech. Min. Sci. 73, 175-183 (2015). DOI: https://doi.org/10.1016/j.ijrmms.2014.11.003
[24] T . Wang, C. Yang, H. Ma, Y. Li et al., Safety evaluation of salt cavern gas storage close to an old cavern. Int. J. Rock Mech. Min. Sci. 83, 95-106 (2016). DOI: https://doi.org/10.1016/j.ijrmms.2016.01.005
[25] Y . Wang, J. Liu, Critical length and collapse of interlayer in rock salt natural gas storage. Adv. Civ. Eng., Article ID 8658501 (2018). DOI: https://doi.org/10.1155/2018/8658501
[26] H. Yin, C. Yang, H. Ma, X. Shi et al., Stability evaluation of underground gas storage salt caverns with micro-leakage interlayer in bedded rock salt of Jintan, China. Acta Geotech. 15, 549-563 (2020). DOI: https://doi.org/10.1007/s11440-019-00901-y
[27] G. Zhang, Y. Li, J.J.K. Daemen, C. Yang et al., Geotechnical feasibility analysis of compressed air energy storage (CAES) in bedded salt formations: a case study in Huai’an City, China. Rock Mech. Rock Eng. 48, 5, 2111-2127 (2015). DOI: https://doi.org/10.1007/s00603-014-0672-z
[28] N . Zhang, X.L. Shi, T.T. Wang, C. Yang et al., Stability and availability evaluation of underground strategic petroleum reserve (SPR) caverns in bedded rock salt of Jintan, China. Energy 134, 504-514 (2017). DOI: https://doi.org/10.1016/j.energy.2017.06.073
[29] J.L. Li, X. Shi, C. Yang, Y. Li et al., Repair of irregularly shaped salt cavern gas storage by re-leaching under gas blanket. J. Nat. Gas Sci. Eng. 45, 848-859 (2017). DOI: https://doi.org/10.1016/j.jngse.2017.07.004
[30] K.M. Looff, The Impact of Anomalous Salt and Boundary Shear Zones on Salt Cavern Geometry, Cavern Operations, and Cavern Integrity. American Gas Association Operations Conference 2-5 May 2017, Orlando, Florida (2017).
[31] J. Li, X. Shi, C. Yang, Y. Li et al., Mathematical model of salt cavern leaching for gas storage in high insoluble salt formations. Sci. Rep. 8, 372, 1-12 (2018). DOI: https://doi.org/10.1038/s41598-017-18546-w
[32] Y . Charnavel, J. O’Donnell, T. Ryckelynck, Solution Mining at Stublach. SMRI Spring Technical Conference 27-28 April 2015 Rochester, New York, USA (2015).
[33] K. Looff, J. Duffield, K. Looff, Edge of Salt Definition for Salt Domes and Other Deformed Salt Structures – Geologic and Geophysical Considerations. SMRI Spring Technical Conference 27-30 April 2003, Houston, Texas, USA (2003).
[34] L.H. Gevantman (ed.), Physical properties data for rock salt. Monograph 161, U.S. Deptartment of the Commerce, National Bureau of Standards, Government Printing Office, Washington D.C. (1981).
[35] A. Garlicki, Salt Mines at Bochnia and Wieliczka. Przegląd Geologiczny 56, 8/1, 663-669 (2008).
[36] J. Wachowiak, Poziomy mineralne w solach cechsztyńskich wysadu solnego Kłodawa jako narzędzie korelacji litostratygraficznej. Kwartalnik AGH – Geologia 36, 2, 367-393 (2010).
[37] D .H. Kupfer, Problems associated with anomalous zones in Louisiana salt stocks, USA. In: A.H. Coogan and L. Hauber, eds., Fifth Symposium of Salt, Hamburg Germany, June 1978, Northern Ohio Geological Society, Cleveland 1, 119-134 (1980).
[38] D .H. Kupfer, Anomalous features in the Five Island Salt Stocks, Louisiana. Gulf Coast Association of Geological Societies Transactions 40, 425-437 (1990).
[39] Z . Schléder, J.L. Urai, Microstructural evolution of deformation-modified primary halite from the Middle Triassic Röt Formation at Hengelo, The Netherlands. Int. J. Earth Sci. (Geol Rundsch) 94, 5-6, 941-955 (2005). DOI: https://doi.org/10.1007/s00531-005-0503-2
[40] J.L. Urai, Z. Schléder, C.J. Spiers, P.A. Kukla, Flow and transport properties of saltrocks. In: R. Littke, U. Bayer, D. Gajewski, S. Nelskamp (eds.) Dynamics of complex intracontinental basins: The Central European Basin System. Berlin: Springer, 277-90 (2008).
