Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 26
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This investigation is carried out to evaluate the repair and strengthening the techniques of elliptical paraboloid reinforced concrete shells with openings. An experimental program of several different techniques in repair and strengthening is executed. The materials, which are considered for strengthening, are; Glass fiber reinforced polymers GFRP at different position of the shell bottom surface, steel strip and external tie. They loaded by four concentrated loads affected on the corners of the opening. The initial and failure loads as well as the crack propagation for the tested shells at different loading stages, defl ections and failure load for repaired and shells are recorded. A non-linear computer program based on finite element techniques is used to study the behavior of these types of shells. Geometric and materials nonlinearities are considered in the analysis. The efficiency and accuracy of computer program are verified by comparing the program results with those obtained experimentally for the control shell with opening and strengthened shells.

Go to article

Authors and Affiliations

N.N. Meleka
M.A. Safan
A.A. Bashandy
A.S. Abd-Elrazek
Download PDF Download RIS Download Bibtex

Abstract

The paper describes experimental research of slab-column connections examined on specimendesigned as a part of reinforced concrete structure with flat slabs. The aim of the research wasto verify the efficiency of slab reinforcement concept against punching shear by increasing slab’smechanical reinforcement ratio by applying additional external reinforcement in the form of carbonfiber reinforced polymer (CFRP) strips.

The capacity enhancement in comparison to unstrengthened slab obtained 36%.

Go to article

Authors and Affiliations

T. Urban
J. Tarka
Download PDF Download RIS Download Bibtex

Abstract

In this study, ODS ferritic stainless steels were fabricated using a commercial alloy powder, and their microstructures and mechanical properties were studied to develop the advanced structural materials for high temperature service applications. Mechanical alloying and uniaxial hot pressing processes were employed to produce the ODS ferritic stainless steels. It was revealed that oxide particles in the ODS stainless steels were composed of Y-Si-O, Y-Ti-Si-O, and Y-Hf-Si-O complex oxides were observed depending on minor alloying elements, Ti and Hf. The ODS ferritic stainless steel with a Hf addition presented ultra-fine grains with uniform distributions of fine complex oxide particles which located in grains and on the grain boundaries. These favorable microstructures led to superior tensile properties than commercial stainless steel and ODS ferritic steel with Ti addition at elevated temperature.

Go to article

Authors and Affiliations

Sanghoon Noh
Suk Hoon Kang
Tae Kyu Kim
Download PDF Download RIS Download Bibtex

Abstract

This study aims to evaluate the efficiency of strengthening reinforced concrete beams using some valid strengthening materials and techniques. Using concrete layer, reinforced concrete layer and steel plates are investigated in this research. Experiments on strengthening beam samples of dimensions 100x150x1100 mm are performed. Samples are divided in to three groups. Group “A” is strengthened using 2 cm thickness concrete layer only (two types). Group “B” is strengthened using 2 cm thickness concrete layer reinforced with meshes (steel and plastic). Group “C” is strengthened using steel plates. The initial cracking load, ultimate load and crack pattern of tested beams are illustrated. The experimental results show that for group A and B, the ultimate strength, stiffness, ductility, and failure mode of RC beams, with the same thickness strengthening layer applied, will be affected by the mesh type, type of concrete layer. While for group C, these parameters affected by the fixation technique and adhesion type.

Go to article

Authors and Affiliations

Alaa A. Bashandy
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the possibility to apply numerical simulation in static analysis of reinforcedconcrete structure strengthened with carbon fibre reinforced polymer composite strips (CFRP).Reinforced concrete beams, with strengthening in form values CFRP made of carbon fibres andepoxy resin, featuring various width, as well as non-strengthened bent beams, were analysed. Thesimply supported beams arranged in a free support scheme were subjected to two concentratedforces within full range of loading (until collapse). The numerical analysis was performed throughapplication of the Finite Elements Method (FEM), and the calculation model applied took intoaccount the geometric and physical nonlinearity. The problem was solved by application of thequasi-staticstrategy method of calculations using ABAQUS software. While analysing the results,we focused on the run of changes in structure displacement and development of material damage,up to the point of destruction of the beam.

