Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 6
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Lateritic nickel ore is used for producing of ferronickel. Nickel grade in ferronickel ranged from 20–40%. Ferronickel is commonly used to manufacture stainless steel. A new method that can increase the levels of nickel grade is selective reduction, which is a process to reduce the metal oxide to the metallic phase with the addition of additives. In this work, the selective reduction of limonitic nickel ore was carried out by add the 5 wt%, 10 wt%, and 15 wt% of reductant and the 10 wt% of sulfur as additive. The process of selective reduction is performed at temperatures of 950, 1050, and 1150°C with the duration of processs of 60, 90, and 120 minutes, followed by magnetic separation to separate between the concentrate and tailings. The characterization used AAS, XRD, and SEM-EDS for grade and recovery; phases transformation; and the microstructure analysis. The optimum of the grade and recovery of nickel was obtained at a temperature of 1050°C with the duration of process of 60 minutes and 5 wt% of reductant and 10 wt% of additive, which obtain 3.72 wt% and 95.67%. The metal grade and recovery was increase with the increasing of temperature reduction. Nevertheless, too long of the duration of process and too many reductant addition resulted in negative effect on selective reduction of lateritic nickel ore. Highest recovery could get more nickel in the process. And sulfur has the important rules when the selective reduction has been done on the increasing nickel content, the forming of FeS, and decreasing the grain size of ferronickel according to the microstructure in the SEM images around ~30 μm.
Go to article

Bibliography

Cao et al. 2010 – Cao, Z.C., Sun, T.C., Yang, H.F., Wang, J.J. and Wu, X.D. 2010. Recovery of iron and nickel from nickel laterite ore by direct reduction roasting and magnetic separation. Chinese Journal of Engineering 32(6), pp. 708–712, DOI: 10.13374/j.issn1001-053x.2010.06.004.
Dalvi et al. 2004 – Dalvi, A.D., Bacon, W.G. and Osborne R.C. 2004. The Past and The Future of Nickel Laterites. PDAC 2004 International Conference Trade Show and Investors Exchange, Toronto, Canada.
Elliot et al. 2015 – Elliot, R., Rodrigues, F., Pickles, C.A. and Peace, J. 2015. A two-stage process for upgrading thermal nickeliferous limonitic laterite ores. Canadian Metallurgical Quarterly 54(4), pp. 235–252, DOI: 10.1179/1879139515Y.0000000009.
Elliot et al. 2017 – Elliot, R., Pickles, C.A. and Peace, J. 2017. Ferronickel particle formation during the carbothermic reduction of a limonitic laterite ore. Minerals Engineering 100, pp. 166–176, DOI: 10.1016/j.mineng.2016.10.020.
Foster et al. 2016 – Foster, J., Pickles, C.A. and Elliot, R. 2016. Microwave carbhotematic reduction roasting of low-grade ore nickeliferous silicate laterite. Minerals Engineering 88, pp. 18–27, DOI: 10.1016/j.mineng.2015.09.005.
Jiang et al. 2013 – Jiang, M., Sun, T., Liu, Z., Kou, J., Liu, N. and Zhang, S. 2013. Mechanism of sodium sulfate in promoting the selective reduction of nickel laterite ore during reduction roasting process. International Journal of Mineral Processing 123, pp. 32–38, DOI: 10.1016/j.minpro.2013.04.005.
Li et al. 2012 – Li, G., Shi, T., Rao, M., Jiang, T. and Zhang, Y. 2012. Beneficiation of nickeliferous laterite by reduction roasting in the presence of sodium sulfate. Minerals Engineering 32, pp. 19–26, DOI: 10.1016/J.MINENG.2012.03.012.
Prasetyo, A.B. and Puguh. 2011. Increased levels of nickel (Ni) and iron (Fe) from laterite ore saprolite type low levels for raw materials containing nickel pig iron (NCPII/NPI). Met. Mag. 26, pp. 123–130.
Prasetyo, A.B. and Firdiyono, F.E. 2014. Reduction process optimization laterite ore limonite as raw materials type NPI (Nickel Pig Iron). Majalah Metalurgi 29(1), pp. 9–16.
Valix and Cheung. 2002. Effect of sulfur on the mineral phases of laterite ores at a high-temperature reduction. Minerals Engineering 15, pp. 523–530.
Wang et al. 2017 – Wang, Chu, Z., Liu, M., Wang, H., Zhao, W. and Gao, L. 2017. Preparing ferronickel alloy from low-grade laterite nickel ore reduction based on metallized-magnetic separation. Metals 7(8), pp. 313, DOI: 10.3390/met7080313.
Go to article