[41] J.L. Urai, C.J. Spiers, The effect of grain boundary water on deformation mechanisms and rheology of rocksalt during long-term deformation. In: M. Wallner, K. Lux, W. Minkley, H. Hardy (eds.), Proceedings of the 6th conference on the mechanical behavior of salt, Hannover, Germany (2007).
[42] M. Azabou, A. Rouabhi, L. Blanco-Martìn, Effect of insoluble materials on the volumetric behavior of rock salt. J. Rock Mech. Geotech. Eng. 13, 1, 84-97 (2021). DOI: https://doi.org/10.1016/j.jrmge.2020.06.007
[43] R .K. Dubey, Bearing of structural anisotropy on deformation and mechanical response of rocks: an experimental example of rocksalt deformation under variable compression rates. J. Geol. Soc. India 91, 109-114 (2018). DOI: https://doi.org/10.1007/s12594-018-0826-9.
[44] Y. Li, W. Liu, C. Yang, J.J.K. Daemen, Experimental investigation of mechanical behavior of bedded rock salt containing inclined interlayer. Int. J. Rock Mech. Min. Sci. 69, 39-49 (2014). DOI: https://doi.org/10.1016/j.ijrmms.2014.03.006
[45] W . Liang, C. Yang, Y. Zhao, M.B. Dusseault, J. Liu, Experimental investigation of mechanical properties of bedded salt rock. Int. J. Rock Mech. Min. Sci. 44, 3, 400-411 (2007). DOI: https://doi.org/10.1016/j.ijrmms.2006.09.007
[46] W . Liu, Z. Zhang, J. Fan, D. Jiang, J.J.K. Daemen, Research on the Stability and Treatments of Natural Gas Storage Caverns with Different Shapes in Bedded Salt Rocks. IEEE Access, 8, 18995-19007 (2020). DOI: https://doi. org/10.1109/ACCESS.2020.2967078
[47] K.D. Mellegard, L.A. Roberts, G.D. Callahan, Effect of sylvite content on mechanical properties of potash. Pierre Bérest, Mehdi Ghoreychi, Faouzi Hadj-Hassen, Michel Tijani (eds.) Mechanical Behaviour of Salt VII Edition 1st Edition, Imprint CRC Press (2012).
[48] D .E. Munson, Constitutive model of creep in rock salt applied to underground room closure. Int. J. Rock Mech. Min. Sci. 34, 233-247 (1997). DOI: https://doi.org/10.1016/S0148-9062(96)00047-2
[49] A. Pouya, Correlation between mechanical behaviour and petrological properties of rock salt. Proceedings of the 32nd US Symposium on Rock Mechanics, USRMS (1991).
[50] H. Alkan, Y. Cinarb, G. Pusch, Rock salt dilatancy boundary from combined acoustic emission and triaxial compression tests. Int. J. Rock Mech. Min. Sci. 44, 108-119 (2007). DOI: https://doi.org/10.1016/j.ijrmms.2006.05.003
[51] Von Sambeek L., Ratigan J.L., Hansen F.D., Dilatancy of Rock Salt in Laboratory Tests. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. 30, 7, 735-738 (1993). DOI: https://doi.org/10.1016/0148-9062(93)90015-6
[52] U. Hunsche, A. Hampel, Rock salt – The mechanical properties of the host rock material for a radioactive waste repository. Eng. Geol. 52, 271-291 (1999). DOI: https://doi.org/10.1016/S0013-7952(99)00011-3
[53] O . Schulze, T. Popp, H. Kern, Development of damage and permeability in deforming rock salt. Eng. Geol. 61, 163-180 (2001). DOI: https://doi.org/10.1016/S0013-7952(01)00051-5
[54] H. Moriya, T. Fujita, H. Niitsum, Analysis of fracture propagation behavior using hydraulically induced acoustic emissions in the Bernburg salt mine, Germany. Int. J. Rock Mech. Min. Sci. 43, 49-57 (2006). DOI: https://doi.org/10.1016/j.ijrmms.2005.04.003
[55] W . Liang, C. Zhang, H. Gao, X. Yang et al., Experiments on mechanical properties of salt rocks under cycling loading. J. Rock Mech. Geotech. Eng. 4, 1, 54-61 (2012). DOI: https://doi.org/10.3724/SP.J.1235.2012.00054
[56] C. Jie, J. Zhang, S. Ren, L. Li, L. Yin, Determination of damage constitutive behaviour for rock salt under uniaxial compress ion condition with acoustic emission. The Open Civil Engineering Journal 9, 75-81 (2015). DOI: https://doi.org/10.2174/1874149501509010075
[57] H. Mansouri, R. Ajalloeian, Mechanical behavior of salt rock under uniaxial compression and creep tests. Int. J. Rock Mech. Min. Sci. 110, 19-27 (2018). DOI: https://doi.org/10.1016/j.ijrmms.2018.07.006
[58] D . Flisiak, Laboratory testing of geomechanical properties for selected Permian rock salt deposits. Miner. Resour. Manag. 24, 121-140 (2008).