Go to article

Authors and Affiliations

W. Głodkowska
M. Ruchwa
Download PDF Download RIS Download Bibtex

Abstract

The main objective of this investigation is to assess the feasibility of strengthening of corroded (damaged) square hollow steel tubular sections subjected to compression and to develop or predict the suitable wrapping scheme of fibre reinforced polymer (FRP) to enhance the structural behaviour of it.For this study, compact mild steel tubes were used with the main variable being FRP characteristics. Carbon fibre reinforced polymer (CFRP) fabrics was used as horizontal strips (lateral ties) with other parameters such as the number of layers and spacing of strips. Among fourteen specimens, six were externally bonded by CFRP strips having a constant width of 50 mm with a spacing of 20 mm and the remaining six were externally bonded by CFRP strips having a constant width of 70 mm with a spacing of 20 mm, two columns were unbonded. Experiments were undertaken until the failure of columns to fully understand the influence of FRP characteristics on the compressive behaviour of the square sections including their failure modes, axial stress-strain behaviour, enhancement in the load carrying capapcity, and effect of distribution of CFRP layers. Finally, the behaviour of externally bonded hollow tubular sections was compared with one another and also with the control specimens. Evaluation of the results will lead to optimum CFRP jacketing/wrapping arrangements for the steel tubes considered here.

Go to article

Authors and Affiliations

M.C. Sundarraja
P. Sriram
Download PDF Download RIS Download Bibtex

Abstract

Recently, textile reinforced concrete (TRC) has been intensively studied for strengthening reinforced concrete (RC) and masonry structures. This study is to experimentally explore the effectiveness of application of carbon TRC to strengthen RC beam in flexure and shear. Concerning the cracks formation, failure modes, ultimate strength and overall stiffness, the performance of the strengthened beams compared to the control beams were evaluated from two groups of tests. The test results confirm that the TRC layers significantly enhance both shear and flexural capacity of RC beams in cracking, yielding and ultimate loads. All of the tested specimens were also modelled using ABAQUS/CAE software, in order to validate the experimental results. The numerical results show that the simulation models have good adaptability and high accuracy.

Go to article

Authors and Affiliations

Cuong Huy Nguyen
Quang Dang Ngo
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the results of the static work analysis of laminated veneer lumber (LVL) beams strengthened with carbon fabric sheets (CFRP). Tested specimens were 45mm wide, 100 mm high, and 1700 mm long. Two types of strengthening arrangements were assumed as follows: 1. One layer of sheet bonded to the bottom face; 2. U-shape half-wrapped reinforcement; both sides wrapped to half of the height of the cross-section. The reinforcement ratios were 0.22% and 0.72%, respectively. In both cases, the FRP reinforcement was bonded along the entire span of the element by means of epoxy resin. The reinforcement of the elements resulted in an increase in the bending strength by 30% and 35%, respectively, as well as an increase in the global modulus of elasticity in bending greater than 20% for both configurations (in comparison to the reference elements).

Go to article

Authors and Affiliations

M. Bakalarz
P.G. Kossakowski
Download PDF Download RIS Download Bibtex

Abstract

Several recent earthquakes have indicated that the design and construction of bridges based on former seismic design provisions are susceptible to fatal collapse triggered by the failure of reinforced concrete columns. This paper incorporates an experimental investigation into the seismic response of nonductile bridge piers strengthened with low-cost glass fiber reinforced polymers (LC-GFRP). Three full-scale bridge piers were tested under lateral cyclic loading. A control bridge pier was tested in the as-built condition and the other two bridge piers were experimentally tested after strengthening them with LC-GFRP jacketing. The LC-GFRP strengthening was performed using two different configurations. The control bridge pier showed poor seismic response with the progress of significant cracks at very low drift levels. Test results indicated the efficiency of the tested strengthening configurations to improve the performance of the strengthened bridge piers including crack pattern, yield, and ultimate cyclic load capacities, ductility ratio, dissipated energy capacity, initial stiffness degradation, and fracture mode.

