Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 6
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The impact of caulking of goafs after mining exploitation of a hard coal seam with caving is expressed as the change in value of a a exploitation coefficient which, as defined, is the quotient of the maximum reduction in the surface height of a complete or incomplete trough to the thickness of the exploited seam. The basis for determining the value of the exploitation coefficient was geological and mining data combined with the results of the measurement of subsidence on the surface – measuring line 1222-1301 – of the Ruda mine. There, mining was carried out between 2005 and 2019, with a transverse longwall system and the caulking of goafs. The research team used two methods to determine the impact of the caulking applied in the goafs on the value of the exploitation coefficient. In the first method the goafs are filled evenly along the whole longwall, and in the second method unevenly and on a quarterly basis. The determination of the values of the exploitation coefficients for selected measuring points was preceded by the determination of the parameters of the Knothe-Budryk theory, which was further developed by J. Białek. The obtained dependencies are linear and the values of the correlation coefficients fall between –0.684 and –0.702, which should be considered satisfactory in terms of experimental data. It is possible to reduce the value of the exploitation coefficient by caulking the goafs by about 18%, when filling the goafs to 0.26% of the height of the active longwall.
Go to article

Bibliography

[1] J. Białek, Opis nieustalonej fazy obniżeń terenu górniczego z uwzględnieniem asymetrii wpływów końcowych. Zeszyty Naukowe Politechniki Śląskiej (1), 1991.
[2] J. Białek, Algorytmy i programy komputerowe do prognozowania deformacji terenu górniczego. Wydawnictwo Politechniki Śląskiej 2003.
[3] Y. Jiang, R. Misa, K. Tajduś, A. Sroka, A new prediction model of surface subsidence with Cauchy distribution in the coal mine of thick topsoil condition. Archives of Mining Sciences 65 (1), 147-158 (2020), doi: 10.24425/132712
[4] S. Knothe, Prognozowanie wpływów eksploatacji górniczej. 1984 Wydawnictwo Śląsk, Katowice.
[5] A. Kowalski, Deformacje powierzchni terenu górniczego kopalń węgla kamiennego. 2020 Wydawnictwo Głównego Instytutu Górnictwa, Katowice.
[6] H . Kratzsch Bergschadenkunde, 2008 Deutscher Markscheider-Verein e.v., Bochum.
[7] M. Mazurkiewicz, Z. Piotrowski, Grawitacyjne podsadzanie płytkich zrobów zawiesiną popiołów lotnych w wodzie. Ochrona Terenów Górniczych 66, 6-8 (1984).
[8] M. Mazurkiewicz, Technologiczne i środowiskowe aspekty stosowania stałych odpadów przemysłowych do wypełniania pustek w kopalniach podziemnych. Zeszyty Naukowe AGH, Górnictwo nr 152, (1990).
[9] T. Niemiec, Porowatość zrobów a współczynnik eksploatacyjny. Sbornik referatu XVIII, Konference SDMG, 161- 167 (2011).
[10] W . Piecha, S. Szewczyk, T. Rutkowski, Ochrona powierzchni dzielnicy Wirek w świetle dokonanej i prowadzonej podziemnej eksploatacji górniczej. Przegląd Górniczy (2) 55-66, (2019).
[11] Z . Piotrowski, M. Mazurkiewicz, Chłonność doszczelnianych zrobów zawałowych. Górnictwo i Geoinżynieria 30 (3), 37-45 (2006).
[12] F. Plewa, Z. Mysłek., G. Strozik, Zastosowanie odpadów energetycznych do zestalania rumowiska skalnego. Polityka Energetyczna XI (1), 351-360 (2008).
[13] P. Polanin, A. Kowalski, A. Walentek, Numerical simulation of subsidence caused by roadway system. Archives of Mining Sciences 64 (2), 385-397 (2019), doi: 10.24425/1286090
[14] E . Popiołek, Z. Niedojadło, P. Sopata, T. Stoch, Możliwości wykorzystania pogórniczych niecek obniżeniowych do oszacowania objętości pustek w zrobach poeksploatacyjnych. (2014).
[15] T. Rutkowski, Ocena wpływu podsadzania zrobów zawałowych na obniżenia powierzchni terenu w warunkach górnośląskiego zagłębia węglowego. Główny Instytut Górnictwa, praca doktorska, Katowice, 2019.
[16] R. Ślaski, Warunki zatapiania kopalni „Morcinek”. Materiały konferencyjne SITG Oddział Rybnik. Ochrona środowiska na terenach górniczych podziemnych i odkrywkowych zlikwidowanych zakładów górniczych w subregionie zachodnim województwa śląskiego, (2010).
[17] Subsidence Engineers’ Hand book, National Coal Board Mining Department, 1975.
[18] A. Stanisz, Przystępny kurs statystyki z zastosowaniem STATISTICA PL na przykładach z medycyny (1). Statystyki podstawowe, StatSoft Polska, 2006, Kraków.
[19] P. Strzałkowski, Doszczelnianie zrobów zawałowych a deformacje powierzchni terenu. Materiały Konferencyjne Szkoły Eksploatacji Podziemnej. Centrum Podstawowych Problemów Gospodarki Surowcami Mineralnymi i Energią PAN , 27-40 (1995).
[20] D .N. Whittaker, D.J Reddish, Subsidence. Occurrence, Prediction and Control, 1989 Elsevier, Amsterdam, Oxford, New York, Tokyo.
[21] J . Zhang, Q. Sun, N. Zhou, J. Haiqiang, D. Germain., S. Abro, Research and application of roadway backfill coal mining technology in western coal mining area. Arab J. Geosci. (9:558), 1-10 (2016).
[22] H . Zhu, F. He, S. Zhang, Z. Yang, An integrated treatment technology for ground fissures of shallow coal seam mining in the mountainous area of southwestern China a typical case study. Gospodarka Surowcami Mineralnymi- Mineral Resources Management (34), 119-138 (2018), doi: 10.24425/118641
[23] J. Zych, R. Żyliński, P. Strzałkowski, Wpływ doszczelniania zrobów zawałowych na wielkość deformacji powierzchni. Materiały Konferencji naukowo-technicznej II Dni Miernictwa Górniczego i Ochrony Terenów Górniczych, 307-311 (1993).
Go to article

