Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 25
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The aim of this paper was to investigate the relationship between magnetic susceptibility of topsoil and content of heavy metal being the result of urban and industrial dust-fall. Tools for this study were some complementary statistic methods such as: correlation analysis using Pearson correlation coefficient, Spearman rank correlation coefficient, stepwise regression and .chi-kwadrat" test. The base for statistic analysis was dataset of ca. 600 topsoil samples (20 cm) form Upper Silesian Industrial Region, including content ofAs, Cd, Co, Cr, Cu, Fe, Mn, Ni and Pb as well as values of low-field specific magnetic susceptibility (x) measured for the same samples. The study clearly confirms a significant correlation between the level of inorganic contamination and the measured susceptibility value, although the correlations in soil are usually more sophisticated. The most often observed correlation coefficients between magnetic susceptibility and heavy metals content were on medium (r = 0.5--0.7) and high (r = 0.7--0.9) level. The statistic analysis of the studied parameters can not be based only on Pearson correlation coefficient. The use of some complementary statistic methods allows for more correct interpretation of existing relationships. The comparable values of Pearson linear correlation coefficient and Spearman rank the correlation coefficient, observed in studied dataset within the range of accuracy used, shows the existence of linear correlation. The similar conclusions have been drawn from the analysis of reverse stepwise regression. The observed model of linear multiple regression explains almost 80% of variability of the X value. Foregoing statistical analysis confirms some earlier observations that magnetometry based on topsoil magnetic susceptibility measurement could be a very interesting and alternative or complementary method for monitoring anthropogenic soil pollution and especially heavy metal contamination level.
Go to article

Authors and Affiliations

Jarosław Zawadzki
Tadeusz Magiera
Zygmunt Strzyszcz
Download PDF Download RIS Download Bibtex

Abstract

Two flour types (unpolished flour and polished one) and flour textures (grits and fine) of five cereal grains made up of millet, rice, wheat, sorghum and maize were evaluated under laboratory conditions for their susceptibility and progeny development in Tribolium castaneum in hot dry and cool humid seasons. T. castaneum thrived better during the cool humid season than the hot dry season. Polished flour was less susceptible to infestation and supported lower population of the beetles than unpolished flour. Index of susceptibility was 19.65–20.76% in unpolished flour and 18.89–19.76% in polished flour. The number of progeny that developed were 102.6–135.1 and 98.2–121.4 in unpolished and polished flours, respectively. Similarly, grit flour was significantly less susceptible than fine flour in both seasons. Rice, wheat and sorghum flours were less susceptible and supported significantly lower populations of T. castaneum than millet and maize flours in both seasons. Polished wheat flour supported least progeny number than the flour types of the other cereal grains. Conversely, significantly higher number of progeny developed in polished flour of millet and maize and unpolished flour of wheat. Millet fine flour and maize fine or grit flours were significantly more susceptible to infestation than flours of the other cereal grains.

Go to article

Authors and Affiliations

Joy Mbaya Turaki
Buba Mburza Sastawa
Baba Gana Jugudum Kabir
Ndowa Ekoate Sunday Lale
Download PDF Download RIS Download Bibtex

Abstract

NC11 steel, in view of the specificity of its manufacturing process, is characterised with band-like orientation of carbides. Depending

on the direction of cutting the material for the inserts out of commercially available steel products, carbide bands can be oriented

in parallel or perpendicularly to the direction in which aggregate grains move in the process of pressing stampings. It has been found that

in case of scratches made in direction perpendicular to carbide bands, depth of the scratches is less than this observed when scratches are

made in direction coinciding with prevailing orientation of carbide precipitates.

Go to article

Authors and Affiliations

M. Korzeniowski
A. Trytek
M. Tupaj
K. Sondej
L. Kozak
M. Mróz
B. Kupiec
A.W. Orłowicz
Download PDF Download RIS Download Bibtex

Abstract

This work presents a method for measuring the magnetic susceptibility of soil samples based on interactions of magnetic particles contained in a tested sample with a weighed permanent magnet placed in the balance mechanical design. The MYA 2.4Y microbalance manufactured by Radwag Wagi Elektroniczne, Poland, was used to perform mass measurements. The weighing system was adjusted for mass indication using a certified mass standard, and for magnetic susceptibility indication using a certified magnetic susceptibility standard. The volume of each analysed soil sample was 3.93 cm 3 and was similar to the volume and the size of the magnetic susceptibility standard. The research was carried out for 10 soil samples with a magnetic susceptibility range varying from 20 to 1600x10 -8 m 3 kg -1. The soil samples contained technogenic magnetic particles and particles of natural magnetite of geogenic origin. The study was performed for a field of 2 mT.
Go to article

Authors and Affiliations

Sławomir Janas
1
Tadeusz Magiera
2
Tadeusz Szumiata
3

  1. Radwag Wagi Elektroniczne, Centre for Metrology Research and Certification, Torunska 5, 26-600 Radom, Poland
  2. Polish Academy of Sciences, Institute of Environmental Engineering, M. Skłodowskiej-Curie 34, 41-819 Zabrze, Poland
  3. University of Technology and Humanities, Faculty of Mechanical Engineering, Department of Physics, Stasieckiego 54, 26-600 Radom, Poland
Download PDF Download RIS Download Bibtex

Abstract

A new investigation and palaeoenvironmental reconstruction of the locss-palaeosol sequence at Prymorskc, SW Ukraine is presented using soil structures, grain size, mineral magnetics, organic carbon and calcium carbonate determinations. Six units of the established Ukraine Quaternary stratigraphical scheme have been identified and analysed above and including the Zavadivka (Holsteinian) marker horizon - Dnieper, Kaidaky, Tiasmyn, Pryluky and Udai. Precipitation and temperature are tentatively reconstructed from soil and sedimentary proxies calibrated by modern analogues. Increased temperatures and precipitation to today are inferred for the red-brown Zavadivka palaeosol. Overlying Zavadivka is the Dnieper loess containing a gley and two chernozcms above, possibly representing climatic variations of the Saalian Glaciation. The calcified chernozem Kaidaky is separated by a thin loess from the brown/ chestnut Pryluky palaeosol (Eemian) which has features indicating drier conditions to the present. Non-gleyed palaeosols exhibit an enhanced magnetic susceptibility (MS) signal relative to the less weathered loess and highlights the palaeoclimatic potential of the technique. The most well developed palaeosol from this study has the highest MS value (Zavadivka: 80-1 o·8 SJ units) but this relationship is not always found in the Black Sea region. Previous MS analyses at Prymorske (Nawrocki et al. 1999) report significantly higher values to those of this study. Consequently the MS curve at Prymorske cannot be used with confidence for palaeoenvironmental reconstruction and inter-regional correlation without further investigation and modern analogue study.
Go to article

Authors and Affiliations

Mark Stephens
Dariusz Krzyszkowski
ORCID: ORCID
Andriy Ivchenko
Marek Majewski
Download PDF Download RIS Download Bibtex

Abstract

Serious losses caused by root rot of sugar beet were observed in Poland in 2001 and 2002. The disease occurred in most of regions of sugar beet cropping from June to the end of growing season. Very high losses of yield were observed on many fields especially on cultivar Lolita in 2001. The aim of this work was to detect the casual agent of root rot (2001) and to compare susceptibility of sugar beet cultivars to this disease (2002–2003). The laboratory tests (2001) showed that most of destroyed roots were infected by Aphanomyces cochlioides Drechsler. This species is very well known as a pathogen of sugar beet seedling damping-off in Poland. The fungus Rhizoctonia solani Kühn was found only in 12% of rotten roots collected in south-eastern part of Poland. In field trails the highest number of infected roots and the highest infection inde xwere found for cultivar Arthur (2002–2003). That cultivar was significantly more susceptible to root rot than the rest of tested cultivars.

Go to article

Authors and Affiliations

Jacek Piszczek
Download PDF Download RIS Download Bibtex

Abstract

Until now, dust arising from lime manufacture has been considered harmless to the environment so it has been investigated marginally from the standpoint of environmental protection, especially when it came to magnetic properties and heavy metal content. The aim of the research was filling the gap in this area. The research comprised measurements of magnetic susceptibility, the content of heavy metals, reaction (pH) and specific conductivity of lime dust and also raw material and fuel used for lime production. The samples were taken from one of the lime plants located in Opole Province. Similar investigations were also performed for dust taken from the nearby cement plant using dry method of cement production. It was proven that magnetic susceptibility, heavy metal content and conductivity of lime dust was lower in comparison to cement dust, which resulted from the fact that the lime plant used neither low raw materials nor additives. Due to the high atmosphere dust level in the vicinity of the investigated plants, extremely basic reaction of the tested dust and high content of metals, the studied dust cause alkalization of soils and contribute to the increase of heavy metal content in soils, posing a threat to the environment.

Go to article

Authors and Affiliations

B. Gołuchowska
Z. Strzyszcz
G. Kusza
Download PDF Download RIS Download Bibtex

Abstract

Ash dieback, caused by Hymenoscyphus fraxineus, is a serious disease of common and

narrow-leaved ash in Europe. The resistance of individual trees seems to be important for

the maintenance of ash in European forests. In this in situ wound inoculation study, the

susceptibility and differences in resistance to H. fraxineus between Fraxinus excelsior and

F. angustifolia clones were assessed. Neither of the tested clones revealed total resistance

to ash dieback; variety between the tested clones was observed. Differences in necroses

lengths were significant between clones and between two ash species. Longer necroses were

formed in F. angustifolia than in F. excelsior. Some clones exhibiting some resistance to the

pathogen were identified.

Go to article

Authors and Affiliations

Katarína Adamčíková
Jozef Pažitný
Katarína Pastirčáková
Download PDF Download RIS Download Bibtex

Abstract

Sixteen tomato cultivars obtained from the collections of the Institute for Agricultural Research (IAR) Samaru, Nigeria were screened for resistance to local strains of Tomato leaf curl virus at Samaru, Northern Guinea Savanna, over a two year period, 1998/1999 and 1999/2000 dry seasons. Five cultivars were moderately resistant, nine were moderately susceptible, while two were highly susceptible. Most of the cultivars were high yielding (46–55 t/ha) and had good fruit size (4.8–6.0 cm x 2.8–4.1 cm). They will be further evaluated on-farm at different locations after which they will be introduced to farmers to replace the low yielding and TLCV-susceptible cultivars currently in use in most parts of the Savanna ecological zones of the country.

Go to article

Authors and Affiliations

Mathew Alegbejo
Olalekan Banwo
Download PDF Download RIS Download Bibtex

Abstract

The Sudety Mountains are located close to industrial areas of Germany, Poland and the Czech Republic and are the most polluted Polish mountains, Among air pollutants such as SO2 NO,, fly ashes from local and transboundary power plants emission have a significant input. In determination of soil pollutants, magnetic susceptibility measurements find application. The use otmagnetic measurements as a proxy lor chemical methods is possible because air pollutants and magnetic particles arc interrelated. The major sources or air pollution in the Sudety Mountains arc fly ashes from burning process of fossil fuels. This paper presents content and distribution of heavy metals in soil profiles, depending on their natural or industrial origin and the results of magnetic susceptibility measurements.
Go to article

Authors and Affiliations

Adam Łukasik
Zygmunt Strzyszcz
Download PDF Download RIS Download Bibtex

Abstract

Genetic-environmental controls of the tolerance of forest trees to industrial pollution arc discussed on the example of the Scots pine. Within the pine population under study, various responses to man-made stress were observed in individual specimens, which gave rise to the hypothesis about a genetic origin of the phenomenon. The research procedure was preceded by an assessment of the environmental conditions which focused especially on the pollution of the atmosphere and pedosphere as a background for estimating the level of variation and examining the genetic structure of specimens sensitive to, or tolerant of, the pollution. The analysis covered a pine population coming from natural forest regeneration growing in the zone of direct impact of pollution from the Miasteczko Śląskie Zinc Works. Two groups of trees were distinguished: S (sensitive) and T (tolerant), characterized by different genetic parameters. The observed tendencies (slower cell division rates, lower values of the mitotic index than in the control group, a high level of chromosomal aberrations) indicate a direct effect of the pollution on the genetic material of the trees.
Go to article

Authors and Affiliations

Katarzyna Fagiewicz
Leon Kozacki
Wiesław Prus-Głowacki
Ewa Chudzińska
Aleksandra Wojnicka-Półtorak
Download PDF Download RIS Download Bibtex