[59] C. Yang, T. Wang, Y. Li, H. Yang et al., Feasibility analysis of using abandoned salt caverns for large-scale underground energy storage in China. Appl. Energ. 137, 467-481 (2015). DOI: https://doi.org/10.1016/j.apenergy. 2014.07.048
[60] G. Speranza, A. Vona, S. Vinciguerra, C. Romano, Relating natural heterogeneities and rheological properties of rocksalt: New insights from microstructural observations and petrophyisical parameters on Messinian halites from the Italian Peninsula. Tectonophysics 666, 103-120 (2016). DOI: https://doi.org/10.1016/j.tecto.2015.10.018
[61] Y.-L. Zhao, W. Wan, Mechanical properties of bedded rock salt. Electron. J. Geotech. Eng. 19, 9347-9353 (2014).
[62] M. Kolano, D. Flisiak, Comparison of geo-mechanical properties of white rock salt and pink rock salt in Kłodawa salt diaper. Studia Geotechnica et Mechanica 35, 1, 119-127 (2013). DOI: https://doi.org/10.2478/sgem-2013-0010
[63] K. Cyran, Tectonics of Miocene salt series in Poland. PhD thesis, AGH University of Science and Technology, Cracow (2008).
[64] D . Flisiak, K. Cyran, Właściwości geomechaniczne mioceńskich soli kamiennych. Biuletyn Państwowego Instytutu Geologicznego 429, 43-49 (2008).
[65] J. Chen, C. Du, D. Jiang, J. Fan, J. He, The mechanical properties of rock salt under cyclic loading-unloading experiments. Geomechanics and Engineering 10, 3, 325-334 (2016). DOI: https://doi.org/10.12989/gae.2016.10.3.325
[66] U. Hunsche, Determination of the dilatancy boundary and damage up to failure for four types of rock salt at different stress geometries. In: M. Aubertin, H.R. Hardy (eds.), Proceedings of the fourth conference on the mechanical behaviour of salt, 17-18 June, Montreal. Clausthal, Trans Tech. Publications; 163-7 (1996).
[67] C.J. Spiers, N.L. Carter, Microphysics of rocksalt flow in nature. In: Aubertin M, Hardy HR, editors. The mechanical behavior of salt proceedings of the 4th conference, Trans Tech. Publ. Series on Rock and Soil Mechanics, 22, 15-128 (1998).
[68] J.L. Ratigan, L.L. von Sambeek, K.L. DeVries, The influence of seal design on the development of the disturbed rock zone in the WIPP alcove seal tests. RSI-0400, Sandia National Laboratories, Albuquerque, USA (1991).
[69] U.E. Hunsche, Failure behaviour of rock salt around underground cavities. In: H. Kakihana (ed.), Proceedings of the Seventh Symposium on Salt, Kyoto, Elsevier Science Publisher, Amsterdam, 1, 59-65 (1993).
[70] Z . Zhang, D. Jiang, W. Liu, J. Chen et al., Study on the mechanism of roof collapse and leakage of horizontal cavern in thinly bedded salt rocks. Environ. Earth. Sci. 78, 10, 292 (2019). DOI: https://doi.org/10.1007/s12665-019-8292-2
[71] R . Dadlez, W. Jaroszewski, Tektonika. Wydawnictwo Naukowe PWN Warszawa (1994).