Authors and Affiliations

Andrzej Kowalski
1
ORCID: ORCID
Jan Białek
2
ORCID: ORCID
Tadeusz Rutkowski
3
ORCID: ORCID

  1. Central Mining Institute, 1 Gwarków Sq., 40-166 Katowice, Poland
  2. Silesian University of Technology, 2A Akademicka Str., 44-100 Gliwice, Poland
  3. PGG S.A. KWK Ruda, Ruda Śląska, Poland
Download PDF Download RIS Download Bibtex

Abstract

Underground mining extraction causes the displacement and changes of stress fields in the surrounding rock mass. The determination of the changes is extremely important when the mining activity takes place in the proximity of post-flotation tailing ponds, which may affect the stability of the tailing dams. The deterministic modeling based on principles of continuum mechanics with the use of numerical methods, e.g. finite element method (FEM) should be used in all problems of predicting rock mass displacements and changes of stress field, particularly in cases of complex geology and complex mining methods. The accuracy of FEM solutions depends mainly on the quality of geomechanical parameters of the geological strata. The parameters, e.g. young modulus of elasticity, may require verification through a comparison with measured surface deformations using geodetic methods. This paper presents application of FEM in predicting effects of underground mining on the surface displacements in the area of the KGHM safety pillar of the tailing pond of the OUOW Żelazny Most. The area has been affected by room and pillar mining with roof bending in the years 2008-2016 and will be further exposed to room-and-pillar extraction with hydraulic filling in the years 2017–2019.