Abstract

The aim of the research was to study the influence of different tree stands on topsoil magnetic susceptibility and heavy metal contamination in the soil. The study was performed in the old park in Pruhonice (near Prague) in the Czech Republic. On the relatively small area of Pruhonice Park, five different coniferous tree species (pine, spruce, blue spruce, fir, Douglas fir) and five deciduous species (beech, red oak, common oak, hornbeam, birch) were found, growing in small clusters on the same geological background. Also other natural and anthropogenic factors such as distance from industrial and urban sources of pollution, type of soil, climate, etc. were similar. The magnetic susceptibility was measured directly in the field. Twenty topsoil cores 0.3 m long (2 under each tree species) were collected and also soil samples from under each tree (litter horizon) were taken. The magnetic susceptibility values of the topsoil profiles and of litter layer samples were obtained. Heavy metal analyses of surface samples (litter horizon) were also carried out. The field magnetic susceptibility (K) data are more or less comparable to the laboratory data (x). High heavy metal contents corresponding to high magnetic susceptibility values are observed in the litter horizon. A positive correlation between magnetic susceptibility and some heavy metals was observed. The results suggest that the type of forest may also influence the values of magnetic susceptibility and heavy metal content. Generally higher magnetic susceptibility values were observed in the coniferous forest, except for the surface layer (litter horizon) where the K values are lower than in the deciduous forest.
Go to article

Authors and Affiliations

Marzena Ferdyn
Zygmunt Strzyszcz
Download PDF Download RIS Download Bibtex

Abstract

In 1970–2010, during the period of spring circulation and summer stagnation, hydrochemical studies were conducted in Lake Ińsko (Western Pomeranian Lake Region, Poland) with determination of the lake susceptibility to degradation and trophic changes. Also, the effect of the catchment area on the water quality in this waterbody was assessed. The waters of the study lake were characterised by low static index, which is an additional indicator of low dynamics of water masses, and low susceptibility to degradation. In spite of this, significant changes in the lake quality and trophy were observed. The hydrochemical parameters defining water quality of the study lake continued to improve. In the 70’s, the water quality was at the border of class II and III, while in 2006 and 2010 it reached the level characteristic for class I waters. Moreover, in the 70’s and 80’s of the previous century, Lake Ińsko Duże was a mesotrophic lake. Then, an increase in the lake trophy was observed, resulting in signs of eutrophy. At the end of the 90’s and in the first decade of the 21st century, the study lake returned to the state of mesotrophy. No restoration works were undertaken in Lake Ińsko in the study period. The improvement in water quality, called oligotrophication, resulted most probably from the lake reaction to changes in the soil use in the catchment area, since fewer phosphorus and nitrogen compounds flow into the lake, and also from the regulation of the wastewater management in the town of Ińsko.
Go to article

Bibliography

APHA 1995. Standard methods for the examination of water and wastewater. 19th ed. New York. American Public Health Association Inc. pp. 1956. APHA 2005. Standard methods for the examination of water and wastewater. 21st ed. Washington, DC. American Public Health Association Inc. ISBN 0875530478 pp. 3710.

BAJKIEWICZ-GRABOWSKA E. 2002. Obieg materii w systemach rzeczno-jeziornych [Circulation of matter in river-lake systems]. Warszawa. Wydaw. UW. ISBN 9788385785903 pp. 274.

BERNAT G., BOROSS N., SOMOGYI B., VOROS L., TOTH L.G., BOROS G. 2020. Oligotrophication of Lake Balaton over a 20-year period and its implications for the relationship between phytoplankton and zooplankton biomass. Hydrobiology. Vol. 847 p. 3999–4013. DOI 10.1007/s10750-020-04384-x.

BIERNACZYK M., STEPANOWSKA K., KUBIAK J., MACHULA S., CZEREPANIAK M., GZYL M. 2012. Vendace population growth as a result of slowdown of the eutrophication process in the Ińsko Lake. In: Natural and athropogenic transformations of lakes. Eds. A. Grześkowiak, B. Nowak. Conference materials. International Limnological Conference. Łagów Lubuski 19–21 September 2012. Poznań. Institute of Meteorology and Water Management – National Research Institute, Branch in Poznań, Limnology Center p. 22–23.

BOROWIEC S., SKRZYCZYŃSKI T., KUCHARSKA T. 1978. Migracja składników mineralnych z gleb Niziny Szczecińskiej Migration of minerals from the soils of the Szczecin Lowland]. Prace Szczecińskiego Towarzystwa Naukowego. T. 47. Z. 1 pp. 68.

CARLSON R.F. 1977. A trophic state index for lakes. Limnology and Oceanography. Vol. 22 (2) p. 361–369.

CHOIŃSKI A. 2007. Limnologia fizyczna Polski [Physical limnology of Poland]. Poznań. Wydaw. Nauk. Uniw. im. Adama Mickiewicza w Poznaniu. ISBN 9788323218531 pp. 548.

CHUDECKI Z., DUDA L. 1971. Annual losses of chemical components of the soil in the Płonia river basin. Polish Journal of Soil Science. Vol. 4(2) p. 145–154.

CZARNECKA H., BIALUK J., HOŁDAKOWSKA J., MARCINKOWSKA Z., WORONCOW T., MAJEWSKA I. 1989. Ocena ilościowa i fizyko-chemiczna zasobów wodnych jezior województwa szczecińskiego. Cz. 4. Zlewnie jezior województwa szczecińskiego [Quantitative and physico-chemical assessment of lake water resources in the Szczecin voivodeship. NS. 4. Lake catchments in the Szczecin voivodeship]. [Typescript]. Warszawa. IMGW pp. 165.

CZERNIEJEWSKI P., WAWRZYNIAK W., STEPANOWSKA K. 2008. Vendace, Coregonus albula (L.) fisheries in major lakes of the Ińsko Landscape Park. Electronic Journal of Polish Agricultural Universities. Fisheries. Vol. 11 (1) #22.

DUDA L., DUKLAS K. 1968. Stosunki opadu i odpływu w zlewni rzeki Myśli z punktu widzenia potrzeb rolnictwa [Ratios of rainfall and runoff in the Myśla River catchment from the point of view of agricultural needs]. Zeszyty Naukowe Wyższej Szkoły Rolniczej w Szczecinie. Rolnictwo. Nr 28 p. 33–53.

DURKOWSKI T. 1998. Chemizm wód drenarskich obiektów Pomorza Zachodniego [Chemistry of drainage waters in Western Pomerania]. Zeszyty Problemowe Postepów Nauk Rolniczych. Z. 458 p. 349–356.

FILIPIAK T., RACZYŃSKI M. 2000. Jeziora zachodniopomorskie (zarys faktografii) [Zachodniopomorskie lakes (outline facts)]. Szczecin. Wydaw. AR. ISBN 83-87327-58-1 pp. 256.

FRIEDRICH M., KĘPIŃSKA-KASPRZAK M., CZARNECKA H., BIALUK J., KOŁDAKOWSKA J., MARCINKOWSKA Z., PIJEWSKA I., WANGIN ZDZ., WORONCOW T., MAJEWSKA I., POŻNIAK Z. 1989. Przepływy średnie w wybranych przekrojach rzek województwa szczecińskiego [Average flows in selected river cross-sections of the Szczecin voivodeship ]. [Typescript]. Słupsk. IMGW pp. 125.

GOTKIEWICZ J., HUTOROWICZ H., LOSSOW K., MOSIEJ J., PAWŁAT H., SZYMCZAK T., TRACZYK T. 1990. Czynniki kształtujące obieg wody i biogenów w krajobrazie młodoglacialnym. W: Obieg wody i bariery biogeochemiczne w krajobrazie rolniczym [Factors affecting the circulation of water and nutrients in the landscape młodoglacialnym. In: The water cycle and biogeochemical barriers in agricultural landscape]. Eds. L. Ryszkowski, K. Marcinek, A. Kędziora. Poznań. Wydaw. Nauk. UAM p. 105–126.

GÓRNIAK A., WIĘCKO A., KARPOWICZ M. 2016. Changes in the trophic status of lakes in the Suwałki Landscape Park (NE Poland). Limnological Review. Vol. 16. Iss. 4 p. 221–227. DOI 10.1515/limre-2016-0024.

HATVANI I.G., DE BARROS V.D., TANOS P., KOVACS J., KOVACS I.S. CLEMENT A. 2020. Spatiotemporal changes and drivers of trophic status over three decades in the largest shallow lake in Central Europe, Lake Balaton. Ecological Engineering. Vol. 151, 105861.

HILLBRICHT-ILKOWSKA A. 1998. Różnorodność biologiczna siedlisk słodkowodnych – problemy, potrzeby, działania [Biodiversity of freshwater habitats – problems, needs, activities]. Idee Ekologiczne. Seria Szkice. Nr 13(7) p. 13–55.

HUTCHINSON G.E. 1957. A treatise on limnology. Vol. I. Geography, physics and chemistry. London. Chapman and Hall, Ltd. ISBN 0471425702 pp. 885.

JAŃCZAK J. 1983. Podział hydrograficzny Polski [Hydrographic division of Poland]. Cz. 1. Warszawa. WKiŁ pp. 100.

JAŃCZAK J. 1988. Podział hydrograficzny Polski [Hydrographic division of Poland]. Cz. 2. Warszawa. WKiŁ pp. 98.

JAŃCZAK J. 1996. Atlas jezior Polski [Atlas of Polish lakes]. T. I. Poznań. Wydaw. Nauk. Bogucki. ISBN 83-88163-13-2 pp. 240.

JAROSIEWICZ A., FICEK D., ZAPADKA T. 2011. Eutrophication parameters and Carlson-type trophic state indices in selected Pomeranian lakes. Limnological Review. Vol. 11 p. 15–23. DOI 10.2478/v10194-011-0023.

KAJAK Z. 1979. Eutrofizacja jezior [Eutrophication of lakes]. Warszawa. PWN pp. 233.

KAJAK Z. 1995. Hydrobiologia. Ekosystemy wód śródlądowych [Hydrobiology. Inland water ecosystems]. Warszawa. Wydaw. UW pp. 326.

KAJAK Z. 1998. Hydrobiologia – limnologia. Ekosystemy wód śródlądowych [Hydrobiology – limnology. Inland water ecosystems]. Warszawa. PWN. ISBN 83-01-12537-3 pp. 355.

KALFF J. 2002. Limnology. New Jersey. Prentice Hall Ltd. ISBN 0-13-033775-7 pp. 592.

KONDRACKI J. 2000. Geografia regionalna Polski [Regional geography of Poland]. Warszawa. PWN. ISBN 83-01-13050-4 pp. 441.

KUBIAK J. 2003. Największe dimiktyczne jeziora Pomorza Zachodniego. Poziom trofii, podatność na degradację oraz warunki siedliskowe ichtiofauny [The largest dimictic lakes in Western Pomerania. Trophyic status, susceptibility to degradation and habitat conditions for fish fauna]. AR Szczecin. Rozprawy. Z. 214. ISSN 0239-6467 pp. 92.

KUBIAK J., KNASIAK M. 1996. Jezioro Ińsko zmiany chemizmu wód. W: Ochrona i rekultywacja jezior i zbiorników wodnych [Lake Ińsko changes in water chemistry. In: Protection and rehabilitation of lakes and water reservoirs]. Conference Proceedings. 7–8.03.1996 Międzyzdroje. Szczecin. Biuro Inf. Nauk. p. 143–145.

KUBIAK J., NĘDZAREK A., TÓRZ A. 2009. Lowering the trophy level of Lake Ińsko Duże. In: Anthropogenic and natural transformations of lakes. Vol. 3. Ed. W. Marszelewski]. Toruń. Polish Limnological Society p. 137–142.

KUBIAK J., TÓRZ A. 2005. Eutrofizacja. Podstawowy problem ochrony jezior na Pomorzu Zachodnim [Eutrophication. The basic problem of lake protection in Western Pomerania]. Słupskie Prace Biologiczne. Nr 2 p. 17–36.

KUDELSKA D., CYDZIK D., SOSZKA H. 1994. Wytyczne monitoringu podstawowego jezior [Guidelines for basic monitoring of lakes]. Warszawa. PIOŚ pp. 42.

LOSSOW K. 1995. Odnowa jezior [Renewal of the lakes ]. Ekoprofit. Nr 5 p. 11–15.

LOSSOW K. 1996. Znaczenie jezior w krajobrazie młodoglacialnym pojezierza Mazurskiego [The importance of lakes in the young landscape of the Masurian Lake District]. Zeszyty Problemowe Postępów Nauk Rolniczych. Z. 431 p. 47–59.

LOSSOW K. 1998. Ochrona i rekultywacja jezior – teoria i praktyka [Protection and reclamation of lakes – theory and practice]. Idee Ekologii Seria Szkice. T. 13 (7) p. 55–71.