Go to article

Authors and Affiliations

K. Rodsin
Q. Hussain
P. Joyklad
A. Nawaz
H. Fazliani
Download PDF Download RIS Download Bibtex

Abstract

The Nb-Si based in-situ composite was produced by resistive sintering (RS) technique. In order to identify present phases, X-ray diffraction (XRD) analysis was used on the composite. XRD analysis revealed that the composite was composed of Nb solid solution (Nbss) and α-Nb5Si3 phases. The microstructure of the composite was characterized by using a scanning electron microscope (SEM). The energy-dispersive spectroscopy (EDS) was performed for the micro-analysis of the chemical species. SEM-EDS analyses show that the microstructure of composite consists of Nbss, Nb5Si3 and small volume fraction of Ti-rich Nbss phases. The micro hardness of constituent phases of the composite was found to be as 593±19 and 1408±33 Hv0.1, respectively and its relative density was % 98.54.

Go to article

Authors and Affiliations

Y. Garip
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

In order to expand the application range of casting aluminum alloy ZL105, the stirring fusion casting method was used to add carbon nanotubes (CNTs) with different content and aspect ratio into the ZL105 aluminum matrix. And then the effect of the reinforcement on the mechanical properties of the alloy was compared and analyzed. The research results show that the tensile strength and hardness of the carbon nanotube composites with different contents will be improved, but to a certain extent the elongation of the composite material will be reduced, and there is an optimal addition amount. The mechanical properties of composite materials prepared by adding CNTs with relatively small length and diameter are better. There are different forms of reinforcement mechanisms for CNTs to reinforce cast aluminum alloys, and the improvement of composite material performance is the result of the combined effect of multiple strengthening methods. The research has made a meaningful exploration for the realization of carbon nanotube reinforced aluminum matrix composites under the casting method.
Go to article

Authors and Affiliations

Zhilin Pan
1
ORCID: ORCID
Rong Li
1
ORCID: ORCID
Qi Zeng
2
ORCID: ORCID

  1. Guizhou Normal University, School of Mechanical & Electrical Engineering, Contribution China
  2. Manager Section, Guiyang Huaheng Mechanical Manufacture CO. LTD China
Download PDF Download RIS Download Bibtex

Abstract

The paper presents an analysis of the behaviour of bent reinforced concrete beams strengthened with CFRP laminates fixed with adhesive before and after unloading, and more importantly, an analysis of the work of reinforced concrete beams strengthened with pre-stressed CFRP laminates fixed with adhesive. The analyses were based on a moment-curvature model prepared by the author for reinforced concrete beams strengthened under load with pre-stressed CFRP laminates. The model was used to determine the effect of compression with CFRP laminates and their mechanical properties on the effectiveness of strengthening the reinforced concrete beams analysed in this study.

Go to article

Authors and Affiliations

J. Korentz
Download PDF Download RIS Download Bibtex

Abstract

The column is one of the most significant structural elements, which is designed to support mainly the compressive load. Strengthening of existing reinforced concrete columns is required to enhance ductility and increase load capacity to sustain the overload as sometimes there may be a change in use. Ten rectangular concrete columns were constructed and tested. H/b ratio was kept constant and equals 6 for all columns The aim of this work is to study the behaviour and efficiency of RC columns strengthened with steel jackets subjected to axial load. An experimental study of the behaviour of ten strengthened concrete columns with slenderness ratio (t / b) equals 6 was carried out. Variables such as aspect ratio ( H / b), the volume of steel batten plates, and spacing of steel batten plates at centres ( S) were considered. The results showed that using this method of strengthening is very effective and an increase in the axial load capacity of the strengthened columns is obtained.
Go to article

Authors and Affiliations

Abd Rahman Mujahid Ahmed Ghoneim
1
ORCID: ORCID
Mahmoud Ahmed Mohamed Mohamed
1
ORCID: ORCID
Kader Haridy
2
ORCID: ORCID
Hazem Ahmed
2
ORCID: ORCID
Mohmmad Pyram
2
ORCID: ORCID
Abdu Khalf
2
ORCID: ORCID