Go to article

Authors and Affiliations

Ewa Warchała
Anna Szostak-Chrzanowski
Paweł Stefanek
Download PDF Download RIS Download Bibtex

Abstract

In order to study the sensitivity of multiple karst cave factors on surface settlement during Tunnel Boring Machine(referred to TBM hereinafter) tunnelling, a three-dimensional numerical model is built by taking a subway project as an example and combining MIDAS GTS NX finite element software. Secondly, the influence of the radius, height, angle, vertical net distance, and horizontal distance of the karst cave on the maximum surface settlement is studied and sorted under the two working conditions of treatment and untreated using the grey correlation analysis method. Additionally, a multi-factor numerical model of the untreated karst cave is established. Finally, based on the preceding research, a multi-factor prediction model for the maximum surface settlement is proposed and tested. The results reveal that when the karst cave is not treated, the radius and height of the karst cave have a significant effect on the maximum surface settlement. After the cave treatment, the influence of the cave parameters on the maximum settlement of the surface is greatly reduced. The calculating modelcreated in this study offers excellent prediction accuracy and good adaptability.
Go to article

Authors and Affiliations

Bichang Dong
Tao Yang
ORCID: ORCID
Binbin JU
Zhongying QU
Chao Yi
Download PDF Download RIS Download Bibtex

Abstract

According to the requirements of green mine construction and the coordinated development of environmental protection regulations, the existing filling technologies in China are compared and analysed. Several types of technologies are discussed, including the dry filling technology for gangue, grouting and filling for separated strata zones in overburden, grouting and filling technology for caving gangue fissures, paste and paste-like filling, high-water and ultra-high-water filling, and continuous mining and continuous filling. Then, the characteristics of these individual technologies are analysed. Through the analysis and comparison of these technologies, considering the requirements of green mine construction and coordinated development of environmental protection regulations, it was found that continuous mining and continuous filling technology is a feasible mean for constructing green mines and protecting the environment. In this study, the application of continuous mining and continuous filling technology in the Yuxing coal mine is introduced. Results show that surface subsidence was less than 80 mm, and the recovery rate of the working face reached 95%. This indicates that continuous mining and continuous filling technology can solve the problems of surface subsidence, environmental damage, and coal resource waste. Finally, the development prospects of continuous mining and continuous filling technology are proposed, providing theoretical and technical support for similar mining.
Go to article