LOSSOW K., WIĘCŁAWSKI F. 1991. Migracja podstawowych pierwiastków pożywkowych z gleb, użytkowanych rolniczo do wód powierzchniowych [Migration of basic nutrient elements from agricultural soils to surface waters]. Biuletyn Informacyjny ART Olsztyn. Nr 31 p. 123–133.

NGUYEN VAN T. 1972. Studia na chemizmem wód jezior o różnym stopniu troficznym. Praca doktorska [Studies on the chemistry of lake waters of various trophic levels. PhD thesis]. [Typescript]. Szczecin. AR pp. 185.

NIEMRYCZ E., TAYLOR R., MAKOWSKI Z. 1993. Zagrożenie substancjami biogennymi wód powierzchniowych [Nutrient danger of surface waters]. Biblioteka Monitoringu Środowiska PIOŚ. Nr 43 pp. 50.

OHLE W. 1955. Die Ursachen der rasanten Seeneutrophierung [The causes of rapid sea eutrophication]. Verhandlungen des Inter-nationalen Verein Limnologie. Vol. 12 p. 373–382.

OLSZEWSKI P. 1971. Trofia a saprobia [Trophy and saprobia]. Zeszyty Naukowe WSR Olsztyn. Ser. C 3 (supl.) p. 5–14.

PATALAS K. 1960. Mieszanie wiatrowe jako czynnik określający intensywność krążenia materii w różnych morfologicznie jeziorach okolic Węgorzewa [Wind agitation as a factor determining the intensity of matter circulation in morphologically different lakes in the vicinity of Węgorzewo]. Roczniki Naukowe Rolnictwa. Ser. B. T. 77(1) p. 224–241.

RAJDA W., OSTROWSKI K., KOWALIK T., MARZEC J. 1995. Stężenia i ładunki niektórych składników chemicznych wynoszonych z opadem i odpływających z mikrozlewni rolniczej [Concentrations and loads of some chemical components carried out with precipita-tion and outflow from an agricultural micro-catchment]. Zeszyty Naukowe AR Kraków. Z. 298 p. 45–57.

VOLLENWEIDER R.A. 1971. Scientific fundamentals of the eutrophication of lakes and following waters, with particular reference to nitrogen and phosphorous as factors in eutrophication. Paris. OECD, Environment Directorate pp. 61.

VOLLENWEIDER R.A. 1989. Global problems of eutrophication and its control. In: Conservation and management of lakes. Eds. J. Salánki, S. Herodek Symposium Biologica Hungarica. Vol. 38 p. 19–41.

WESOŁOWSKI P., BRYSIEWICZ A. 2015. The effect of pulverising aeration on changes in the oxygen and nitrogen concentrations in water of Lake Starzyc. Journal of Water and Land Development. No. 25 p. 31–36. DOI 10.1515/jwld-2015-0010.

WETZEL R.G. 2001. Limnology, lake and river ecosystems. Academic Press Elsevier Science, USA. ISBN 0127447601 pp. 1006.

WUS Szczecin 1974. Rocznik statystyczny województwa szczecińskiego [Statistical yearbook of the Szczecin voivodship]. Szczecin. Wojewódzki Urząd Statystyczny pp. 324.

WUS Szczecin 1980. Rocznik statystyczny województwa szczecińskiego [Statistical yearbook of the Szczecin voivodship]. Szczecin. Wojewódzki Urząd Statystyczny pp. 356.

WUS Szczecin 1995. Rocznik statystyczny województwa [Statistical yearbook of the Szczecin voivodship]. Szczecin. Wojewódzki Urząd Statystyczny pp. 385.

ZDANOWSKI B. 1999. Eutrofizacja jezior Wigierskiego Parku Narodo-wego: Zagrożenia i ocena. W: Funkcjonowanie i odnowa ekosystemów wodnych na obszarach chronionych [Eutrophication of the lakes of the Wigry National Park: Threats and assessment. In: Functioning and restoration of water ecosystems in protected areas]. Ed. B. Zdanowski, M. Kamiński, A. Martyniak. Olsztyn. IRŚ p. 261–278.
Go to article

Authors and Affiliations

Jacek Kubiak
1
Sylwia Machula
1
ORCID: ORCID
Przemysław Czerniejewski
1
ORCID: ORCID
Adam Brysiewicz
2
ORCID: ORCID
Wawrzyniec Wawrzyniak
1
ORCID: ORCID

  1. West Pomeranian University of Technology in Szczecin, Faculty of Food Sciences and Fisheries, Kazimierza Królewicza street 4, 71-550 Szczecin, Poland
  2. Institute of Technology and Life Sciences – National Research Institute, Falenty, Poland
Download PDF Download RIS Download Bibtex

Abstract

Hot tearing is a casting defect responsible for external and internal cracks on casting products. This irregular undesired formation is often observed during solidification and freezing. The solidification of molten metal also causes thermal contraction and shrinkage, indicating the occurrence of hot tearing when the alloy is restrained by the mould design. The parameters affecting this process include the pouring and mould temperatures, the chemical composition of the alloy, and the mould shape. Also, the factors affecting hot tearing susceptibility include pouring and mould temperatures, the grain refiner, as well as pouring speed. There are many methods of measuring the level of susceptibility to hot tearing, one of which is the thermal contraction evaluation during metal solidification, observed in cast products through several mould types. This paper discusses the hot tearing overview, the effect of pouring temperature, mould temperature, grain refiner, pouring speed on hot tearing, the type of mould, and criterion for hot tear observation.
Go to article