  1. Assiut University, Faculty of Engineering, Civil Engineering Department, Assiut, P.O. Box 71515, Egypt
  2. Al-Azhar University, Faculty of Engineering-Qena, Civil Engineering Department, 83513, Egypt
Download PDF Download RIS Download Bibtex

Abstract

The use of FRP materials as external reinforcement of masonry structures has been recognized as an effective and minimally invasive method ofwall strengthening. The available literature and research reports confirmthe positive effect of the strip-like arrangement of composites with a horizontal, diagonal and – as shown in the paper – vertical configuration. The problem here is the proper estimation of the benefits of such FRP reinforcement, namely determining the real increase in shear strength. The paper described selected calculation procedures that can be found in the available literature (proprietary solutions), as well as in the published guidelines for the design of masonry walls strengthening using FRP materials. The results of experimental tests of sheared masonry walls made of AAC blocks and strengthened using vertical strips of carbon and glass fibres are briefly presented. Finally, based on the presented formulae, the values of the theoretical shear force resulted from the FRP contribution were calculated and detailed discussed.
The comparison of the experimental and theoretical shear forces showed that only one of the presented calculation methods gave a high agreement of the results for both carbon and glass sheets. In addition, it was noticed that in two cases the effects of strengthening – depending on the material used – drastically differed, which was not observed in the research.
Go to article

Authors and Affiliations

Marta Kałuża
1
ORCID: ORCID

  1. Silesian University of Technology, Faculty of Civil Engineering, Akademicka 5, 44-100 Gliwice, Poland
Download PDF Download RIS Download Bibtex

Abstract

In the paper the problem of strengthening of flat slabs against punching shear was discussed. Selected methods verified on the basis of experimental tests such as increasing size of the support, applying post-installed shear reinforcement or increasing the main reinforcement by installing additional steel flat bars, were presented. The previous studies demonstrated, that the last method allows for an increase in punching shear resistance of up to 90%, depending on the longitudinal reinforcement ratio. The example of the application of such strengthening technique in the real structure was described. The use of steel flat bars located in the vicinity of the columns and additionally anchored to the slab made possible to compensate for the load capacity deficiencies that occurred due to execution errors (lowering of the main reinforcement within the support zones).
Go to article

Authors and Affiliations

Tadeusz Urban
1
ORCID: ORCID
Michał Gołdyn
1
ORCID: ORCID
Łukasz Krawczyk
1
ORCID: ORCID

  1. Lodz University of Technology, Department of Concrete Structures, al. Politechniki 6, 93-590 Łódz, Poland
Download PDF Download RIS Download Bibtex

Abstract

The selection of the most proper strengthening method/system with an assessment of its effectiveness is quite complicated in the case of masonry structures, mainly due to their huge diversity in materials. The most popular strengthening materials based on the composite fibres and are laid on the masonry wall using epoxy adhesives (FRP system) or mineral mortars (FRCM system). This article presents a comparison of external strengthening made using different glass-fibre-based materials on the behaviour of specific masonry walls. The walls are made of AAC blocks (Autoclaved Aerated Concrete), commonly used in rather low urban buildings or skeleton construction. As a strengthening material the GFRP sheets and two types of glass meshes are used. The walls are subjected to diagonal compression, which reflects the shearing of the walls. The scope of research describes cracking stage, shear capacity and analysis of the mode of failure of tested walls.

Go to article

Authors and Affiliations

Marta Kałuża
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The composite materials as FRP (Fiber Reinforced Polymers), which are characterized by benefits resulting from the combination of high strength reinforcement (as carbon, glass, steel or aramid fibers) with synthetic matrix are increasingly used to reinforce existing structures. Reinforcing System as FRCM (Fibre Reinforced Cementitious Matrix), which includes, among others, Ruredil X Mesh Gold System, is much less commonly used. However, the uniform and practical methods for calculating composite reinforced structures are not determined. Especially when considering the real conditions of structure exploitation, which requires further research in this field. In the paper the initial loading level influence on the efficiency of reinforced concrete beams strengthen using system Ruredil X Mesh Gold was investigated.