[72] R .D. Lama, V.S. Vutukuri, Handbook on mechanical properties of rocks. Trans. Tech. Publ. III, Zurich, Switzeland (1978).
[73] K. Cyran, T. Toboła, P. Kamiński, Wpływ cech petrologicznych na właściwości mechaniczne soli kamiennej z LGOM (Legnicko-Głogowskiego Okręgu Miedziowego). Biuletyn Państwowego Instytutu Geologicznego 466, 51-63 (2016).
[74] A. Łaszkiewicz, Minerały i skały solne. Prace Muzeum Ziemi 11, 101-188 (1967).
[75] W . Liu, Y.P. Li, Y.S. Huo, X.L. Shi et al., Analysis on deformation and fracture characteristics of wall rock interface of underground storage caverns in salt rock formation. Rock and Soil Mechanics 34, 6, 1621-1628 (2013).
[76] J. Poborski, K. Skoczylas-Ciszewska, O miocenie w strefie nasunięcia karpackiego w okolicy Wieliczki i Bochni. Rocznik Polskiego Towarzystwa Geologicznego 33, 3, 340-347 (1963).
[77] L. Wei, L. Yinping, Y. Chunhe, H. Shuai, W. Bingwu, Analysis of Physical and Mechanical Properties of Impure Salt Rock. 47th U.S. Rock Mechanics/Geomechanics Symposium, San Francisco, California, June 2013, ARMA- 2013-336 (2013).
[78] C.J. Peach, C.J. Spiers, Influence of crystal plastic deformation on dilatancy and permeability development in synthetic salt rock. Tectonophysics 256 (1-4), 101-128 (1996). DOI: https://doi.org/10.1016/0040-1951(95)00170-0
[79] G.M. Pennock, M.R. Drury, C.J. Spiers, The development of subgrain misorientations with strain in dry synthetic NaCl measured using EBSD. J. Struct. Geol. 27, 12, 2159-2170 (2005). DOI: https://doi.org/10.1016/j. jsg.2005.06.013
[80] G.M. Pennock, M.R. Drury, C.J. Peach, C.J. Spiers, The influence of water on deformation microstructures and textures in synthetic NaCl measured using EBSD. J. Struct. Geol. 28, 4, 588-601 (2006). DOI: https://doi.org/10.1016/j.jsg.2006.01.014
[81] J.H. Ter Heege, J.H.P. De Bresser, C.J. Spiers, Rheological behaviour of synthetic rock salt: the interplay between water, dynamic recrystallisation and deformation mechanisms. J. Struct. Geol. 27, 948-963 (2005). DOI: https://doi.org/10.1016/j.jsg.2005.04.008
[82] J.H. Ter Heege, J.H.P. De Bresser, C.J. Spiers, Dynamic recrystallisation of wet synthetic polycrystalline halite: dependence of grain size distribution on flow stress, temperature and strain. Tectonophysics 396, 1-2, 35-57 (2005). DOI: https://doi.org/10.1016/j.tecto.2004.10.002
[83] N .L. Carter, F.D. Hansen, Creep of rock salt. Tectonophysics 92, 275-333 (1983). DOI: https://doi.org/10.1016/0191-8141(93)90168-A
[84] S.J. Bauer, B. Song, B. Sanborn, Dynamic compressive strength of rock salts. Int. J. Rock Mech. Min. Sci. 113, 112-120 (2019). DOI: https://doi.org/10.1016/j.ijrmms.2018.11.004
[85] K. Liang, L.Z. Xie, B. He, P. Zhao et al., Effects of grain size distributions on the macro-mechanical behavior of rock salt using micro-based multiscale methods. Int. J. Rock Mech. Min. Sci. 138, 104592 (2021). DOI: https://doi.org/10.1016/j.ijrmms.2020.104592
[86] S.Y. Li, J.L. Urai, Rheology of rock salt for salt tectonics modelling. Petrol. Sci. 13, 712-724 (2016). DOI: https://doi.org/10.1007/s12182-016-0121-6
[87] Z . Schléder, J.L. Urai, Deformation and recrystallisation mechanisms in mylonitic shear zones in naturally deformed extrusive Eocene-Oligocene rocksalt from Eyvanekey plateau and Garmsar hills (central Iran). J. Struct. Geol. 29, 241-255 (2007). DOI: https://doi.org/10.1016/j.jsg.2006.08.014
[88] C.J. Spiers, PM.T.M. Schutjens, R.H. Brzesowsky, C.J. Peach et al., Experimental determination of constitutive parameters governing creep of rocksalt by pressure solution. In: R.J. Knipe, E.H. Rutter (eds.) Deformation mechanisms, rheology and tectonics. Geological Society, London, Special Publications 54, 1, 215-27 (1990).