Authors and Affiliations

Fathan Bahfie
1
ORCID: ORCID
Achmad Shofi
2
Ulin Herlina
1
Anton S. Handoko
1
Nanda A. Septiana
3
Syafriadi Syafriadi
3
Suharto Suharto
1
Sudibyo Sudibyo
1
Suhartono Suhartono
4
Fajar Nurjaman
1

  1. Research Unit for Mineral Technology, National Research and Innovation Agency of Indonesia, Jalan Ir. Sutami Km 15 South Lampung, Lampung, Indonesia
  2. Agency for Rembang Regional Planning and Development, Rembang Local Government, Indonesia
  3. Department of Physic-University of Lampung,Jl. Prof. Dr. Ir. Sumantri Brojonegoro No. 1, Gedong Meneng, Kec. Rajabasa, Kota Bandar Lampung, Indonesia
  4. Chemical Engineering Department, University of Jenderal Achmad Yani, Jalan Terusan Jend. Sudirman, Cibeber, Kec. Cimahi Sel., Kota Cimahi, Jawa Barat, Indonesia
Download PDF Download RIS Download Bibtex

Abstract

In recent years, more and more attention has been paid to the quality of produced coal size categories for energy purposes. This is important from the perspective of promoting clean coal technologies which aim at changing the perception of coal as a fuel friendly for the environment. This is specifically because hard coal resources in Poland allow the national energy security to be guaranteed on the basis of energy production based on hard coal. Fine coals upgraded at coal processing facilities in the separation process in fine coal jigs are mainly used in energy production from coal. In the article, an analysis of hard coal upgrading in a jig regarding the optimum recovery of a useful fraction in the concentrate (combustible and volatile matter) and non-useful fraction in tailings (ash and sulfur) was conducted. Based on the industrial testing of a fine coal jig, the granulometric and densimetric analysis of the taken samples of concentrate, middlings and tailings of coal was conducted in laboratory conditions. Yields of products were calculated in separated size-fractions of separation products, and ash content and total sulfur content were determined in them. Based on the results of granulometric, densimetric and chemical analyses of the obtained size-fractions, the balance of separation products and appropriate calculations, Fuerstenau upgrading curves which allowed the process to be evaluated and a comparison of the results of hard coal upgrading regarding the optimum recovery of the organic phase in the concentrate and mineral components in tailings to be drawn. The obtained results were evaluated on the basis of different criteria for changing the device’s hydrodynamic operational conditions. The ash content and total sulfur content were analyzed as non-useful substances.

Go to article

Authors and Affiliations

Agnieszka Surowiak
Download PDF Download RIS Download Bibtex

Abstract

The aim of this work was to determine the influence of various variants of bioleaching on effectivity of releasing chosen critical metals: rhodium, cadmium, indium, niobium and chromium from ashes which are a byproduct of municipal waste and sewage sludge thermal processing. The research was conducted in 3 variants that considered different process factors such as temperature (24ºC and 37ºC), mixing intensity and aeration. After 5 days of the process the analyses were made of metals content, sulfate concentration, pH, general number of bacteria number, index of sulfur oxidizing bacteria. The best results of bioleaching were achieved by running the process at the temperature of 24ºC with aeration. The efficiency of rhodium and cadmium release from the byproduct of municipal waste thermal processing was above 90%. The efficiency of indium and chromium release reached 50–60%. Only niobium leached better in mixing conditions. The byproduct of sewage sludge thermal processing was far less susceptible to bioleaching. The highest effectivity (on a level of 50%) was reached for indium in temperature of 24°C with aeration. The efficiency of bioleaching depended on waste’s physiochemical properties and type of metal which will be released. Aeration with compressed air had a positive influence on the increase of sulfur oxidizing bacteria what corresponded with almost double increase of sulfate concentration in leaching culture. Such conditions had a positive influence on the increase of the efficiency of bioleaching process. Heightening the temperature to 37°C and slowly mixing did not impact bioleaching in a positive way.