Go to article

Authors and Affiliations

Z. Blikharskyy
K. Brózda
J. Selejdak
Download PDF Download RIS Download Bibtex

Abstract

In the paper experimental investigation results of three elements are presented. Two of them were made of reinforced concrete. The strengthened bracket had the steel accessory mounted to cracked loaded corbel (while it was loaded to half ultimate force of the reference element), the reference one was tested without any accessory. The third corbel was the steel accessory mounted to the concrete column. Full scale corbels were 450 mm deep and 250 mm wide, steel accessory was 320 mm high. The aim of the research was to verify the following thesis: short corbels (shear slenderness ac /h ≈ 0,3) can be strengthened by a steel accessory. Load carrying capacity of strengthened member increased by 40 %. The ultimate force obtained for the steel accessories mounted to concrete column was 66 % of reference value. While testing some observations and measurements (strain of reinforcement and concrete, development of cracking) were made which allowed to describe corbel behaviour under increasing load.

Go to article

Authors and Affiliations

T. Urban
Ł. Krawczyk
M. Gołdyn
Download PDF Download RIS Download Bibtex

Abstract

In this study, to investigate effects of rhenium addition on the microstructures and mechanical properties, 15Cr-1Mo ODS ferritic steels with rhenium additions were fabricated by the mechanical alloying, hot isostatic pressing, and hot rolling processes. Unremarkable differences on grain morphologies and nano-oxide distributions were estimated in the microstructure observations. However, the ODS ferritic steels with 0.5 wt.% rhenium showed higher tensile and creep strengths at elevated temperature than that without rhenium. It was found that rhenium is very effective to improve the mechanical properties.

Go to article

Authors and Affiliations

Sanghoon Noh
ORCID: ORCID
Suk Hoon Kang
Tae Kyu Kim
Download PDF Download RIS Download Bibtex

Abstract

In order to identify the influence of different Mn, Cd, V and Zr content on the properties of Al-Cu casting alloys in hydraulic valves, orthogonal test methods were used to prepare alloy test bars with different elements and contents. Tensile tests were performed on the test bars so obtained. The microstructure of alloys with different compositions is studied. The results show that adding approximately 0.4% of Mn can not only form a strengthening phase but also reduce the excessive segregation of the matrix along the grain boundary. A Cd content of 0.2% can promote the formation of micro Cd spheres in the softer aluminum matrix. Hard spots increase the wear resistance of the material; however, an excess of Cd will cause element segregation and deteriorate the mechanical properties of the valve body. Zr and V refine the grains in the alloy; however, an excess of these elements will lead to a large area of segregation. If proper heat treatment is lacking, the mechanical properties of the valve body deteriorate.

Go to article

Authors and Affiliations

Rong Li
ORCID: ORCID
Lunjun Chen
Qi. Zeng
ORCID: ORCID
Ming Su
Zhiping Xie
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

Continuous steel-concrete composite girder can fully utilize material strength and possess large spanning ability for bridge constructions. However, the weak cracking resistance at the negative bending moment region of the girder seriously harms its durability and serviceability. This paper investigates practical techniques to improve the cracking performance of continuous steel-concrete composite girders subjected to hogging moment.Areal continuous girderwas selected as the background bridge and introduced for numerical analysis. Modeling results show that under the serviceability limit state, the principle stress of concrete slabs near the middle piers of the bridgewas far beyond the allowable material strength, producing a maximum tensile stress of 10.0 MPa. Approaches for strengthening concrete decks at the negative moment region were developed and the effectiveness of each approach was assessed by examing the tensile stress in the slabs. Results indicate that the temporary counterweight approach decreased the maximum tensile stress in concrete slabs by 22%. Due to concrete shrinkage and creep, more than 65% of the prestressed compressive stresses in concrete slabs were finally dispersed to the steel beams. A thin ultra-high performance concrete (UHPC) overlay at the hogging moment region effectively increased the cracking resistance of the slabs, and practical engineering results convicted the applicability of the UHPC technique.
Go to article