Bibliography

[1] Li, S. & Apelian, D. (2011). Hot Tearing of aluminum alloy: a critical literature review. International Journal of Metalcasting. 5(1), 23-40.
[2] Kumar, V.M. & Devi, C.N. (2014). Evaluation of mechanical characteristics for aluminum-copper metal matrix composite. Research Journal of Engineering Sciences. 3(3), 1-5.
[3] Briggs, C.W. & Gezelius, R.A. (1934). Studies on solidification and contraction in steel castings II-Free and hindered contraction of cast carbon steel. AFA Trans. 42, 449-476.
[4] Körber, F. & Schitzkowski, G. (1928). Determination of the contraction of cast steel. Stahl Und Eisen. 15, 128-135.
[5] Verö, J. (1936). The hot-shortness of aluminum alloys. The Metals Industry. 48, 431-434.
[6] Pumphrey, W.I. & Jennings, P.H. (1948). A consideration of the nature of brittleness at temperature above the solidus in castings and welds in aluminum alloys. Journal of Institute of Metals. 75, 235.
[7] Pellini, W.S. (1952). Strain theory of hot tearing. Foundry. 80, 125-199.
[8] Rosenberg, R.A. Flemings, M.C. & Taylor, H.F. (1960). Nonferrous binary alloys hot tearing. AFS Transactions. 69, 518-528.
[9] Saveiko, V.N. (1961). Theory of hot tearing. Russian Castings Production. 11, 453-456.
[10] Metz, S.A. & Flemings, M.C. (1970) A fundamental study of hot tearing. AFS Transactions. 78, 453-460.
[11] Clyne, T.W. & Davies, G.J. (1975). A quantitive solidification test for casting and an evaluation of cracking in aluminium-magnesium alloys. The British Foundryman. 68(9), 238-238.
[12] Campbell, J. (1991). Castings. Oxford: Butterworth-Heinemann.
[13] Sigworth, G.K. (1996). Hot tearing of metals. AFS Transactions. 104, 1053-1062.
[14] Davidson, C., Viano, D., Lu, L., & Stjohn, D. (2006). Observation of crack initiation during hot tearing. International Journal of Cast Metals Research. 19, 59-65.
[15] Singer, K., Benek, H. (1931). Contribution to hot tears in steel castings. Stahl and Sisen. 51, 61-65.
[16] Middleton, J.M. & Protheroe, H.T. (1951). The hot-tearing of steel. Journal of the Iron and Steel Institute. 168, 384-397.
[17] Bichler, L., Elsayed, A., Lee, K. & Ravindran, C. (2008). Influence of mold and pouring temperatures on hot tearing susceptibility of AZ91D magnesium alloy. International Journal of Metalcasting. 2(1), 43-54.
[18] Couture, A. & Edwards, J.O. (1996) The hot-tearing of copper-base casting alloys. AFS Transactions, 74, 709-721.
[19] Karunakar, D.B., Rai, R.N., Patra, S. & Datta, G.L. (2009). Effects of grain refinement and residual elements on hot tearing in aluminum castings. The International Journal of Advance Manufacturing Technology. 45, 851-858.
[20] Nasresfahani M.R. & Niroumand, B. (2010). Design of a new hot tearing test apparatus and modification of its operation. Metals and Materials International. 16(1), 35-38.
[21] Burapa, R., Rawangwong, S., Chatthong, J. & Boonchouytan, W. (2013). Effects of mold temperature and casting temperature on hot cracking in Al-4.5 wt.% Cu alloy. Advanced Materials Research. 747, 623-626 doi: 10.4028/www.scientific.net/AMR.747.623.
[22] He, Y., Li, S., Sadayappan, K. & Apelian, D. (2013). Thermomechanical simulation and experimental characterisation of hot tearing during solidification of aluminium alloys. International Journal of Cast Metals Research. 26(2).
[23] Huang, H., Fu, P., Wang, Y., Peng, L. & Jiang, H. (2014). Effect of pouring and mold temperatures on hot tearing susceptibility of AZ91D and Mg–3Nd–0.2Zn–Zr Mg alloys. Transactions of Nonferrous Metals Society of China. 24(4), 922-929.
[24] Hasan, A. & Suyitno (2015). Effect pouring temperature on casting defect susceptibility of hot tearing in metal alloy Al-Si. Applied Mechanics and Materials. 758, 95-99.
[25] Birru, A.K. & Karunakar, D.B. (2016). Effects of grain refinement and residual elements on hot tearing of A713 aluminium cast alloy. Transactions of Nonferrous Metals Society of China. 26, 1783-1790.
[26] Apelian, D. (2009). Aluminium cast alloys: enabling tools for improved performance. NADCA.
[27] Spittle, J.A. & Cushway, A.A. (1983). Influence of superheat and grain structure on hot-tearing susceptibilities of Al-Cu alloy castings. Metals Technology. 10(1), 6-13.
[28] Limmaneevichitr, C., Saisiang, A. & Chanpum, S. (2002). The role of grain refinement on hot crack susceptibility of aluminum alloy permanent mold castings. Proceedings of the 65th World Foundry Congress.
[29] Sadayappan, M., Sahoo, M. & Weiss, D. (2007). Evaluation of the hot tear susceptibility of selected magnesium casting alloys in permanent molds. AFS Transactions. 115, 761-766.
[30] Fasoyinu, Y., Sahoo, M. & Sikorski, S. (2008). Hot tearing of aluminum alloys 206 and 535 poured in metal mold. Proceedings of the AFS 6th International Conference on Permanent Mold Casting of Aluminum and Magnesium. 11-25.
[31] Zhen, Z., Hort, N., Utke, O., Huang, Y., Petri, N. & Kainer, K.U. (2009). Investigations on hot tearing of Mg-Al binary alloys by using a new quantitative method. Magnesium Technology.
[32] Pokorny, M.G., Monroe, C.A. & Beckermann, C. (2009). Prediction of deformation and hot tear formation using a viscoplastic model with damage. The minerals. Metal and Materials Society. 198-198.
[33] Nabawy, A.M. Samuel, A.M., Samuel, F.H. & Doty, H.W. (2012). Influence of additions of Zr, Ti–B, Sr, and Si as well as of mold temperature on the hot-tearing susceptibility of an experimental Al–2% Cu–1% Si alloy. Journal of Materials Science. 47(9), 4146-4158.
[34] Srinivasan, A., Wang, Z., Huang, Y., Beckmann, F., Kainer, K.U. & Hort, N. (2013). Hot tearing characteristics of binary Mg-Gd alloy castings. Metallurgical and Materials Transactions A. 44(5), 2285-2298.
[35] Wang, Z., Huang, Y., Srinivasan, A., Liu, Z., Beckkmann, F., Kainer K.U. & Hort, N. (2014). Experimental and numerical analysis of hot tearing susceptibility for Mg–Y alloys. Journal of Materials Science. 49, 353-362.
[36] D’Elia, F., Ravindran, C., Sediako, D., Kainer, K.U. & N.Hort. (2014). Hot tearing mechanisms of B206 aluminum–copper alloy. Materials & Design. 64, 44-55.
[37] Easton, M., StJohn, D.H. & Sweet, L. (2009). Grain refinement and hot tearing of aluminium alloys - how to optimise and minimise. Material Science Forum. 630, 213–221. https://doi.org/10.4028/www.scientific.net/msf.630.213.
[38] Elsayed, A., Ravindran, C. & Murty, B.S. (2011). Effect of Al-Ti-B based master alloys on grain refinement and hot tearing susceptibility of AZ91E magnesium alloy. Materials Science Forum. 690, 351–354.
[39] Choi, H., Cho, W., Konishi, H., Kou, S. & Li, X. (2012). Nanoparticle-induced superior hot tearing resistance of A206 alloy. Metallurgical and Materials Transactions A, 44(4), 1897-1907.
[40] Sweet, L., Easton, M.A., Taylor, J.A., Grandfield, J.F., Davidson, C.J., Lu, L., Couper, M.J. & StJohn, D.H. (2012). Hot tear susceptibility of Al-Mg-Si-Fe alloys with varying iron contents. Metallurgical and Materials Transactions A. 44(12), 396-5407.
[41] Suyitno, Savran, V.I., Katgerman, L. & Eskin, D.G. (2004). Effects of alloy composition and casting speed on structure formation and hot tearing during direct-chill casting of Al-Cu alloys. Metallurgical and Materials Transactions A. 35A, 3551–3561.
[42] Bozorgi, S., Haberl, K., Kneissl, C., Pabel, T. & Schumacher, P. (2011). Effect of alloying elements (magnesium and copper) on hot cracking susceptibility of AlSi7MgCu-Alloys. In Tiryakioğlu, M., Campbell, J., and Crepeau, P.N. (eds.) Shape Casting: The 4th International Symposium. Wiley.
[43] Malau, V., Akhyar, H., , Iswanto, P.T. (2018). Modification of constrained rod casting mold for new hot tearing measurement. 63(3), 1201-1208. DOI 10.24425/123792.
[44] Gowri, S. & Bouchard, M. (1994). Hot cracking in aluminium alloys-part 1. Literature survey. Research Report. Université du Québec à Chicoutimi.
[45] Pekguleryuz, M.O., Li, X., & Aliravci, C.A. (2009). In-situ investigation of hot tearing in aluminum alloy AA1050 via acoustic emission and cooling curve analysis. Metallurgical and Materials Transactions A. 40(6), 1436-1456.
[46] Purvis, A.L., Kannatey-Asibu, E. & Pehlke, R.D. (1990). Evaluation of acoustic emission from issand cast alloy 319 during solidification and formation of casting defects. AFS Transactions. 98, l-7.
[47] Purvis, A.L., Kannatey-Asibu, E. & Pehlke, R.D. (1991). Acoustic emission signal characteristics from casting defects formed during solidification of Al alloy 319. AFS Transactions. 102, 525-530.
[48] Birru, A.K., Karunakar, D.B. & Mahapatra, M.M. (2012). A study on hot tearing susceptibility of Al–Cu, Al–Mg, and Al–Zn alloys. Transactions of the Indian Institute of Metals. 65(1), 97–105.
[49] Singer, A.R.E. & Jennings, P.H. (1946). Hot-shortness of the aluminium-1043 silicon alloys of commercial purity. Journal of Institute of Metals. 72, 197-211.
[50] Gamber, E.J. (1959). Hot cracking test for light metal casting alloys. Trans. AFS. 67, 237-237.
[51] Lemieux, A., Langlais, J. & Chen, X. (2013). Reduction of hot tearing of cast semi-solid 206 alloys. Solid State Phenomena. 193, 101-106.
[52] Novikov, I.I. (1966). Hot shortness of non-ferrous metals and alloys. Moscow, Nauka, 299. (in Russian)
[53] Zych, J., Myszka, M., Snopkiewicz, T. (2017). Hot cracking tendency of non-ferrous alloys - a new test method. W Nauka i Technologia 2017 – Odlewnictwo Metali Nieżelaznych, 199-212. Kraków: Wydawnictwo Naukowe „Akapit”. (in Polish).
[54] Oya, S., Honma, U., Fujii, T. & Othaki, M. (1984). Evaluation of hot tearing in binary Al-Si alloy castings. Aluminium. 60(20), 777.
[55] Warrington, D. & McCartney, D.G. (1989). Development of a new hot-cracking test for aluminum alloys. Cast Metals. 2, 134.
[56] Lin, S., Aliravci, C. & Pekguleryuz, M.O. (2007). Hot-tear susceptibility of aluminum wrought alloys and the effect of grain refining. Metallurgical and Materials Transactions A. 38(5), 1056-1068.
[57] Cao, G. & Kou, S. (2006). Hot cracking of binary Mg–Al alloy castings. Materials Science and Engineering: A. 417 (1-2), 230-238.
[58] Wannasin, J., Schwam, D., Yurko, J.A., Rohloff, C. & Woycik, G. (2006). Hot tearing susceptibility and fluidity of semi-solid gravity cast Al-Cu alloy. Solid State Phenomena. 116-117, 76-79.
[59] Lin, S., Aliravci, C. & Pekguleryuz, M.O. (2007). Hot-tear susceptibility of aluminum wrought alloys and the effect of grain refining. Metallurgical and Materials Transactions A. 38(5), 1056-1068.
[60] Guo, J. & Zhu, J.Z. (2007). Prediction of hot tearing during alloy solidification. In the 5th Decennial International Conference on Solidification Processing. Columbia. USA, 549-553.
[61] Kamga, H.K., Larouche, D., Bournane, M. & Rahem, A. (2010). Hot tearing of aluminum–copper B206 alloys with iron and silicon additions. Materials Science and Engineering: A. 527(27-28), 7413-7423.
[62] Cao, G., Zhang, C., Cao, H., Chang, Y.A. & Kou, S. (2010). Hot-tearing susceptibility of ternary Mg-Al-Sr alloy castings. Metallurgical and Materials Transactions A. 41(3), 706-716.
[63] D’Elia, F., Ravindran, C., Sediako, D., Kainer, K.U. & Hort, N. (2014). Hot tearing mechanisms of B206 aluminum–copper alloy. Materials & Design. 64, 44-55, https://doi.org/10.1016/j.matdes.2014.07.024.
[64] Bichler, L. & Ravindran, C. (2010). New developments in assessing hot tearing in magnesium alloy castings. Materials and Design. 31, 17-23.
[65] Li, S. (2010). Hot Tearing in cast aluminum alloys: measures and effects of process variables. Worcester Polytechnic Institute. 24-24.
[66] Myszka, M., Zych, J. & Snopkiewicz, T. (2018). Hot cracking tendency of foundry alloys – an innovative testing method. Prace Instytutu Odlewnictwa Transactions of the Foundry Research Institute. 58(4), 235-249. DOI: 10.7356/iod.2018.19.
[67] Monroe, C. & Beckermann, C. (2004). Development of a hot tear indicator for steel castings. In The 58th SFSA Technical and Operating Conference. Chicago, America, 1-13.
[68] Monroe, C. & Beckermann, C. (2005). Development of a hot tear indicator for steel castings. Materials Science and Engineering A. 413-414(3), 30-36.
[69] Monroe, C.A., Beckermann, C. & Klinkhammer, J. (2009). Simulation of deformation and hot tear formation using a visco-plastic model with damage, in book cockcroft, S.L, & Maijer, D.M., eds. modeling of casting, Welding, and Advanced Solidification Processes-XII. TSM (The Minerals, Metals & Materials Society). 313-320.
[70] Nasresfahani, M.R. & Niroumand, B. (2014). A new criterion for prediction of hot tearing susceptibility of cast alloys. Metallurgical and Materials Transactions A. 45(9), 3699-3702.
[71] Nasresfahani, M.R. & Rajabloo, M.J. (2014). Research on the effect of pouring temperature on hot-tear susceptibility of A206 alloy by simulation. Metallurgical and Materials Transactions B. 45(5), 1827-1833.
[72] Li, S., Sadayappan, K. & Apelian, D. (2013). Role of grain refinement in the hot tearing of cast Al-Cu alloy. Metallurgical and Materials Transactions B. 44(3), 614-623.
[73] Olivier, C., Yvan, C. & Michel, B. (2008). Hot tearing in steels during solidification: experimental characterization and thermomechanical modeling. Journal of Engineering Materials and Technology. 130(2), 021018.
[74] Bellet, M., Cerri, O., Bobadilla, M. & Chastel, Y. (2009). Modeling hot tearing during solidification of steels: assessment and improvement of macroscopic criteria through the analysis of two experimental tests. Metallurgical and Materials Transactions A. 40(11), 2705-2717.
[75] Srinivasan, A., Wang, Z., Huang, Y., Beckmann, F., Kainer, K.U. & Hort, N. (2013). Hot tearing characteristics of binary Mg-Gd alloy castings. Metallurgical and Materials Transactions A. 44(5), 2285-2298.
[76] Wang, Z., Huang, Y., Srinivasan, A., Liu, Z., Beckmann, F., Kainer, K.U. & Hort, N. (2013). Hot tearing susceptibility of binary Mg–Y alloy castings. Materials and Design. 47, 90-100.
[77] Srinivasan, A., Wang, Z., Huang, Y., Beckmann, F., Kainer, K.U. & Hort, N. (2013) Hot tearing characteristics of binary Mg-Gd alloy castings. Metallurgical and Materials Transactions A. 44(5), 2285-2298.
[78] Liu, Z., Zhang, S., Mao, P. & Wang, F. (2014). Effects of Y on hot tearing susceptibility of Mg–Zn–Y–Zr alloys. Transactions of Nonferrous Metals Society of China. 24(4), 907-914.
[79] Akhyar, H. & Husaini (2016). Study on cooling curve behavior during solidification and investigation of impact strength and hardness of recycled Al–Zn aluminum alloy. International Journal of Metalcasting. 10(4), 452-456. https://doi.org/10.1007/s40962-016-0024-8.
[80] Clyne, B. & Davies, G.J. (1981). The influence of composition on solidification cracking susceptibility in binary alloy systems. J. Brit Foundryman. 74, 65-73.
[81] Instone, S. (1999). The effect of alloy composition and microstructure on the hot cracking of vertical direct chill cast aluminium alloy billet. University of Queensland.
[82] Davidson, C., Viano, D., Lu, L., D.H.S. (2005). Shape Casting, 7th International Symposium Celebrating Prof. John Campbell's 80th Birthday.
[83] Mitchell, J.B. Cockcroft, S.L., Viano, D., Davidson, C. & StJohn, D. (2007). Determination of strain during hot tearing by image correlation. Metallurgical and Materials Transactions A. 38(10), 2503-2512.
[84] Easton, M.A., Wang, H., Grandfield, J., Davidson, C.J., StJohn, D.H., Sweet, L.D. & Couper, M.J. (2012). Observation and prediction of the hot tear susceptibility of ternary Al-Si-Mg alloys. Metallurgical and Materials Transactions A. 43(9), 3227-3238.
[85] Li, M., Wang, H., Wei, Z. & Zhu, Z. (2010). The effect of Y on the hot-tearing resistance of Al–5 wt.% Cu based alloy. Materials and Design. 31(5), 2483-2487. https://doi.org/10.1016/j.matdes.2009.11.044.
[86] Knuutinen A., Nogita K., Mcdonald S.D. & Dahle A.K. (2001) Modification of Al–Si alloys with Ba, Ca, Y and Yb. Journal of Light Metals. 229-240.
[87] Murashima, I., Asada, J. & Yoshida, M., (2008). Effect of grain refiner and grain size on the susceptibility of Al – Mg die casting alloy to cracking during solidification. Journal of Materials Processing Technology. 209, 210-219.
[88] Xu, R., Zheng, H., Luo, J., Ding, S., Zhang, S. & Tian, X. (2014). Role of tensile forces in hot tearing formation of cast Al-Si alloy. Transactions of Nonferrous Metals Society of China. 24(7), 2203-2207.
[89] Zhang, J. & Singer, R.F. (2004).Effect of grain-boundary characteristics on castability of nickel-base superalloys. Metallurgical and Materials Transactions. A. 35, 939-946.
[90] Zhou, Y., Volek, A. & Singer, R.F. (2005). Influence of solidification conditions on the castability of nickel-base superalloy IN792. Metallurgical and Materials Transactions A. 36, 651-656.
[91] Zhou, Y., Volek, A. & Singer, R.F. (2006). Effect of grain boundary characteristics on hot tearing in directional solidification of superalloys. Journal of Materials Research. 21(09), 2361-2370.
[92] Zhou, Y. & Volek, A. (2008). Effect of carbon additions on hot tearing of a second generation nickel-base superalloy. Materials Science and Engineering: A. 479(1-2), 324-332.
[93] Phillion, A.B., Hamilton, R.W., Fuloria, D., Leung, A.C.L., Rockett, P., Connolley, T. & Lee, P.D. (2011). In situ X-ray observation of semi-solid deformation and failure in Al–Cu alloys. Acta Materialia. 59, 1436-1444.
[94] Akhyar, H., Malau, V., Suyitno & Iswanto, P.T. (2017). Hot tearing susceptibility of aluminum alloys using CRCM-Horizontal mold. Results in Physics. 7, 1030-1039. https://doi.org/10.1016/j.rinp.2017.02.041.
[95] Clyne, G.J. & Davies, T.W. (1979). Solidification and Casting of Metals. London: Metals Society. 275-278.
[96] Suyitno, Kool, W. H., Katgerman, L., (2005). Hot Tearing Criteria Evaluation for Direct-Chill Casting of an Al-4.5 Pct Cu Alloy. Metallurgical and Materials Transactions A. 36A, 1537-1546.
[97] Katgerman, L. (1982). A mathematical model for hot cracking of aluminum alloys during D.C. casting. JOM Journal of the Minerals Metals & Materials Society. 34, 46-49. https://doi.org/10.1007/BF03339110.
[98] Magnin, B., Maenner, L., Katgerman, L. & Engler, S. (1996). Ductility and theology of an Al-4.5%Cu alloy from room temperature to coherency temperature. Mater Science Forum. 1209, 217-222.
[99] Eskin, D.G., Suyitno & Katgerman, L. (2004). Mechanical properties in the semi-solid state and hot tearing of aluminum alloys. Progress in Materials Science. 49, 629-711.
[100] Prokhorov, N.N. (1962). Resistance to hot tearing of cast metals during solidification. Russian Castings Production. 2, 172-175.
[101] Rappaz, M., Drezet, J.M. & Gremaud, M. (1999). A new hot-tearing criterion. Metallurgical and Materials Transactions A. 30A, 449-455.
[102] Braccini, M., Martin, C. L., Suéry, M. & Bréchet, Y. (2000). Modeling of casting. Welding and Advanced Solidification Processes IX. 18-24.
[103] Eskin, D.G. & Katgerman, L. (2007). A quest for a new hot tearing criterion. Metallurgical and Materials Transactions A. 38A, 1511- 1519, DOI: 10.1007/s11661-007-9169-7.
[104] Hamdi, M.M., Mo, A. & Fjær, H.G. (2006). TearSim : A two-phase model addressing hot tearing formation during aluminum direct chill casting. Metallurgical and Materials Transactions A. 37, 3069-3083.
[105] Monroe, C. & Beckermann, C. (2014). Prediction of hot tearing using a dimensionless niyama criterion. The Journal of The Minerals. 66(8), 1439-1445.
[106] Aguiar, A.M. (2020). Hot tearing susceptibility of single-phase Al-3.8 wt%Zn-1 wt%Mg alloy using the constrained rod solidification experiment: influence of 1.2 wt%Fe addition and grain refinement. Thesis, McMaster University. Hamilton, Ontario.

