Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Sublevel caving (SLC) mining method has several features that make it one of the preferred methods for ore extraction due to its high productivity and early access to ore recovery. However, there are some major challenges associated with the SLC method such as ground surface subsidence, high unplanned ore dilution, and the potential for air blast. To remedy these shortcomings, a recent approach has been to modify the SLC method by introducing rockfill into the void atop the production zone to provide continued support for the host rock and prevent it from caving. This paper discusses in detail the merits of the Modified SLC or MSLC. In comparison with other long-hole stoping methods that are predominantly practiced in metal mines, the MSLC method boasts several advantages. Early production achieved from the topmost level helps reduce the payback period. Productivity is enhanced due to multilevel mining without the use of sill pillars. The cost of backfilling is significantly reduced as there is no need for the construction of costly backfill plants. Continuous stoping is achieved without delays as mining and backfilling take place concurrently from separate mining horizons. A significant reduction in underground development costs is achieved as fewer slot raises and crosscuts are required for stope preparation. These merits of the Modified SLC method in steeply dipping orebodies are discussed by way of reference to real-life mine case studies. Dilution issues are addressed, and the benefits of top-down mining are explained. Typical mine design, ventilation, materials handling, and mining schedules are presented. Geomechanics issues associated with different in-situ stress environments are discussed and illustrated with simplified mine-wide 3D numerical modeling study.
Go to article

Authors and Affiliations

Kenneth K. Adams
1
ORCID: ORCID
Tuo Chen
1
ORCID: ORCID
Atsushi Sainoki
2
ORCID: ORCID
Hani S. Mitri
1
ORCID: ORCID

  1. McGill University, Canada
  2. Kumamoto University, Japan
Download PDF Download RIS Download Bibtex

Abstract

The draw theory is the foundation for decreasing ore loss and dilution indices while extracting deposits from mines. Therefore, research on draw theory is of great significance to optimally guide the draw control and improve the economy efficiency of mines. The laboratory scaled physical draw experiments under inclined wall condition conducted showed that a new way was proposed to investigate the flow zone of granular materials. The flow zone was simply divided into two parts with respect to the demarcation point of the flow axis. Based on the stochastic medium draw theory, theoretical movement formulas were derived to define the gravity flow of fragmented rocks in these two parts. The ore body with 55° dip and 10 m width was taken as an example, the particle flow parameters were fitted, and the corresponding theoretical shape of the draw body was sketched based on the derived equation of draw-body shape. The comparison of experimental and theoretical shapes of the draw body confirmed that they coincided with each other; hence, the reliability of the derived equation of particle motion was validated.

Go to article

Authors and Affiliations

Xiufeng Zhang
Ganqiang Tao
Zhonghua Zhu

This page uses 'cookies'. Learn more