Authors and Affiliations

Min Cai
1
ORCID: ORCID
Wenjie Li
2
ORCID: ORCID
Zhiyong Wan
3
ORCID: ORCID
Jianjun Sheng
1
ORCID: ORCID
Juliang Tan
4
ORCID: ORCID
Chao Ma
1
ORCID: ORCID

  1. Guangdong Highway Construction Co., LTD, 510623 Guangzhou, China
  2. Guangdong Yunmao Expressway Co. Ltd, 525346 Guangzhou, China
  3. Guangdong Communication Planning & Design Institute Co., Ltd,510507 Guangzhou, China
  4. Guangdong Communication Planning & Design Institute Co., Ltd, 510507 Guangzhou, China
Download PDF Download RIS Download Bibtex

Abstract

Over the course of operation, asphalt road pavements are subjected to damage from car traffic loads and environmental factors. One of the possible methods of strengthening damaged asphalt pavements may be the application of an additional rigid layer in the form of a cement concrete slab with continuous reinforcement.

This paper presents a material-technological and structural solution for composite pavement where a cement concrete slab with continuous HFRP bar reinforcement is used for strengthening. Based on laboratory tests, the serviceability of composite bar reinforcement of rigid pavement slabs was shown. A design for strengthening asphalt pavement with a concrete slab with steel bar and corresponding HFRP bar reinforcement was developed. The composition of a pavement cement concrete mix was designed, and experimental sections were formed. Based on laboratory tests of samples collected from the surfaces of experimental sections and the diagnostic tests carried out in “in situ” conditions, the authors will try, in the nearest future (Part II: In situ observations and tests), to confirm the effectiveness of strengthening asphalt pavements with cement concrete slabs with HFRP components.

Go to article

Authors and Affiliations

Piotr Radziszewski
Wioletta Jackiewicz-Rek
Michał Sarnowski
Marek Urbański
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

Pavements made of cement concrete, used for road constructions, are damaged during use. This applies to both the pavements of rural and forest roads with very low traffic loads, as well as road pavements with high traffic loads. One of the most effective ways of repairing damaged concrete cement pavements is through placing an asphalt overlay on a concrete slab. In order to increase the fatigue life of the asphalt overlay, asphalt mixtures are modified with fibres. One technological solution is to use FRP (Fiber Reinforced Polymer), an innovative material with improved properties.

The aim of this paper is to assess the impact of asphalt overlays modified with a new type of fibres to strengthen the durability of weakened cement concrete pavement structures.

On the basis of the conducted analyses, it was shown that the use of an asphalt layer reinforcement increases fatigue life, for both 15 cm thick prefabricated slabs and a typical road pavement for average traffic made of 25 cm doweled and anchored concrete slabs. There was a significant increase in the fatigue life of the concrete pavement structure as a result of modifying the overlaid asphalt mixture with FRP fibres.

Go to article

Authors and Affiliations

P. Tutka
R. Nagórski
P. Radziszewski
M. Sarnowski
M. Złotowska
Download PDF Download RIS Download Bibtex

Abstract

Oxide-dispersion-strengthened high-entropy alloys were produced by hot-pressing a ball-milled mixture of Y2O3 and atomized CoCrFeMnNi powder. The effect of milling duration on grain size reduction, oxide formation behavior, and the resulting mechanical properties of the alloys was studied. Both the alloy powder size and Y2O3 particle size decreased with milling time. Moreover, the alloy powder experienced severe plastic deformation, dramatically generating crystalline defects. As a result, the grain size was reduced to ~16.746 nm and in-situ second phases (e.g., MnO2 and σ phase) were formed at the defects. This increased the hardness of the alloys up to a certain level, although excessive amounts of in-situ second phases had the reverse effect.
Go to article