Bibliography

[1] J .H. Tan, Green Mine and the Policy Interpretation for Mine Safety Environmental Protection. Stone 01, 11-25 (2020). DOI: https://doi.org/10.14030/j.cnki.scaa.2020.0006 (in Chinese).
[2] L .M. Wang, MSc thesis, Study on Influence of Mining Size on Stability and Settlement Reduction Effect of Filling Pier Column. China University of Mining and Technology, Jiangsu, China (2019) (in Chinese).
[3] Y.D. Wang, MSc thesis, Study on Tax Planning of Coal Production Enterprises. China University of Mining and Technology, Jiangsu, China (2019) (in Chinese).
[4] X. Wu, B. Bai, Present Situation and Suggestions of Coal Filling Mining technology in Inner Mongolia Autonomous Region. Inner Mongolia Coal Economy 03, 51+79 (2019). DOI: https://doi.org/10.13487/j.cnki.imce.013617 (in Chinese).
[5] X. Zhou, PhD thesis, Study on Deterioration Mechanism and Modification of Mine Water Rich Filling. Beijing University of Science and Technology, Beijing, China (2018). (in Chinese).
[6] Z.M. Pei, Exploring of Modern Coal Mining Concept and Filling Mining. Technology and Market 24 (07), 447 (2017). DOI: https://doi.org/10.3969/j.issn.1006-8554.2017.07.268 (in Chinese).
[7] M.G Karfakis, C.H Bowman, E. Topuz, Characterization of Coal-mine Refuse as Backfilling Material. Geotechnical and Geological Engineering 14 (2), 129-150 (1996). DOI: https://doi.org/10.1007/BF00430273
[8] M.G Senyur, Fabric of Coal-mine Refuse as Backfilling Material and its Relation to Grain-size Distribution Parameters. Journal of the South African Institute of Mining and Metallurgy 98 (1), 39-48 (1998).
[9] H.J Siriwardane, R.S.S Kaman, P.F. Ziemkiewicz, Use of Waste Materials for Control of Acid Mine Drainage and Subsidence. Journal of Environmental Engineerin 129 (10), 910-915 (2003).
[10] C.Y. Si, MSc thesis, Evaluation of Green Mine Investment Efficiency in China, China University of Geosciences, Beijing, China (2017) (in Chinese).
[11] M.D. Zhao, PhD thesis, Experimental and Numerical Simulation Study on Overburden Temperature and Fracture of Underground Coal Gasification. China University of Mining and Technology, Beijing, China (2017) (in Chinese).
[12] Y. Liu, Y.M. Zhou, Y. Lu, H.Z. Guo, Experimental Study on Tailing Paste Filling Material Based on Regression Analysis. Safety in Coal Mine. 48 (03), 60-63 (2017). DOI: https://doi.org/10.13347/j.cnki.mkaq.2017.03.016 (in Chinese).
[13] D.L. Yang, PhD thesis, Research on Key Technology of Pneumatic Conveying and Filling by Drilling and Mining Method, China University of Mining and Technology, Jiangsui, China (2016) (in Chinese).
[14] Y.F. Zhang, Study on New Mining Technology and Mining Methods in Coal Mines. Heilongjiang Science and Technology Information 28, 42 (2016). DOI: https://doi.org/10.13939/j.cnki.zgsc.2016.36.066 (in Chinese).
[15] H.K. Yang, Application Research on Paste Filling Technology in Coal Mine. China Market Marketing 36, 66-68 (2016). DOI: https://doi.org/10.13939/j.cnki.zgsc.2016.36.066 (in Chinese).
[16] Y. Lu, Filling Technology and Development Prospect in Coal Mine. Inner Mongolia Coal Economy, 08, 23+29(2016). DOI: https://doi.org/10.13487/j.cnki.imce.007945 (in Chinese).
[17] Y.C. Wang, Z.P. Guo, C.X. Wang, J.X. Wang, Gas Filling Method Based on Paste Filling. Mining Research and Development 36 (02), 1-3(2016). DOI: https://doi.org/10.13827/j.cnki.kyyk.2016.02.001 (in Chinese).
[18] J .C. Shen, Discussion on Mining Technology with Paste Filling. Coal, 24 (08), 66-67+94 (2015). DOI: https://doi.org/10.3969/j.issn.1005-2798.2015.08.028 (in Chinese).
[19] D. Li, MSc thesis, Basic Research and Application of Long Wall Filling Mining in Xinyang Mine. Taiyuan University of Technology, Taiyuan, China (2015) (in Chinese).
[20] L . Niu, MSc thesis, Study on Physical and Mechanical Properties of Filling Body in Gangue Gypsum Filling Mining. Hebei University of Engineering, Hebei, China (2014) (in Chinese).
[21] J .S. Chen, MSc thesis, Mining Safety Technology of Complex Ore Body Under Water Dynamic Load. Central South University, Hunan, China (2010) (in Chinese).
[22] X.G. Zhang, W.J. Guo, H. Wang, Y.Y. Li, Z. Cao, Development of Safe Transportation Pressure Pre-alarm System of Coal Gangue Paste Backfilling Pipeline. Journal of China Coal Society 37 (S1), 229-233 (2012). DOI: https://doi.org/10.13225/j.cnki.jccs.2012.s1.041 (in Chinese).
[23] L . Wang, PhD thesis, Study on Strata Movement Mechanism and Deformation Prediction of Solid Dense Filling Mining. China University of Mining and Technology, Jiangsu, China (2012) (in Chinese).
[24] B .L. Ren, Research on the Future of the Underground Waste Rock Filling Mining in Hebei Province. Hebei Coal 05,13-15 (2011). DOI: https://doi.org/10.3969/j.issn.1007-1083.2011.05.007 (in Chinese).