Go to article

Authors and Affiliations

Akhyar
1

  1. Department of Mechanical Engineering, Univeritas Syiah Kuala, Jl. Syech Aburrauf No.7, Darussalam, Banda Aceh, 23111, Indonesia
Download PDF Download RIS Download Bibtex

Abstract

Neonatal calf diarrhea (NCD) is one of the most important concerns in cattle production. Escherichia coli is the most important bacterial agent of NCD. Although vaccination and antibiotic treatment are common in NCD, the high antigenic diversity of E. coli and the increase in antibiotic resistance cause difficulties in the control. The study aimed to investigate the rate of E. coli in calf diarrhea, isolate an agent of the NCD E. coli strain, determine antimicrobial resistance, and find out about some surface antigens. Fecal samples (n=115) were analyzed to isolate pathogenic E. coli strains with nine mixed infections; sixty-one strains isolate from fifty diarrhoeic calves. Among the isolates from diseased animals, 22 K99+STa+F41, 3 K99+STa, 3 strains F41, 2 strains Stx1, one strain K99, one strain eae, and one strain Stx2+eae were detected. 27 strains of F17- associated fimbriae have been identified. 17 strains F17a, 6 strains F111, 3 strains F17c, one strain carrying the F17a and F17c gene regions, whereas subfamily typing of one strain could not be performed. Serotypes were determined by molecular and serological methods: 32/61 (52.5%) isolates were O101 and 2/61 (3.3%) isolates were O9 serotypes. But 27 strain serotypes could not be detected. The antibiotic resistance profiles of the isolates were determined by the disc diffusion method. The resistance rates to antibiotics were trimethoprim- sulphamethoxazole 91.7%, ampicillin 86.7%, enrofloxacin 86.7%, gentamicin 45%, tobramycin 41.7%, cefotaxime 3.3%, and ceftazidime 1.7%. Due to increasing antibiotic resistance, prophylaxis is gaining importance. In further research, E. coli surface antigenic structures should be examined in detail, and it should form the basis for vaccine and hyperimmunization studies to be developed.
Go to article

Bibliography

  1. Algammal AM, El-Kholy AW, Riad EM, Mohamed HE, Elhaig MM, Yousef SaA, Hozzein WN, Ghobashy MOI (2020) Genes Encoding the Virulence and the Antimicrobial Resistance in Enterotoxigenic and Shiga-Toxigenic E. coli Isolated from Diarrheic Calves. Toxins 12: 383.
  2. Andersson DI, Hughes D (2011) Persistence of antibiotic resistance in bacterial populations. FEMS Microbiol Rev 35: 901-911.
  3. Bendali F, Bichet H, Schelcher F, Sanaa M (1999) Pattern of diarrhoea in newborn beef calves in south-west France. Vet Res 30: 61-74.
  4. Bertin Y, Martin C, Oswald E, Girardeau J-P (1996) Rapid and specific detection of F17-related pilin and adhesin genes in diarrheic and septicemic Escherichia coli strains by multiplex PCR. J Clinic Microbiol 34: 2921-2928.
  5. Bielaszewska M, Schmidt H, Liesegang A, Prager R, Rabsch W, TschäPe H, Cízek A, Janda J, Bláhová K, Karch H (2000) Cattle can be a reservoir of sorbitol-fermenting Shiga toxin-producing Escherichia coli O157: H− strains and a source of human diseases. J Clin Microbiol 38: 3470-3473.
  6. Boucher HW, Talbot GH, Bradley JS, Edwards JE, Gilbert D, Rice LB, Scheld M, Spellberg B, Bartlett J (2009) Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. Clin Infect Dis 48: 1-12.
  7. Caffarena RD, Casaux ML, Schild CO, Fraga M, Castells M, Colina R, Maya L, Corbellini LG, Riet-Correa F, Giannitti F (2021) Causes of neonatal calf diarrhea and mortality in pasture-based dairy herds in Uruguay: a farm-matched case-control study. Braz J Microbiol 52: 977-988.
  8. Cengiz S, Adiguzel MC (2020) Determination of virulence factors and antimicrobial resistance of E. coli isolated from calf diarrhea, part of eastern Turkey. Ankara Univ Vet Fak Derg 67: 365-371.
  9. Cho YI, Yoon KJ (2014) An overview of calf diarrhea - infectious etiology, diagnosis, and intervention. J Vet Sci 15: 1-17.
  10. Coura FM, Freitas MD, Ribeiro J, De Leme RA, De Souza C, Alfieri AA, Facury Filho EJ, De Carvalho AU, Silva MX, Lage AP, Heinemann MB (2015) Longitudinal study of Salmonella spp., diarrheagenic Escherichia coli, Rotavirus, and Coronavirus isolated from healthy and diarrheic calves in a Brazilian dairy herd. Trop Anim Health Prod 47: 3-11.
  11. Debroy C, Maddox C (2001) Identification of virulence attributes of gastrointestinal Escherichia coli isolates of veterinary significanc. Anim Health Res Rev 1: 12.
  12. Donovan GA, Dohoo R, Montgomery DM, Bennett FL (1998) Calf and disease factors affecting growth in female Holstein calves in Florida, USA. Prev Vet Med 33: 10.
  13. Dubreuil JD, Isaacson RE, Schifferli DM (2016) Animal Enterotoxigenic Escherichia coli. EcoSal Plus 7: 47.
  14. Fidock DA, Mcnicholas PA, Lehrbach PR (1989) Nucleotide sequence of the F41 fimbriae subunit gene in Escherichia coli B41. Nucleic Acids Res 17: 2849.
  15. Foster DM, Smith GW (2009) Pathophysiology of diarrhea in calves. Vet Clin North Am Food Anim Pract 25: 13-36, xi.
  16. Franck SM, Bosworth BT, Moon HW (1998) Multiplex PCR for enterotoxigenic, attaching and effacing, and Shiga toxin-producing Escherichia coli strains from calves. J Clini Microbiol 36: 1795-1797.
  17. Guler L, Gunduz K, Ok U (2008) Virulence factors and antimicrobial susceptibility of Escherichia coli isolated from calves in Turkey. Zoonoses Public Health 55: 249-257.
  18. Gulliksen SM, Lie KI, Loken T, Osteras O (2009) Calf mortality in Norwegian dairy herds. J Dairy Sci 92: 2782-2795.
  19. Hang BPT, Wredle E, Börjesson S, Sjaunja KS, Dicksved J, Duse A (2019) High level of multidrug-resistant Escherichia coli in young dairy calves in southern Vietnam. Trop Anim Health Prod 51: 1405-1411.
  20. Hur T-Y, Jung Y-H, Choe C-Y, Cho Y-I, Kang S-J, Lee H-J, Ki K-S, Baek K-S, Suh G-H (2013) The dairy calf mortality: the causes of calf death during ten years at a large dairy farm in Korea. Korean J Vet Res 53: 103-108.
  21. Iguchi A, Iyoda S, Seto K, Morita-Ishihara T, Scheutz F, Ohnishi M (2015) Escherichia coli O-genotyping PCR: a comprehensive and practical platform for molecular O serogrouping. J Clini Microbiol 53: 2427-2432.
  22. Jerse AE, Yu J, Tall BD, Kaper JB (1990) A genetic locus of enteropathogenic Escherichia coli necessary for the production of attaching and effacing lesions on tissue culture cells. Proc Nat Acad Sci 87: 7839-7843.
  23. Mohammed S, Marouf S, Erfana AM, El JK, Hessain AM, Dawoud TM, Kabli SA, Moussa IM (2019) Risk factors associated with E. coli causing neonatal calf diarrhea. Saudi J Bio Sci 26: 1084-1088.
  24. Paton AW, Beutin L, Paton JC (1995) Heterogeneity of the amino-acid sequences of Escherichia coli Shiga-like toxin type-I operons. Gene 153: 71-74.
  25. Paton AW, Paton JC, Manning PA (1993) Polymerase chain reaction amplification, cloning and sequencing of variant Escherichia coli Shiga-like toxin type II operons. Microb Pathog 15: 77-82.
  26. Pervez A, Anjum FR, Bukhari AA, Anam S, S. R, Arshad MI (2018) Isolation and virulence genes characterization of diarrheagenic Escherichia coli from calves. Pak Vet J 38: 5.
  27. Prieto A, Lopez-Novo C, Diaz P, Diaz-Cao JM, Lopez-Lorenzo G, Anton C, Remesar S, Garcia-Dios D, Lopez C, Panadero R, Diez-Banos P, Morrondo P, Fernandez G (2022) Antimicrobial susceptibility of enterotoxigenic Escherichia coli from diarrhoeic neonatal calves in Spain. Animals (Basel) 12: 12.
  28. Roosendaal B, Gaastra W, De Graaf FK (1984) The nucleotide sequence of the gene encoding the K99 subunit of enterotoxigenic Escherichia coli. FEMS Microbiol Lett 22: 253-258.
  29. Sekizaki T, Akashi H, Terakado N (1985) Nucleotide sequences of the genes for Escherichia coli heat-stable enterotoxin I of bovine, avian, and porcine origins. Am J Vet Res 46: 909-912.
  30. Shahrani M, Dehkordi FS, Momtaz H (2014) Characterization of Escherichia coli virulence genes, pathotypes and antibiotic resistance properties in diarrheic calves in Iran. Biol Res 47: 13.
  31. Smith DR (2012) Field disease diagnostic investigation of neonatal calf diarrhea. Vet Clin North Am Food Anim Pract 28: 465-481.
  32. Thiry D, Saulmont M, Takaki S, De Rauw K, Duprez J-N, Iguchi A, Piérard D, Mainil JG (2017) Enteropathogenic Escherichia coli O80: H2 in young calves with diarrhea, Belgium. Emerg Infect Dis 23: 3.
  33. To S (1984) F41 antigen among porcine enterotoxigenic Escherichia coli strains lacking K88, K99, and 987P pili. Infect Immun 43: 549-554.
  34. Umpiérrez A, Acquistapace S, Fernández S, Oliver M, Acuña P, Reolón E, Zunino P (2016) Prevalence of Escherichia coli adhesion-related genes in neonatal calf diarrhea in Uruguay. J Infect Dev Ctries 10: 472-477.
  35. Usda (2008) Dairy 2007, Part II: Changes in the U.S. Dairy Cattle Industry, 1991–2007. Fort Collins, CO: 57-60.
  36. Van Boeckel TP, Glennon EE, Chen D, Gilbert M, Robinson TP, Grenfell BT, Levin SA, Bonhoeffer S, Laxminarayan R (2017) Reducing antimicrobial use in food animals. Science 357: 1350-1352.
  37. Wani S, Bhat M, Samanta I, Nishikawa Y, Buchh A (2003) Isolation and characterization of Shiga toxin‐producing Escherichia coli (STEC) and enteropathogenic Escherichia coli (EPEC) from calves and lambs with diarrhoea in India. Lett Appl Microbiol 37: 121-126.
  38. Yu J, Kaper JB (1992) Cloning and characterization of the eae gene of enterohaemorrhagic Escherichia coli O157: H7. Mol Microbiol 6: 411-417.
  39. Yuyama Y, Yoshimatsu K, Ono E, Saito M, Naiki M (1993) Postnatal change of pig intestinal ganglioside bound by Escherichia coli with K 99 fimbriae. J Biochem 113: 488-492.
Go to article