Bibliography

[1] B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Mater. Sci. Eng. A. 375-377, 213-218 (2004).
[2] F. Otto, A. Dlouhý, Ch. Somsen, H. Bei, G. Eggeler, E.P. George, Acta Mater. 61, 5743-5755 (2013).
[3] G .T. Lee, J.W. Won, K.R. Lim, M. Kang, H.J. Kwon, Y.S. Na, Y.S. Choi, Met. Mater. Int. (2020). DOI: https://doi.org/10.1007/s12540-020-00786-7
[4] J .H. Kim, Y.S. Na, Met. Mater. Int. 25, 296-303 (2019).
[5] Y.Z. Tian, Y. Bai, M.C. Chen, A. Shibata, D. Terada, N. Tsuji, Metall. Mater. Trans. A, 45, 5300-5304 (2014).
[6] R . Zheng, T. Bhattacharjee, A. Shibata, T. Sasaki, K. Hono, M. Joshi, N. Tsuji, Scr. Mater. 131, 1-5 (2017).
[7] Y.Z. Tian, Y. Bai, L.J. Zhao, S. Gao, H.K. Yang, A. Shibata, Z.F. Zhang, N. Tsuji, Mater. Charact. 126, 74-80 (2017).
[8] A. Siahsarani, F. Samadpour, M.H. Mortazavi, G. Faraji, Met. Mater. Int. (2020). DOI: https://doi.org/10.1007/s12540-020-00828-0
[9] B. Schuh, F. Mendez-Martin, B. Völker, E.P. George, H. Clemens, R. Pippan, A. Hohenwarter, Acta Mater. 96, 258-268 (2015).
[10] H . Shahmir, J. He, Z. Lu, M. Kawasaki, T.G. Langdon, Mater. Sci. Eng. A. 676, 294-303 (2016).
[11] C.L. Chen, C.L. Huang, Met. Mater. Int. 19, 1047-1051 (2013).
[12] B. Gwalani, R.M. Pohan, O.A. Waseem, T. Alam, S.H. Hong, H.J. Ryu, R. Banerjee, Scr. Mater. 162, 477-481 (2019).
[13] L. Moravcik, L. Gouvea, V. Hornik, Z. Kovacova, M. Kitzmantel, E. Neubauer, I. Dlouhy, Scr. Mater. 157, 24-29 (2018).
[14] P. He, J. Hoffmann, A. Möslang, J. Nucl. Mater. 501, 381-387 (2018).
[15] J .M. Byun, S.W. Park, Y.D. Kim, Met. Mater. Int. 24, 1309-1314 (2018).
[16] A. Patra, S.K. Karak, S. Pal, IOP Cof. Ser. Mater. Sci. Eng. 75 (012032), 1-6 (2015).
[17] S. Nam, S.E. Shin, J.H. Kim, H. Choi, Met. Mater. Int. 26, 1385- 1393 (2020).
[18] N. Salah, S.S. Habib, Z.H. Khan, A. Memic, A. Azam, E. Alarfaj, N. Zahed, S. Al-Hamedi, Int. J. Nanomed. 6, 863-869 (2011).
[19] H . Shahmir, J. He, Z. Lu, M. Kawasaki, T.G. Langdon, Mater. Sci. Eng. A. 676, 294-303 (2016).
[20] N. Park, B.-J. Lee, N. Tsuji, J. Alloys Compd. 719, 189-193 (2017).
[21] Q. Wang, Z. Li, S. Pang, X. Li, C. Dong, P. Liaw, Entropy 20, 878 (2018).
[22] V. Rajkovic, D. Božić, A. Devečerski, J. Serb. Che. Soc. 72, 45-53 (2007).
[23] S.K. Vajpai, R.K. Dube, P. Chatterjee, S. Sangal, Metall. Mater. Trans. A. 43, 2484-2499 (2012).
Go to article

Authors and Affiliations

Yongwook Song
1
ORCID: ORCID
Daeyoung Kim
1
ORCID: ORCID
Seungjin Nam
1
ORCID: ORCID
Kee-Ahn Lee
2
ORCID: ORCID
Hyunjoo Choi
1
ORCID: ORCID

  1. Kookmin University, School of Materials Science and Engineering, Seoul, Republic of Korea
  2. Inha University, Department of Materials Science and Engineering, Incheon 22212, Republic of Korea

This page uses 'cookies'. Learn more