[25] J .L. Sha, K. Hu, Study on the Necessity of Establishing the Mine Environmental Liability Insurance. China Mining Magazine 19 (S1), 111-113 (2010) (in Chinese).
[26] G .M. Feng, Y. Ding, H.J. Zhu, J.B. Bai, Experimental Research on Ultra High-water Packing Material for Mining and its Micro Morphology. Journal of China University of Mining and Technology 39 (06), 813-819 (2010) (in Chinese).
[27] N . Wang, H. Si. Filling Mined-out Area to Control Surface Subsidence. World Mining Express 3, 14-17(1999) (in Chinese).
[28] C.J. Shi, L. Robert. Day Acceleration of the Reactivity of Fly Ash by Chemical Activation. Cement and Concrete Research 25 (1), (1995).
[29] X.X. Miao, J.X. Zhang, G.L. Guo, Study on Waste-filling Method and Technology in Fully-mechanized Coal Mining. Journal of China Coal Society 35 (01), 1-6 (2010) (in Chinese).
[30] H.Z. Liu, PhD thesis, Quantitative Evaluation of Groundwater System Disturbance Caused by Coal Mining. China University of Mining and Technology, Jiangsu, China (2009) (in Chinese).
[31] G .M. Feng, PhD thesis, Research and Application of Ultra-high Water Filling Material and Filling Mining Technology. China University of Mining and Technology, Jiangsu, China (2009) (in Chinese).
[32] F. Cui, MSc thesis, Theoretical Research on Room Filling Mining in Yubujie Mine. General Institute of Coal Research, Beijing, China (2009) (in Chinese).
[33] Anon, Backfilling in German coal mines, Australian Mining 24, 80 (1988). [34] M. Yang, An Application of Dry Fill Stoping in Hetai Gold Mine. Mining Research and Development S1, 80- 82(1996) (in Chinese).
[35] J .F. Zha, PhD thesis, Research on Basic Problems of Subsidence Control in Gangue Filling Mining. China University of Mining and Technology, Jiangsu, China (2008) (in Chinese).
[36] X.S. Li, PhD thesis, Theoretical Study on Grouting Filling Settlement Reduction Technology in Caving Area Under Strip Mining Under Buildings. China University of Mining and Technology, Beijing, China (2008) (in Chinese).
[37] X.F. Liang, MSc thesis, Research on Safe Mining Technology of Industrial Coal Pillar Under Railway Bridge. Liaoning University of Engineering and Technology, Liaoning, China (2007) (in Chinese).
[38] T. Feng, J. Yuan, J.H. Liu, D.H. Xie, Research Progress and Development Trend of Mining Technology Under Building. Chinese Safety Science Journal 08, 119-123+3 (2006). DOI: https://doi.org/10.16265/j.cnki.issn1003-3033.2006.08.022 (in Chinese).
[39] J .L. Xu, M.G. Qian, H.W. Jin, Study and Application of Bed Separation Distribution and Development in the Process of Strata Movement. Chinese Journal of Geotechnical Engineering, 05, 632-636(2004). DOI: https://doi.org/10.3321/j.issn:1000-4548.2004.05.012 (in Chinese).
[40] J .X. Wang, T.Q. Liu, Feasibility Study on the Technology of Filling the Vacant Space of the Caving Rock With Cement Materials. Coal Mining Technology 01, 44-45+4 (2001). DOI: https://doi.org/10.3969/j.issn.1006-6225.2001.01.016 (in Chinese).
[41] J .R. Zheng, Solid Water Characteristics and Application of Hydrated Calcium Sulphoaluminate. Guangdong Building Materials 04, 11-12 (2000) (in Chinese).
[42] J .Z. Wang, J.R. Kang, L.X. Wu, Discussion on Mechanism and Application of Grouting in Separated-bed to Reduce Surface Subsidence Induced by Coal Mining. Journal of China University of Mining and Technology 04, 3-5 (1999). DOI: https://doi.org/10.3321/j.issn:1000-1964.1999.04.008 (in Chinese).
[43] W.B. Shi, Pumping and Filling Roadway Protection Technology in UK. Coal Science and Technology 01, 59- 60 (1986) (in Chinese).
[44] K .J. Jia, G.M. Feng, Backfill Mining Technology with Ultra High-water Material in Coal Mine and Outlook. Coal Science and Technology 40 (11), 6-9+23 (2012) (in Chinese).
[45] W.J. Guo, X.G. Zhang, J.W, Shi, Y.Y. Li, Present Situation of Research on Backfilling Mining Technology in Mines and Its Application Prospect. Journal of Shandong University of Science and Technology (Natural Science) 29 (04), 24-29 (2010). DOI: https://doi.org/10.3969/j.issn.1672-3767.2010.04.005 (in Chinese).
[46] S.H. Yan, H.X. Zhang, Status-quo of Filling Mining Technology in Coal Mines of China. Coal Mining Technology 03, 1-3, 10 (2008). DOI: https://doi.org/10.3969/j.issn.1006-6225.2008.03.001 (in Chinese).
[47] W.H. Sun, W. Zhu, X.B. Zheng, Application and Development Status of Technology of Grouting into Overburden Bed-separation to Reduce Ground Subsidence. Coal technology 02, 81-83 (2008) (in Chinese).
[48] L .P. Liu, Research and Application of Continuous Mining and Continuous Filling Green Mining Technology on Ground Deformation. China Coal Industry 08, 60-61 (2019). DOI: https://doi.org/10.3969/j.issn.1673-9612.2019.08.025 (in Chinese).
Go to article