Authors and Affiliations

M.R. Coşkun
1
M. Şahin
2

  1. Department of Microbiology, Faculty of Veterinary Medicine, Kafkas University, 36100, Kars, Turkey
  2. Department of Microbiology, Faculty of Veterinary Medicine, Kyrgyz-Turkish Manas University, 720038, Bishkek, Kyrgyzstan
Download PDF Download RIS Download Bibtex

Abstract

Stone mastic asphalt is a gap-graded mix and is usually related to its high bitumen content and its skeleton-like constitution. Although famous for its durability, high resistance to fatigue and rutting, issues such as bleeding and premature aging do occur in the mix since it has a high bitumen content and voids due to its gap-graded structure. In order to encounter these problems from affecting the mix, some instances such as adding additives, rejuvenators and stabilizers into the mixture has been implemented. Nowadays, nano materials are being used in the asphalt mixtures and nano titanium is being introduced as a modifier to the asphalt binder in order to improve the mechanical properties of the stone mastic asphalt mix. The related tests done in order to access the improvement are resilient modulus, dynamic creep, moisture susceptibility and binder drain down. The content of nano titanium used in this research are 1%, 2%, 3%, 4% and 5%. This study is done to assess the mechanical performance of stone mastic asphalt with nano titanium modified binder.
Go to article

Authors and Affiliations

Nur Syafiqah Shamimi Mohd Zali
1
ORCID: ORCID
Khairil Azman Masri
1
ORCID: ORCID
Ramadhansyah Putra Jaya
1
ORCID: ORCID
Mohd Mustafa Al Bakri Abdullah
2
ORCID: ORCID
Muzamir Hasan
1
ORCID: ORCID
Mohd Rosli Mohd Hasan
3
ORCID: ORCID
Bartłomiej Jeż
4
ORCID: ORCID
Marcin Nabiałek
4
ORCID: ORCID
Marek Sroka
5
ORCID: ORCID
Paweł Pietrusiewicz
4
ORCID: ORCID

  1. Department of Civil Engineering, College of Engineering, Universiti Malaysia Pahang, 26300 Gambang, Kuantan, Pahang, Malaysia
  2. Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia
  3. School of Civil Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia
  4. Department of Physics, Faculty of Production Engineering and Materials Technology, Czestochowa University of Technology, 42-201 Czestochowa, Poland
  5. Division of Materials Processing Technology and Computer Techniques in Materials Science, Silesian 21 University of Technology, Poland
Download PDF Download RIS Download Bibtex

Abstract

The aim of the present study was to estimate the magnetic susceptibility of the boundary area ofwestern and southern Poland. The investigation was carried out in woodlands of chosen forest districts. Samples were collected selectively from the occurring genetic horizons ofpit soils. The low-field magnetic susceptibility was obtained in the laboratory using the MS2B Bartington apparatus. Heavy metal content (Fe, Zn, Pb and Cu) was analyzed using AAS method, after the mineralization in the 70% HClO4 + HNO3 solution. The magnetic susceptibility results arc very diverse and above 80% of them exceed 50· l0·-8 m3/kg, that is, a border value suggesting an occurrence ofa magnetic anomaly. Heavy metal content varies in a wide range and the highest values are observed in mountainous areas, where the impact of geological structure is visible. Obviously, the input of dust emissions is significant, what is confirmed by well and positive values of correlation coefficients between magnetic susceptibility and heavy metal content (especially lead) in the area of cluster III.
Go to article

Authors and Affiliations

Zygmunt Strzyszcz
Marzena Rachwał
Download PDF Download RIS Download Bibtex

Abstract

The article comprises synthesis of magnetically susceptible carbon sorbents based on bio raw materials – beet pulp. The synthesis was performed by one- and two-step methodology using FeCl3 as an activating agent. X-ray diffraction methods showed an increase in the distance between graphene layers to 3.7 Å in biocarbon synthesized by a two-step tech-nique and a slight decrease in inter-graphene distance to 3.55 Å for biocarbon synthesized by an one-step technique. In both magnetically susceptible samples, the Fe3O4 magnetite phase was identified. Biocarbon synthesized by a two-step technique is characterized by a microporous structure in which a significant volume fraction (about 35%) is made by pores of 2.2 and 5 nm radius. In the sample after a one-step synthesis, a significant increase in the fraction of pores with radii from 5 to 30 nm and a decrease in the proportion of pores with radii greater than 30 nm can be detected. Based on the analysis of low-angle X-ray scattering data, it is established that carbon without magnetic activation has the smallest specific area of 212 m2∙сm–3, carbon after one-stage synthesis has a slightly larger area of 280 m2∙сm–3, and after two-stage synthesis has the largest specific surface area in 480 m2∙сm–3. The adsorption isotherms of blue methylene have been studied. Biocarbon ob-tained by two-step synthesis has been shown to have significantly better adsorption properties than other synthesized bio-carbons. Isotherms have been analysed based on the Langmuir model.

Go to article

Authors and Affiliations

Christina Soloviy
ORCID: ORCID
Myroslav Malovanyy
ORCID: ORCID
Ihor Bordun
ORCID: ORCID
Fedir Ivashchyshyn
ORCID: ORCID
Anatoliy Borysiuk
Yuriy Kulyk
Download PDF Download RIS Download Bibtex

Abstract

Mycoplasma bovis is a highly contagious pathogen that causes clinical or subclinical mastitis. The present study was aimed for the isolation, molecular characterization and antibiogram determination of M. bovis from raw milk samples. Milk samples were collected randomly from lactating cows and buffaloes from different tehsils of district Faisalabad, Pakistan. Samples were inoculated on modified Hayflick medium and biochemical tests were performed for further confirmation of isolated M. bovis. Out of total 400 milk samples, 184 (46%) samples were found positive for culture method. The 16S-rRNA gene polymerase chain reaction was performed for molecular characterization of isolated M. bovis strains. Out of total 400 milk samples, 240 (60%) positive for M. bovis through PCR method were examined. The 16S-rRNA gene PCR positive isolated M. bovis strains were sequenced and results were compared using Maximum-likelihood method and sequenced strains of M. bovis were aligned and analyzed by Clustal W software. Antibiogram of isolated M. bovis strains was analyzed by disc diffusion assay against eight commonly used antibiotics. Tylosin (30μg) and Tilmicosin (15ug) showed inhibition zones of 32.34 ± 1.10 mm and 17.12 ± 0.93 mm respectively against isolated M. bovis which were found sensitive. Isolated M. bovis was found resistant to other commonly used antibiotics. Statistical analysis revealed that p-value was < 0.05 and the odds ratio was >1.0 at 95% CI. This study complemented the lack of epidemiological knowledge of molecular characterization, comparative effectiveness and resistance trends of isolated M. bovis strains against commonly used antibiotics.
Go to article