[89] J.L. Urai, C.J. Spiers, H.J. Zwart, G.S. Lister, Weakening of rock salt by water during long-term creep. Nature 324, 554-557 (1986). DOI: https://doi.org/10.1038/324554a0
[90] J.L. Urai, C.J. Spiers, C.J. Peach, R.C.M.W. Franssen, J.L. Liezenberg, Deformation mechanisms operating in naturally deformed halite rocks as deduced from microstructural investigations. Geology en Mijnbouw 66, 165-176 (1987).
[91] R .K. Dubey, V.K. Gairola, Influence of structural anisotropy on the uniaxial compressive strength of pre-fatigued rocksalt from Himachal Pradesh, India. Int. J. Rock Mech. Min. Sci. 37, 993-999 (2000). DOI: https://doi.org/10.1016/S1365-1609(00)00020-4
[92] R .K. Dubey, V.K. Gairola, Influence of structural anisotropy on creep of rocksalt from Simla Himalaya, India: an experimental approach. J. Struct. Geol. 30, 6, 710-718 (2008). DOI: https://doi.org/10.1016/j.jsg.2008.01.007
[93] R .A. Lebensohn, P.R. Dawson, H.M. Kern, H.R. Wenk, Heterogeneous deformation and texture development in halite polycrystals: comparison of different modelling approaches and experimental data. Tectonophysics 370 (1-4), 287-311 (2003). DOI: https://doi.org/10.1016/S0040-1951(03)00192-6
[94] J.R. Hirth, L. Kubin (Eds), Dislocations in solids. The 30th anniversary volume. Elsevier (2009).
[95] M.P.A. Jakson, M.R. Hudec, Salt tectonics principles and practice. Cambridge University Press (2017).
[96] D .R. Askeland, P.P. Fulay, W.J. Wright, The Science and Engineering of Materials. Cengage Learning Inc. (2010).
[97] J. Wichert, H. Konietzky, C. Jakob, Salt Mechanics. TU Bergakademie Freiberg, Institut für Geotechnik, Freiberg (2018).
[98] G. Wang, A new constitutive creep-damage model for salt rock and its characteristics. Int. J. Rock Mech. Min. Sci. 41, 61-67 (2004). DOI: https://doi.org/10.1016/j.ijrmms.2004.03.020
[99] Z . Hou, Untersuchungen zum Nachweis der Standsicherheit für Untertagedeponien im Salzgebirge. Technische Universität Clausthal, Professur für Deponietechnik und Geomechanik. Papierflieger (1997).
[100] U. Hunsche, O. Schulze, Das Kriechverhalten von Steinsalz. Kali und Steinsalz, 11, 238-255 (1994).
[101] K.H. Lux, Gebirgsmechanischer Entwurf und Felderfahrungen im Salzkavernenbau: ein Beitrag zur Entwicklung von Prognosemodellen für den Hohlraumbau im duktilen Salzgebirge. F. Enke Verlag (1984).
[102] R .M. Günther, Erweiterter Dehnungs-Verfestigungs-Ansatz: phänomenologisches Stoffmodell für duktile Salzgesteine zur Beschreibung primären, sekundären und tertiären Kriechens. Ph.D. dissertation, Institut für Geotechnik, Technische Universität Bergakademie Freiberg (2009).
[103] C. Missal, A. Gährken, J. Stahlmann, Vergleich aktueller Stoffgesetze und Vorgehensweisen anhand von Modellberechnungen zum thermo-mechanischen Verhalten und zur Verheilung von Steinsalz. BMBF-Verbundvorhaben, Einzelbericht zum Teilvorhaben (2016).
[104] D .E. Munson, Preliminary deformation mechanism map for salt (with application to WIPP). Sandia Rep. SAND 79-0076 (1979).
[105] D .E. Munson, P.R. Dawson, Constitutive model for the low temperature creep of salt (with application to WIPP). Sandia Rep. SAND 79-1853 (1979).
[106] D .E. Munson, Constitutive model of creep in polycrystalline halite based on workhardening and recovery. International Symposium on Plasticity and its Current Applications. Baltimore, MD (United States) (1993).