Authors and Affiliations

Dongmei Huang
1 2
ORCID: ORCID
Daqian Xing
1 2
ORCID: ORCID
Xikun Chang
1 3
ORCID: ORCID
Yingying Zhu
1 2
ORCID: ORCID
Chunjing Gao
1 2
ORCID: ORCID

  1. Shandong University of Science and Technology, State Key Laborat ory of Mining Disaster Prevention and Control Co-Founded by Shandong Province and the Ministry of Science and Technology, Qingdao 266590, China
  2. Shandong University of Science and Technology, College of Safety and Environmental Engineering, Qingdao 266590, China
  3. Shandong University of Science and Technology, College of Energy and Mining Engineering, Qingdao 266590, China
Download PDF Download RIS Download Bibtex

Abstract

Coal is the main energy source in China, but its underground mining causes surface subsidence, which seriously damages the ecological and living environments. How to calculate subsidence accurately is a core issue in evaluating mining damage. At present, the most commonly used method of calculation is the Probability Integral Method (PIM), based on a normal distribution. However, this method has limitations in thick topsoil (thickness > 100 m), in that the extent of the calculated boundary of the subsidence basin is smaller than its real extent, and this has an undoubted impact on the accurate assessment of the extent of mining damage. Therefore, this paper introduces a calculation model for surface subsidence based on a Cauchy distribution for thick topsoil conditions. This not only improves the accuracy of calculation at the subsidence basin boundary, but also provides a universal method for the calculation of surface subsidence.

Go to article

Authors and Affiliations

Yue Jiang
Rafał Misa
ORCID: ORCID
Krzysztof Tajduś
ORCID: ORCID
Anton Sroka
ORCID: ORCID
Yan Jiang
Download PDF Download RIS Download Bibtex

Abstract

Sublevel caving (SLC) mining method has several features that make it one of the preferred methods for ore extraction due to its high productivity and early access to ore recovery. However, there are some major challenges associated with the SLC method such as ground surface subsidence, high unplanned ore dilution, and the potential for air blast. To remedy these shortcomings, a recent approach has been to modify the SLC method by introducing rockfill into the void atop the production zone to provide continued support for the host rock and prevent it from caving. This paper discusses in detail the merits of the Modified SLC or MSLC. In comparison with other long-hole stoping methods that are predominantly practiced in metal mines, the MSLC method boasts several advantages. Early production achieved from the topmost level helps reduce the payback period. Productivity is enhanced due to multilevel mining without the use of sill pillars. The cost of backfilling is significantly reduced as there is no need for the construction of costly backfill plants. Continuous stoping is achieved without delays as mining and backfilling take place concurrently from separate mining horizons. A significant reduction in underground development costs is achieved as fewer slot raises and crosscuts are required for stope preparation. These merits of the Modified SLC method in steeply dipping orebodies are discussed by way of reference to real-life mine case studies. Dilution issues are addressed, and the benefits of top-down mining are explained. Typical mine design, ventilation, materials handling, and mining schedules are presented. Geomechanics issues associated with different in-situ stress environments are discussed and illustrated with simplified mine-wide 3D numerical modeling study.
Go to article

Authors and Affiliations

Kenneth K. Adams
1
ORCID: ORCID
Tuo Chen
1
ORCID: ORCID
Atsushi Sainoki
2
ORCID: ORCID
Hani S. Mitri
1
ORCID: ORCID

  1. McGill University, Canada
  2. Kumamoto University, Japan

This page uses 'cookies'. Learn more