Bibliography

  1. Adorno BM, Salina A, Joaquim S, Guimarães FF, Lopes BC, Menozzi B, Langoni H (2021) Presence of Mollicutes and Mycoplasma bovis in nasal swabs from calves and in milk from cows with clinical mastitis. Vet Zootec 28: 001-009.
  2. Ahmad Z, Babar S, Abbas F, Awan MA, Abubakar M, Attique MA, Hassan Y, Rashid N, Ali M (2011) Identification and molecular characterization of Mycoplasma species from bovine lungs samples collected from slaughter house, Quetta, Balochistan, Pakistan. Pak J Life Soc Sci 9: 91-97.
  3. Ahmad Z, Babar S, Abbas F, Awan MA, Shafee M, Tariq MM, Mengal MA, Rashid N, Amin S, Taj K, Ali M (2014) Prevalence of Mycoplasma bovis in respiratory tract of cattle slaughtered in Balochistan, Pakistan. Pak Vet J 34: 46-49.
  4. Alhussen MA, Kirpichenko VV, Yatsentyuk SP, Nesterov AA, Byadovskaya OP, Zhbanovat TV, Sprygin AV (2021) Mycoplasma bovis, M. bovigenitalium and M. dispar as Bovine Pathogens: Brief characteristics of the pathogens (review). Agric Biol 56: 245-260.
  5. Kumar A, Verma AK, Gangwar NK, Rahal A (2012) Isolation, characterization and antibiogram of Mycoplasma bovis in sheep pneumonia. Asian J Anim Vet Adv 7: 149-157.
  6. Behera S, Rana R, Gupta PK, Kumar D, Sonal, Rekha V, Arun TR, Jena D (2018) Development of real- time PCR assay for the detection of Mycoplasma bovis. Trop Anim Health Prod 50: 875-882.
  7. Bokma J, Vereecke N, De Bleecker K, Callens J, Ribbens S, Nauwynck H, Haesebrouck F, Theuns S, Boyen F, Pardon B (2020) Phylogenomic analysis of Mycoplasma bovis from Belgian veal, dairy and beef herds. Vet Res 51: 121.
  8. Bokma J, Vereecke N, Nauwynck H, Haesebrouck F, Theuns S, Pardon B, Boyen F (2021) Genome-wide association study reveals genetic markers for antimicrobial resistance in Mycoplasma bovis. Microbiol Spectr 9: e0026221.
  9. Buller H, Blokhuis H, Jensen P, Keeling L (2018) Towards farm animal welfare and sustainability. Animals 2018, 8: 81.
  10. Caria M, Boselli C, Murgia L, Rosati R, Pazzona A (2013) Influence of low vacuum levels on milking characteristics of sheep, goat and buffalo. J Agr Eng 44: 217- 220.
  11. Cheng WN, Han SG (2020) Bovine mastitis: risk factors, therapeutic strategies, and alternative treatments – A review. Asian-Australas J Anim Sci . 33: 1699-1713.
  12. Deeney A S, Collins R, Ridley AM (2021) Identification of Mycoplasma species and related organisms from ruminants in England and Wales during 2005-2019. BMC Vet Res 17: 325.
  13. Farid MA, Abo-Shosha AA, Belal ES, Hassan MM (2018) Genotyping of pathogenic Mycoplasma bovis isolated from cattle in Kafr El-Sheikh Province, Egypt. J Pure Appl Microbiol. 12: 2103-2109.
  14. Ghafar A, Mcgill D, Stevenson MA, Badar M, Kumbher A, Warriach MH, Gasser RB, Jabbar A (2020) A participatory investigation of bovine health and production issues in Pakistan. Front Vet Sci 7: 248.
  15. Hata E, Harada T, Itoh M (2019) Relationship between antimicrobial susceptibility and multilocus sequence type of Mycoplasma bovis isolates and development of a method for rapid detection of point mutations involved in decreased susceptibility to macrolides, lincosamides, tetracyclines, and spectinomycin. Appl Environ Microbiol 85: e0057519.
  16. Hudzicki J (2009) Kirby-Bauer disk diffusion susceptibility test protocol. Am J Mol Biol 8: 2009.
  17. Ilyas F, Gillani DQ, Yasin M, Iqbal MA, Javed I, Ahmad S, Nabi I (2022) Impact of Livestock and Fisheries on Economic Growth: An Empirical Analysis from Pakistan. Sarhad J Agric 38: 160-169.
  18. Imandar M, Pourbakhsh SA, Jamshidian M, Salehi TZ (2018) Isolation, identification and molecular characterization of Mycoplasma bovis in mastitic dairy cattle by PCR and culture methods. J Hell Vet Med Soc 69: 815-822.
  19. Imran M, Rehman I, Sulehria AQ, Butt YM, Khan AM, Ziauddin A (2021) Profile of Antimicrobial Susceptibility from Cattles’s Milk Isolates Suffering from Mastitis in District Lahore. J Biores Manag 8: 6-14.
  20. Khan ZU (2022) Laws, Issues, Challenges, Analysis of Livestock Sector and International Best Practices. J Dev Soc Sci 3: 271-283.
  21. Klein U, de Jong A, Moyaert H, El Garch F, Leon R, Richard-Mazet A, Rose M, Maes D, Pridmore A, Thomson JR, Ayling RD (2017) Antimicrobial susceptibility monitoring of Mycoplasma hyopneumoniae and Mycoplasma bovis isolated in Europe. Vet Microbiol 204: 188-193.
  22. Konigsson MH, Bolske G, Johansson KE (2002) Intraspecific variation in the 16S- rRNA gene sequences of Mycoplasma agalactiae and Mycoplasma bovis strains. Vet Microbiol 85: 209-220.
  23. Mahmood F, Khan A, Hussain R, Khan IA, Abbas RZ, Ali HM, Younus M (2017) Patho-bacteriological investigation of an outbreak of Mycoplasma bovis infection in calves-Emerging stealth assault. Microb Pathog 107: 404-408.
  24. Maunsell FP, Donovan GA, (2009) Mycoplasma bovis infections in young calves. Vet Clin North Am Food Anim Pract 25: 139-177.
  25. Maunsell FP, Woolums AR, Francoz D, Rosenbusch RF, Step DL, Wilson DJ, Janzen ED (2011) Mycoplasma bovis infections in cattle. J Vet Inter Med 25: 772-783.
  26. Mojsoska B, Ghoul M, Perron GG, Jenssen H, Alatraktchi FA (2021) Changes in toxin production of environmental Pseudomonas aeruginosa isolates exposed to sub- inhibitory concentrations of three common antibiotics. PloS One 16: e0248014.
  27. Nicholas RA, Fox LK, Lysnyansky I (2016) Mycoplasma mastitis in cattle: To cull or not to cull. Vet J 216: 142-147.
  28. Niu J, Wang D, Yan M, Chang Z, Xu Y, Sizhu S, Li Z, Hu S, Bi D (2021) Isolation, identification and biological characteristics of Mycoplasma bovis in yaks. Microb Pathog 150: 104691.
  29. Pal A, Chakravarty AK (2020) Disease resistance for different livestock species. Genet Breed Dis Resist Livest 2020: 271-296.
  30. Passchyn P, Piepers S, De Meulemeester L, Boyen F, Haesebrouck F, De Vliegher S (2012) Between-herd prevalence of Mycoplasma bovis in bulk milk in Flanders, Belgium Res Vet Sci 92: 219-220.
  31. Perez-Casal J, Prysliak T, Maina T, Suleman M, Jimbo S (2017) Status of the development of a vaccine against Mycoplasma bovis. Vaccine 35: 2902-2907.
  32. Romero J, Benavides E, Meza C (2018) Assessing financial impacts of subclinical mastitis on Colombian dairy farms. Front Vet Sci 5: 273
  33. Rossetti BC, Frey J, Pilo P (2010) Direct detection of Mycoplasma bovis in milk and tissue samples by real-time PCR. Molar Cell Pro. 24: 321-323.
  34. Salina A, Timenetsky J, Barbosa MS, Azevedo CM, Langoni H (2020) Microbiological and molecular detection of Mycoplasma bovis in milk samples from bovine clinical mastitis. Pesqui Vet Bras 40: 82-87.
  35. Shao Y, Wang Y, Yuan Y, Xie Y (2021) A systematic review on antibiotics misuse in livestock and aquaculture and regulation implications in China. Sci Total Environ 798: 149205.
  36. Abadi AT, Rizvanov AA, Haertlé T, Blatt NL (2019) World Health Organization report: current crisis of antibiotic resistance. BioNanoScience 9: 778-788.
  37. Gogoi-Tiwari J, Tiwari HK, Wawegama NK, Premachandra C, Robertson ID, Fisher AD, Waichigio FK, Irons P, Aleri JW (2022) Prevalence of Mycoplasma bovis Infection in Calves and Dairy Cows in Western Australia. Vet Sci 9: 351-358.
  38. Vereecke N, Bokma J, Haesebrouck F, Nauwynck H, Boyen F, Pardon B, Theuns S (2020) High quality genome assemblies of Mycoplasma bovis using a taxon- specific Bonito basecaller for MinION and Flongle long-read nanopore sequencing. BMC Bioinform 21: 517.
  39. Verraes C, Claeys W, Cardoen S, Daube G, De Zutter L, Imberechts H, Dierick K, Herman L (2014) A review of the microbiological hazards of raw milk from animal species other than cows. Inter Dairy J 39: 121-130.
  40. Wisselink HJ, Smid B, Plater J, Ridley A, Andersson AM, Aspan A, Pohjanvirta T, Vahanikkila N, Larsen H, Hogberg J, Colin A, Tardy F (2019) A European interlaboratory trial to evaluate the performance of different PCR methods for Mycoplasma bovis diagnosis. BMC Vet Res 15: 86.
Go to article

Authors and Affiliations

A. Jabbar
1
M. Ashraf
1
S.U. Rahman
1
M.S. Sajid
2

  1. Institute of Microbiology, University of Agriculture, Jail Road, Faisalabad, Punjab 38000, Pakistan
  2. Department of parasitology, University of Agriculture, Jail Road, Faisalabad, Punjab 38000, Pakistan
Download PDF Download RIS Download Bibtex

Abstract

Antimicrobial resistance in Salmonella has been associated with the presence of integrons and many other resistance mechanisms contributing to the spread of antimicrobial-resistant genes within and between livestock and human populations. In this study, the presence of Salmonella serovars from broiler and cattle samples and their antimicrobial resistance, integrons, tet resistance, ESBL and resistance genes carriage were investigated. Total of 209 litter (broiler farms) and fecal samples (cattle farms) were examined by bacteriological procedures, susceptibilities against 18 antimicrobials and genes carriages were detected by singleplex and multiplex PCR. A total of 46/209 (22 %) Salmonella strains were isolated. Six different Salmonella serotypes from 46 Salmonella isolates were identified and the most common serotype was S. Infantis 38 (82.6%) from broiler litter; followed by S. Kitenge 3 (6.5 %) from fecal sample. The highest occurrence of resistance observed for penicilline (46/46, %100), lincomycin (43/46, 93.5%) and 42 isolates (43/46, 93.5%) exhibited MDR. The overall occurrence of class 1, 2 and 3 integrons carrying Salmonella in tested samples were 63.04% (29/46), 43.5% (20/46) and 84.8% (39/46) respectively. Out of the 27 isolates produced an ESBL, mostly CTX and TEM. On 46 Salmonella isolates, in 16 (34.8%) Tcr’ genes were determined. Genotypic and phenotipic detection of ESBL genes found within integrons from Salmonella isolates from different sources (broiler and cattle) can provide powerful information about health and economic risk associated with transferable multidrug resistance.
Go to article