Go to article

Authors and Affiliations

Dorota A. Andrzejewska-Górecka
Agnieszka Poniatowska
Bartłomiej Macherzyński
Dominik Wojewódka
Maciej Sierakowski
Download PDF Download RIS Download Bibtex

Abstract

Maritime transport is facing a set of technical challenges due to implementation of ecological criterions on 1st Jan. 2020 and 2021 by the International Maritime Organization. The advantageous properties of natural gas (NG) as fuel in conjunction with dual-fuel (DF) internal combustion engines (ICE) potentially enables the fulfilment of all criterions. Moreover the 2020 global sulfur cap in combination with its low content in NG potentially enables to recover higher rates of waste heat and exergy of exhaust gas without the risk of low temperature corrosion. In this study the influence of sulfur content in NG and pilot fuel oil (PFO) on the sulfuric acid condensation temperature was investigated in order to determine the rate of waste heat (quantity) and exergy (quality) of four-stroke DF IC engine’s exhaust for 50%, 85% and 100% of engine load. Determined parameters were compared with two sets of reference values calculated for the same engine: a) fueled with NG and PFO with fixed minimum exhaust temperature set as 423.15 K, b) fueled with 3.5% sulfur mass fraction fuel oil only with variable minimum exhaust gas temperature. The results show that the assumption of case a) can lead to significant reduction of recovered rates of exhaust waste heat and exergy in the ranges of 10% to 24% and 43% to 57%, respectively. Higher values were obtained for case b) where the ranges of unrecovered rate of heat and exergy achieved 20% to 38% and 60% to 70%.

Go to article

Authors and Affiliations

Mateusz Przybyła
Andrzej Adamkiewicz
Download PDF Download RIS Download Bibtex

Abstract

This study investigates the corrosion characteristics of Q235 steel and 16Mn steel in the sulfur-containing alkaline solution. The composition and the morphology of the corrosion products were analyzed by XPS and SEM respectively. The electrochemical behavior of Q235 steel and 16Mn steel was evaluated by potentiodynamic polarization curve and EIS. The results indicated that the corrosion rate of Q235 steel is greater than 16Mn steel in the early corrosion. Pitting and selective corrosion appeared on the surface of the two steels, and the surface product layer was granular and defective. XPS and EDS indicate that the structurally stable iron oxide is formed on the surface of the two steels. Electrochemical results show the corrosion kinetics of Q235 steel and 16Mn steel are simultaneously controlled by the charge transfer and ion diffusion, and the formation mechanism of corrosion products was clarified.
Go to article

Authors and Affiliations

Bianli Quan
1
ORCID: ORCID
Zhiping Xie
2
ORCID: ORCID

  1. Guizhou University, College of Materials and Metallurgy, Guiyang, 550025, China
  2. Guizhou Normal University, School of Mechanical & Electrical Engineering, Guiyang, 550025, China
Download PDF Download RIS Download Bibtex

Abstract

The combined effect of sulfur (S) and acid soluble aluminum (Als) content on precipitates and microstructures in grainoriented silicon steel were investigated. The results show that there are dominant AlN and a little amount of MnS-AlN composite in annealed hot-rolled band, and the amount of precipitates increases distinctly with increasing Als content, while S content plays a negligible role. The inhibitors that precipitate during hot band annealing can restrain the grain growth during hot band annealing and primary annealing, and the smaller grains of annealed hot-rolled band can contribute to the formation of {111} <112> texture during primary annealing. Lower S content is conducive to the formation of {111} <112> texture during primary annealing by promoting the formation of Goss texture during hot rolling.

Go to article

Authors and Affiliations

B. Zhou
Ch. Zhu
G. Li
Z. Luo
Y. Gao
S. Bao
J. Schneider

This page uses 'cookies'. Learn more