[107] N .L. Carter, S.T. Horseman, J.E. Russell, J. Handin, Rheology of rock salt. J. Struct. Geol. 15, 9, 1257-1271 (1993). DOI: https://doi.org/10.1016/0191-8141(93)90168-A
[108] F .D. Hansen, P. E. Senseny, T.W. Pfeifle, T.J. Vogt, Influence of impurities on the creep of salt from the Palo Duro basin. 29th U.S. Symposium on Rock Mechanics (USRMS), June 1988, Minneapolis, Minnesota (1988).
[109] D .E. Munson, Analysis of Multistage and other creep data from domal salts. SANDIA report 98-2276 (1998).
[110] T .W. Pfeifle, T.J. Vogt, G.A. Brekken, Correlation of Chemical, Mineralogic, and Physical Characteristics of Gulf Coast Dome Salt to Deformation and Strength Properties. Solution Mining Research Institute Report no. 94-0004-5 (1995).
[111] A. Pouya, Correlation Between Mechanical Behaviour And Petrological Properties of Rock Salt. In: J.C. Roegiers (ed.), Proceedings of 32nd US symposium on rock mechanics 385-92. Balkema, Rotterdam, ARMA-91-385 (1991).
[112] J. Ślizowski, S. Nagy, S. Burliga, K. Serbin, K. Polański, Laboratory investigations of geotechnical properties of rock salt in Polish salt deposits. In: R.L., Mellegard K., Hansen F. (eds.) Mechanical behavior of salt VIII: Proceedings of the Conference on Mechanical Behavior of Salt, SALTMECH VIII : Rapid City, USA, 26-28 May 2015, CRC Press Taylor & Francis Group, 33-38 (2015).
[113] U. Hunsche, Determination of the dilatancy boundary and damage up to failure for four types of rock salt at different stress geometries. In: Aubertin, M., Hardy Jr., H.R. (Eds.), The Mechanical Behavior of Salt IV; Proc. of the Fourth Conf., (MECASALT IV), Montreal 1996. TTP Trans Tech Publications, Clausthal, 163-174 (1998).
[114] C. Du, C.H. Yang, H.L. Ma, X.L. Shi, J. Chen, Study of creep characteristics of deep rock salt. Rock and Soil Mechanics 33, 8, 2451-2520 (2012).
[115] X.D. Qui, Y. Jiang, Z.L. Yan, Q.C. Zhuang, Creep damage failure of rock salt. Journal of Chongqing University 26, 3,106-109 (2003).
[116] J.W. Hustoft, R.D. Arnold, L.A. Roberts, Effects of sylvite and carnallite content on creep behavior of potash. SMRI Spring Technical Conference 23-24 April 2012, Regina, Saskatchewan, Canada (2012).
[117] L.J. Ma, H.F. Xu, M.Y. Wang, E.B. Li, Numerical study of gas storage stability in bedded rock salt during the complete process of operating pressure runaway. Chinese Journal of Rock Mechanics and Engineering 34, S2, 4108-4115 (2015).
[118] M.M. Tang, Z.Y. Wang, G.S. Ding, Z.N. Ran, Creep property experiment and constitutive relation of salt-mudstone interlayer. Journal of China Coal Society 35, 1, 42-45 (2010).
[119] Z .W. Zhou, J.F. Liu, F. Wu, L. Wang et al., Experimental study on creep properties of salt rock and mudstone from bedded salt rock gas storage. Journal of Sichuan University (Engineering Science Edition) 48, S1, 100-106 (2016).
[120] W .G. Liang, C.H. Yang, Y.S. Zhao, Physico-mechanical properties and limit operation pressure of gas deposit in bedded salt rock. Chinese Journal of Rock Mechanics and Engineering 27, 1, 22-27 (2008).
[121] Y .L. Zhao, Y. Zhang, W. Wan, Mechanical properties of bedded rock salt and creep failure model. Mineral Engineering Research 25, 1, 6-20 (2010).