Bibliography


Aslam M, Checkley S, Avery B, Chalmers G, Bohaychuk V, Gensler G, Reid-Smith R, Boerlin P (2012) Phenotypic and genetic characteri-zation of antimicrobial resistance in Salmonella serovars isolated from retail meats in Alberta, Canada. Food Microbiol 32: 110-117.
Ahmed AM, Shimamoto T (2014) Characterization of integrons and resistance genes in multidrug-resistant Salmonella enterica isolated from meat and dairy products in Egypt. Int J Food Microbiol 189: 39-44.
Akiba M, Kusumoto M, Iwata T (2010) Rapid identification of Salmonella enterica serovars, Typhimurium, Choleraesuis, Infantis, Hadar, Enteritidis, Dublin and Gallinarum, by multiplex PCR. J Microbiol Methods 85: 9-15.
Antunes P, Machado J, Peixe L (2006) Characterization of antimicrobial resistance and class 1 and 2 integrons in Salmonella enterica isolates from different sources in Portugal. J Antimicrob Chemother 58: 297-304.
Asgharpour F, Mahmoud S, Marashi A, Moulana Z (2018) Molecular detection of class 1, 2 and 3 integrons and some antimicrobial resistance genes in Salmonella Infantis isolates. Iran J Microbiol 10: 104-110.
Barlow RS, Fegan N, Gobius KS (2009) Integron-containing bacteria in faeces of cattle from different production systems at slaughter. J Appl Microbiol 107: 540-545.
Bennett PM (1999) Integrons and gene cassettes: a genetic construction kit for bacteria. J Antimicrob Chemother 43: 1-4.
Bush K, Jacoby GA (2010) Updated functional classifica tion of beta-lactamases. Antimicrob Agents Chemother 54: 969-976.
Carfora V, Alba P, Leekitcharoenphon P, Ballarò D, Cordaro G, Di Matteo P, Donati V, Ianzano A, Iurescia M, Stravino F, Tagliaferri T, Battisti A, Franco A (2018) Colistin resistance mediated by mcr-1 in ESBL-producing, multidrug resistant Salmonella Infantis in broiler chicken industry, Italy (2016-2017). Front Microbiol 9:1880.
Castro-Vargas RE, Herrera-Sánchez MP, Rodríguez -Hernández R, Rondón-Barragán IS (2020) Antibiotic resistance in Salmonella spp. isolated from poultry: A global overview. Vet World 13: 2070-2084.
Chang Q, Wang W, Regev-Yochay G, Lipsitch M, Hanage WP (2015) Antibiotics in agriculture and the risk to human health: how worried should we be? Evol Appl 8: 240-247.
Chuanchuen R, Padungtod P (2009) Antimicrobial resistance genes in Salmonella enterica isolates from poultry and swine in Thai-land. J Vet Med Sci 71: 1349-1355.
CLSI (2020) Performans standards for antimicrobial disk and dilution susceptibility tests for bacteria isolated from animals, 5 th ed., Clinical and Laboratory Standarts Institute document Vet01S. Clinical and Laboratory Standards Institute, Wayne, Pennsylvania.
de Jong A, Smet A, Ludwig C, Stephan B, de Graef E, Vanrobaeys M, Haesebrouck F (2014) Antimicrobial susceptibility of Salmonella isolates from healthy pigs and chickens (2008-2011). Vet Microbiol 171: 298-306.
Dessie HK, Bae DH, Lee YJ (2013) Characterization of integrons and their cassettes in Escherichia coli and Salmonella isolates from poultry in Korea. Poult Sci 92: 3036-3043.
Duc VM, Nakamoto Y, Fujiwara A, Toyofuku H, Obi T, Chuma T (2019) Prevalence of Salmonella in broiler chickens in Kagoshi-ma, Japan in 2009 to 2012 and the relationship between serovars changing and antimicrobial resistance. BMC Vet Res 15: 108.
EFSA (2021) European Food Safety Authority, European Centre for Disease Prevention Control. The European Union One Health 2019 Zoonoses Report. EFSA J 19: e06406.
Firoozeh F, Shahcheraghi F, Salehi TZ, Karimi V, Aslani MM (2011) Antimicrobial resistance profile and presence of class I integrons among Salmonella enterica serovars isolated from human clinical specimens in Tehran, Iran. Iran J Microbiol 3: 112-117.
Franco A, Leekitcharoenphon P, Feltrin F, Alba P, Cordaro G, Iurescia M, Tolli R, D’Incau M, Staffolani M, Di Giannatale E, Hendriksen RS, Battisti A (2015) Emergence of a clonal lineage of multidrug-resistant ESBL-producing Salmonella Infantis transmitted from broilers and broiler meat to humans in Italy between 2011 and 2014. PLoS One 10: e0144802.
Frech G, Schwarz S (2000) Molecular analysis of tetracycline resistance in Salmonella enterica subsp. enterica serovars Typhimurium, Enteritidis, Dublin, Choleraesuis, Hadar and Saintpaul: construction and application of specific gene probes. J Appl Microbiol 89: 633-641.
Gal-Mor O, Valinsky L, Weinberger M, Guy S, Jaffe J, Schorr YI, Raisfeld A, Agmon V, Nissan I (2010) Multidrug -resistant Salmonella enterica serovar Infantis, Israel. Emerg Infect Dis 16: 1754-1757.
García-Soto S, Abdel-Glil MY, Tomaso H, Linde J, Methner U (2020) Emergence of multidrug-resistant Salmonella enterica subspecies enterica serovar Infantis of multilocus sequence type 2283 in German broiler farms. Front Microbiol 11: 1741.
Ghoddusi A, Fasaei BN, Salehi TZ, Akbarein H (2019) Serotype distribution and antimicrobial resistance of Salmonella isolates in human, chicken, and cattle in Iran. Arch Razi Inst 74: 259-266.
Goldstein C, Lee MD, Sanchez S, Hudson C, Phillips B, Register B, Grady M, Liebert C, Summers AO, White DG, Maurer JJ (2001) Inci-dence of class 1 and 2 integrases in clinical and commensal bacteria from livestock, companion animals, and exotics. Antimicrob Agents Chemother 45: 723-726.
Gutema FD, Agga GE, Abdi RD, De Zutter L, Duchateau L, Gabriël S (2019) Prevalence and serotype diversity of Salmonella in apparently healthy cattle: systematic review and meta-analysis of published studies, 2000-2017. Front Vet Sci 6: 102.
Hall RM (2010) Salmonella genomic islands and antibiotic resistance in Salmonella enterica. Future Microbiol 5: 1525-1538.
Hammuel C, Jatau ED, Whong CMZ (2014) Prevalence and antibiogram pattern of some nosocomial pathogens isolated from Hospital environment in Zaria, Nigeria. Aceh Int J Sci Technol 3: 131-139.
Hasman H, Mevius D, Veldman K, Olesen I, Aarestrup FM (2005) Beta-Lactamases among extended-spectrum beta-lactamase (ESBL)-resistant Salmonella from poultry, poultry products and human patients in the Netherlands. J Antimicrob Chemother 56: 115-121.
Hindermann D, Gopinath G, Chase H, Negrete F, Althaus D, Zurfluh K, Tall BD, Stephan R, Nüesch-Inderbinen M (2017) Salmonella enterica serovar Infantis from food and human infections, Switzerland, 2010-2015: poultry-related multidrug resistant clones and an emerging ESBL producing clonal lineage. Front Microbiol 8: 1322.
ISO (2017) ISO 6579-1, Microbiology of the food chain-horizontal method for the detection, enumeration and serotyping of Salmonella – Part 1: detection of Salmonella spp.; International Organization for Standardization, Geneva, Switzerland.
Issenhuth-JeanJean S, Roggentin P, Mikoleit M, Guibourdenche M, de Pinna E, Nair S, Fields IP, Weill FX (2014) Supplement 2008-2010 (no. 48) to the White-Kauffmann Scheme. Res Microbiol 165: 526-530.
Krumperman PH (1983) Multiple antibiotic resistance indexing of Escherichia coli to identify high-risk sources of fecal contamination of foods. Appl Environ Microbiol 46: 165-170.
Le Minor L (1992) The Genus Salmonella. In: Balows A, Truper HG, Dworkin M, Harder W, Schleifer KH A (eds) Handbook on the biology of bacteria: ecophysiology, isolation, ıdentification, Application. Springer-Verlag, New York, Berlin, Heidelberg, pp 2760-2774.
Leverstein-van Hall MA, Blok HE, Donders AR, Paauw A, Fluit AC, Verhoef J (2003) Multidrug resistance among Enterobacteriaceae is strongly associated with the presence of integrons and is independent of species or isolate origin. J Infect Dis 187: 251-259.
Livermore DM, Canton R, Gniadkowski M, Nordmann P, Rossolini GM, Arlet G, Ayala J, Coque TM, Kern -Zdanowicz I, Luzzaro F, Poirel L, Woodford N (2006) CTX-M: changing the face of ESBLs in Europe. J Antimicrob Chemother 59: 165-174.
Lu Y, Wu CM, Wu GJ, Zhao HY, He T, Cao XY, Dai L, Xia LN, Qin SS, Shen JZ (2011) Prevalence of antimicrobial resistance among Salmonella isolates from chicken in China. Foodborne Pathog Dis 8: 45-53.
Machado E, Ferreira J, Novais A, Peixe L, Canton R, Baquero F, Coque TM (2007) Preservation of integron types among Enterobacteriaceae producing extended-spectrum beta-lactamases in a Spanish hospital over a 15-year period (1988 to 2003). Antimicrob Agents Chemother 51: 2201-2204.
Mazel D (2006) Integrons: agents of bacterial evolution. Nat Rev Microbiol 4: 608-620.
McDermott PF, Zhao S, Tate H (2018) Antimicrobial resistance in non typhoidal Salmonella. Microbiol Spectr 6: 6.4.16.
Michalova E, Novotna P, Schlegelova J (2004) Tetracyclines in veterinary medicine and bacterial resistance to them. Vet Med 49: 79-100.
Morshed R, Peighambari SM (2010) Drug resistance, plasmid profile and random amplified polymorphic DNA analysis of Iranian isolates of Salmonella Enteritidis. New Microbiol 33: 47-56.
Ng LK, Martin I, Alfa M, Mulvey M (2001) Multiplex PCR for the detection of tetracycline resistant genes. Mol Cell Probes 15: 209-215.
Nógrády N, Király M, Davies R, Nagy B (2012) Multidrug resistant clones of Salmonella Infantis of broiler origin in Europe. Int J Food Microbiol 157:108-112.
Pan H, Zhou X, Chai W, Paudyal N, Li S, Zhou X, Zhou K, Wu Q, Wu B, Li G, Rajkovic A, Fang W, Rankin SC, Li Y, Xu X, Schifferli DM, Yue M (2019) Diversified sources for human infections by Salmonella enterica serovar Newport. Transbound Emerg Dis 66: 1044-1048.
Pate M, Micunovic J, Golob M, Vestby LK, Ocepek M (2019) Salmonella Infantis in broiler flocks in Slovenia: the prevalence of multidrug resistant strains with high genetic homogeneity and low biofilm-forming ability. Biomed Res Int 2019: 4981463.
Paterson DL, Bonomo RA (2005) Extended-spectrum beta-lactamases: a clinical update. Clin Microbiol Rev 18: 657-686.
Paudyal N, Pan H, Elbediwi M, Zhou X, Peng X, Li X, Fang W, Yue M (2019) Characterization of Salmonella Dublin isolated from bovine and human hosts. BMC Microbiol 19: 226.
Proietti PC, Stefanetti V, Musa L, Zicavo A, Dionisi AM, Bellucci S, Mensa AL, Menchetti L, Branciari R, Ortenzi R, Franciosini MP (2020) Genetic profiles and antimicrobial resistance patterns of Salmonella Infantis strains isolated in Italy in the food chain of broiler meat production. Antibiotics 9: 814
Rahmani M, Peighambari SM, Svendsen CA, Cavaco LM, Agersø Y, Hendriksen RS (2013) Molecular clonality and antimicrobial resistance in Salmonella enterica serovars Enteritidis and Infantis from broilers in three Northern regions of Iran. BMC Vet Res 9: 66.
Rao S, Maddox CW, Hoien-Dalen P, Lanka S, Weigel RM (2008) Diagnostic accuracy of Class I integron PCR method in detection of antibi-otic resistance in Salmonella isolates from swine production systems. J Clin Microbiol 46: 916-920.
Revathi G, Shannon KP, Stapleton PD, Jain BK, French GL (1998) An outbreak of extended-spectrum, beta-lactamase producing Salmonella Senftenberg in a burns ward. J Hosp Infect 40: 295-302.
Rhouma M, Letellier A (2017) Extended-spectrum beta-lactamases, carbapenemases and the mcr-1 gene: is there a historical link? Int J Anti-microb Agents 49: 269-271.
Roca I, Akova M, Baquero F, Carlet J, Cavaleri M, Coenen S, Cohen J, Findlay D, Gyssens I, Heure OE, Kahlmeter G, Kruse H, Laxmina-rayan R, Liébana E, López-Cerero L, MacGowan A, Martins M, Rodríguez-Baño J, Rolain J-M, Segovia C, Siqauque B, Tacconelli E, Wel-lington E, Vila J (2015) The global threat of antimicrobial resistance: science for intervention. New Microbes New Infect 6: 22-29.
Sefton AM (2002) Mechanisms of antimicrobial resistance: their clinical relevance in the new millennium. Drugs 62: 557-566.
Thomas KM, de Glanville WA, Barker CG, Benschop J, Buza JJ, Cleaveland S, Davis MA, French NP, Mmbaga BT, Prinsen G, Swai ES, Zadoks RN, Crump JA (2020) Prevalence of Campylobacter and Salmonella in African food animals and meat: a systematic review and meta-analysis. Int J Food Microbiol 315: 108382.
Threlfall EJ (2000) Epidemic Salmonella Typhimurium DT 104 - a truly international multiresistant clone. J Antimicrob Chemother 46: 7-10.
Threlfall EJ (2002) Antimicrobial drug resistance in Salmonella: problems and perspectives in food-and water-borne infections. FEMS Microbiol Rev 26: 141-148.
Trongjit S, Angkititrakul S, Tuttle RE, Poungseree J, Padungtod P, Chuanchuen R (2017) Prevalence and antimicrobial resistance in Salmonella enterica isolated from broiler chickens, pigs and meat products in Thailand -Cambodia border provinces. Microbiol Immu-nol 61: 23-33.
Yan SS, Pendrak ML, Abela-Ridder B, Punderson JW, Fedorko DP, Foley SL (2003) An overview of Salmonella typing: Public health perspectives. Clin Applied Immunol Rev 4: 189-204.
Yusuf E, Bax HI, Verkaik NJ, van Westreenen M (2021) An update on eight “New” antibiotics against multidrug -resistant Gram-negative bacteria. J Clin Med 10: 1068.
Zhao X, Hu M, Zhang Q, Zhao C, Zhang Y, Li L, Qi J, Luo Y, Zhou D, Liu Y (2020) Characterization of integrons and antimicrobial re-sistance in Salmonella from broilers in Shandong, China. Poult Sci 99: 7046-7054.
Zhao X, Ye C, Chang W, Sun S (2017a) Serotype distribution, antimicrobial resistance, and class 1 integrons profiles of Salmonella from animals in slaughterhouses in Shandong Province, China. Front Microbiol 8: 1049.
Zhao X, Yang J, Zhang B, Sun S, Chang W (2017b) Characterization of integrons and resistance genes in Salmonella isolates from farm animals in Shandong Province, China. Front Microbiol 8: 1300.
Zwe YH, Yen-Tang VC, Aung KT, Gutiérrez RA, Ng LC, Yuk HG (2018) Prevalence, sequence types, antibiotic resistance and, gyrA muta-tions of Salmonella isolated from retail fresh chicken meat in Singapore. Food Control 90: 233-240.
Go to article

Authors and Affiliations

O. Sahan Yapicier
1
D. Ozturk
2

  1. Republic of Turkey Ministry of Agriculture and Forestry Veterinary Control Central Research Institute, Bacteriological Diagnostic Laboratory, 06020, Ankara, Turkey
  2. Mehmet Akif Ersoy University, Faculty of Veterinary Medicine, Department of Microbiology, 15030, Burdur, Turkey
Download PDF Download RIS Download Bibtex

Abstract

Research performed in the years 1999–2002 was carried out in Great Poland region on varieties of winter wheat Elena and Tercja. Experiments included three programmes of wheat cultivation: 1 – Conventional winter wheat protection based on recommendations for commercial fields; 2 – Integrated pest management programme where the control of diseases and insect pests was carried out on the background of thresholds of harmfulness/noxiousness, and weather forecasts; 3 – Untreated, without protection against diseases and pests. Two levels of nitrogen fertilization were applied in the experiments (120 kg N/ha and 170 kg N/ha) and the newest plant protection products were used for controlling fungal pathogens and noxious insects. The occurrence of diseases and insect pests, as well as beneficial entomofauna was determined in relation to each experimental variant, and occurring changes were analysed. Effectiveness of disease and pest control were calculated. Grain yield and its quality were determined and economical profitability for both conventional and integrated programmes calculated. It was shown that a high profitability can be obtained through the application of integrated pest management, as a result of correct choice and application of plant protection products, as well as proper choice of wheat cultivars and appropriate nitrogen fertilization.

Go to article

Authors and Affiliations

Cecylia Jańczak
Pankracy Bubniewicz
Stefan Pruszyński

This page uses 'cookies'. Learn more