Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Dual-phase steels have received extensive attention in autobody frame manufacturing due to the resulting characteristics of an interesting combination of ductile ferrite and hard martensite. Moreover, the ductile ferrite and hard martensite lead to heterogeneous deformation in the boundary between the two phases. Then, geometrically necessary dislocations (GNDs) are created to accommodate a lattice mismatch due to the deformation incompatibility of the boundary in straining. In this study, a new empirical GND model is developed, in which the GND density is a function of local plastic deformation; the GND density is distributed in the phase boundary in accordance with an “S” model of material plastic strain. The boundary conditions are applied to define the parameters. The proposed model is verified with DP600 steel. The effects of the GNDs and the width between ferrite and martensite on the strain hardening of DP600 steel are evaluated.
Go to article

Authors and Affiliations

Gou Rui-Bin
1
Dan Wen-Jiao
1
Xu Yong-Sheng
2
Yu Min
3
Li Tong-Jie
1

  1. Anhui Science and Technology University, College of Mechanical Engineering, Fengyang 233100, Anhui, China
  2. Shanghai Jiao Tong University, Department of Engineering Mechanics, School of Naval Architecture, Ocean and Civil Engineering, Shanghai 200240, China
  3. Anhui Science and Technology University, College of Architecture, Bengbu 233000, Anhui, China
Download PDF Download RIS Download Bibtex

Abstract

Innovative procedure of microalloying continuous cast aluminum strip, thickness 10 mm, by Be, Zr and Mn using 3C Pechiney technology (no. 39762, P-377/76), and modifying the existing parameters for strip casting and crystallization was implemented under industrial conditions with two randomly selected batches 2×8 tones, without previous selection of standardized quality of aluminum, purity Al 99.5%, obtained by electrolysis. The application of microalloying and overall structural modification of the technology resulted in obtaining nanoscale, ultra-thin, compact oxide high-gloss film with uniform surface of continuous cast strip, instead of the usual thick and porous oxide film. The outcome of microalloying the obtained equiaxed fine-grained nano/micro structure was avoiding anisotropic and dendritic microstructure of the strip, and improving deformation and plastic properties of modified continuous cast strip subjected to the technology of plastic treatment by rolling until the desired foil thickness of 9 μm was obtained. The invention of microalloying and structural modification, including multiplying effect of several components, directly or indirectly, changed numerous structurally-sensitive properties. The obtained nano/micro structure of crystal grains with equiaxed structure resulted in the synergy of undesirable <111> and inevitable <100> and <110> textures. Numerous properties were significantly enhanced: elastic modulus was improved, and intensive presence of cracks in warm forming condition was prevented due to rapid increase of the number of grains to 10000 grains/cm2 in as-cast state.
Go to article

Authors and Affiliations

M.M. Purenović
1
J.M. Purenović
2
J.Č. Baralić
2

  1. University of Niš, Faculty of Sciences and Mathematics, Serbian Academy of Inventors and Scientists, Serbia
  2. University of Kragujevac, Faculty of Technical Sciences Cacak, Department of Physics and Materials, Serbia

This page uses 'cookies'. Learn more