[122] C.H. Yang, H.J. Mao, X.C. Wang, X.H. Li, J.W. Chen, Study on variation of microstructure and mechanical properties of water-weakening slates. Rock and Soil Mechanics 27, 6, 2090-2098 (2006). DOI: https://doi.org/10.1201/9781439833469.ch24
[123] J.E. Lindqvist, U. Åkesson, K. Malaga, Microstructure and functional properties of rock materials. Mat. Charact. 58, 1183-1188 (2007). DOI: https://doi.org/10.1016/j.matchar.2007.04.012
[124] X. Shi, Y.F. Cheng, S. Jiang, D.S. Cai, T. Zhang, Experimental study of microstructure and rock properties of shale samples. Chinese Journal of Rock Mechanics and Engineering 33, 3439-3445 (2014).
[125] T. Toboła, K. Cyran, M. Rembiś, Petrological and Microhardness Study on Blue Halite from Kłodawa Salt Dome (central Poland). 9th Conference on the Mechanical Behavior of Salt (SaltMech IX), September 12-14, 2018, Hannover, Germany, (2018).
[126] T. Toboła, K. Cyran, M. Rembiś, Microhardness analysis of halite from different salt-bearing formations. Geol. Quart. 63, 4, 771-785 (2019). DOI: https://doi.org/10.7306/gq.1499
[127] T. Toboła, P. Kukiałka, The Lotsberg Salt formation in Central Alberta (Canada) – petrology, geochemistry and fluid inclusions. Minerals 10, 868 (2020). DOI: https://doi.org/10.3390/min10100868
[128] S. Zelek, K. Stadnicka, J. Szklarzewicz, L. Natkaniec-Nowak, T. Toboła, Halite from Kłodawa: the attempt of correlation between lattice defor mation and spectroscopic properties in UV-VIS. Gospodarka Surowcami Mineralnymi PAN 3, 159-172 (2008).
[129] S. Zelek, K. Stadnicka, T. Toboła, L. Natkaniec-Nowak, Lattice deformation of blue halite from Zechstein evaporite basin: Kłodawa Salt Mine, Central Poland. Mineral. Petrol. 108, 619-631 (2014). DOI: https://doi.org/10.1007/s00710-014-0323-9
[130] A. Tuğrul, I.H. Zarif, Correlation of mineralogical and textural characteristics with engineering properties of selected granitic rocks from Turkey. Eng. Geol. 51, 4, 303-317 (1999). DOI: https://doi.org/10.1016/S0013-7952(98)00071-4
[131] A.A. Momeni, G.R. Khanlari, M. Heidari, A.A. Sepahi, E. Bazvand, New engineering geological weathering classifications for granitoid rocks. Eng. Geol. 185, 43-51 (2015). DOI: https://doi.org/10.1016/j.enggeo.2014.11.012
[132] E. Cantisani, C.A. Garzonio, M. Ricci, S. Vettori, Relationships between the petrographical, physical and mechanical properties of some Italian sandstones. Int. J. Rock Mech. Min. Sci. 60, 321-332 (2013). DOI: https://doi.org/10.1016/j.ijrmms.2012.12.042

Go to article

Authors and Affiliations

Katarzyna Cyran
1
ORCID: ORCID

  1. AGH University of Science and Technology, Faculty of Mining and Geoengineering, Al. Mickiewicza 30, 30-059 Krakow, Poland
Download PDF Download RIS Download Bibtex

Abstract

This paper presents a complex study of anhydrite interbeds influence on the cavern stability in the Mechelinki salt deposit. The impact of interbeds on the cavern shape and the stress concentrations were also considered. The stability analysis was based on the 3D numerical modelling. Numerical simulations were performed with use of the Finite Difference Method (FDM) and the FLAC3D v. 6.00 software. The numerical model in a cuboidal shape and the following dimensions: length 1400, width 1400, height 1400 m, comprised the part of the Mechelinki salt deposit. Three (K-6, K-8, K-9) caverns were projected inside this model. The mesh of the numerical model contained about 15 million tetrahedral elements. The occurrence of anhydrite interbeds within the rock salt beds had contributed to the reduction in a diameter and irregular shape of the analysed caverns. The results of the 3D numerical modelling had indicated that the contact area between the rock salt beds and the anhydrite interbeds is likely to the occurrence of displacements. Irregularities in a shape of the analysed caverns are prone to the stress concentration. However, the stability of the analysed caverns are not expected to be affected in the assumed operation conditions and time period (9.5 years).

Go to article

Authors and Affiliations

Marek Cała
ORCID: ORCID
Katarzyna Cyran
ORCID: ORCID
Michał Kowalski
ORCID: ORCID
Paweł Wilkosz

This page uses 'cookies'. Learn more