Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Soil loss is a major problem for watersheds management in semi-arid environments. The objective of the present study is to analyze the annual and seasonal patterns of suspended loads and quantify the specific sediment yields in a semi-arid environment of the Mazafran Watershed in central Algeria. The obtained information of water discharge and suspended sediment load, recorded during 19 years, was confronted with precipitation data in order to establish the relationships between theforcing agents and erosive processes. The specific sediment yield was estimated by assessing rating curve data under two types of identified responses. The obtained results allowedconfirming the seasonality on suspended sediment transport in the studied basin, which accounts for 56% of the total suspended sediment load estimated in winter. The mean annual suspended sediment is estimated at 17.52 Mg·ha–1·y–1. The results highlighted that the type 2 event dominates the production of sediment in the study area in comparison with type 1 event. The analysis of the variability of rainfall erosivity index showed that there is a strong correlation between the annual precipitation and modified Fournier index ( MFI), and a weak correlation with the monthly precipitation concentration index ( PCI). Moreover, the spatial distribution of the modified Fournier index at the basin scale showed the highest precipitation aggressiveness in the Southern part of the study region for both type of events, whereas the precipitation aggressiveness low to moderate in the remaining part of the study region.
Go to article

Authors and Affiliations

Mosbah Rabah
1
ORCID: ORCID
Hamad Bouchelkia
1
ORCID: ORCID
Fadila Belarbi
1
ORCID: ORCID
Agustin Millares
2
ORCID: ORCID

  1. University of Abou Bekr Belkaïd, Faculty of Technology, Department of Hydraulics, Rue Abi Ayad Abdelkrim Fg Pasteur, 22, BP 119, 13000, Tlemcen, Algeria
  2. Andalusian Inter-University Institute for Earth System Research (IISTA-CEAMA), Environmental Fluid Dynamic Group, Granada, Spain
Download PDF Download RIS Download Bibtex

Abstract

To investigate and assess the effects of land use and its changes on concentrations of heavy metals (Pb, Zn, Cd, Cu, Mn, Ni, Fe) in the tributary of drinking water reservoir catchment, soils of different land use types (forest, arable land, meadows and pastures, residential areas), suspended sediment and bottom sediment were collected. Heavy metals were analyzed using atomic absorption spectrophotometry (AAS). The metal distribution pattern was observed, where Zn and Cd could be considered as main metal contaminants. The variation in the concentration level of Zn and Cd in studied soils showed the impact of pollution from anthropogenic activities. Also some seasonal variations were visible among the suspended sediment and bottom sediment samples which could be associated with land agricultural practices or meteorological conditions. The sediment fingerprints approach used for determining sources of the suspension in the catchment showed (Kruskal-Wallis H test, p<0.05), that only Mn and Ni were not able to be distinguished among the potential sediment sources. A multiple linear regression model described the relationship between suspended sediment and 4 types of soil samples. The results related suspended composition mostly to the samples from the residential land use. Considering the contemporary trend of observed changes in land use resulting in conversion of agricultural areas into residential and service structures these changes can be essential for the contamination of aquatic environment. This situation is a warning sign due to the rapid industrialization, urbanization and intensive agriculture in this region what can significantly affect the drinking water quality.

Go to article

Authors and Affiliations

Gabriela Zemełka
Małgorzata Kryłów
Ewa Szalińska van Overdijk
Download PDF Download RIS Download Bibtex

Abstract

When high precision modelling is required, for example, with the estimation of suspended sediment load (SSL), data-driven models are preferred over physically-based numerical models for their real-time, short-horizon prediction ability. The investigation of SSL, as an important index in engineering practices assessment, like design and operation of the hydraulic structures not only shows the hydrological behaviour of the river, but also illustrates the valuable information about the water quality deterioration, surface-groundwater interaction and land-use changes of the watershed. The following data-driven methods were compared in order to predict SSL at the Seyra gauging station on the Karaj River in Iran: Fuzzy logic (FL), two adaptive neuro-fuzzy inference systems (i.e., ANFIS-GP and ANFIS-FCM models), an artificial neural network (ANN), and least squares support vector machine (LSSVM). Monthly average river flow and SSL data for 50 years were obtained from the Tehran Regional Water Authority (TRWA). The data was first divided into training, validation and test sets and the SSL was then predicted using the ANN, FL, ANFIS, and LSSVM models. The reliability of the applied models was evaluated by the correlation coefficient (R), root mean square error (RMSE), and mean absolute error (MAE). The results showed that the ANFIS models outperformed the ANN, FL, and LSSVM models for predicting SSL using the given input and output data. Overall, the performances of the artificial intelligence models used in the present study were satisfac-tory in predicting the non-linear behaviour of the SSL.

Go to article

Authors and Affiliations

Khalil Rezaei
Meysam Vadiati
Download PDF Download RIS Download Bibtex

Abstract

The study was carried out in the area of three dam reservoirs: Blizne and Maziarnia (Voivodeship of Podkarpackie) and Nielisz (Voivodeship of Lublin). The main parameter differentiating the reservoirs was the water retention time and the manner of water discharge from the reservoirs. Three test sites were designated in the area of each reservoir: in the river zone of the reservoir, in the central part of the reservoir, and near the reservoir dam. At these sites, the concentrations of suspended sediment in the water and the content of organic matter in it, the concentrations of total phosphorus and total nitrogen, as well as chlorophyll a were monitored. In addition, two control sites were established: on the river upstream of the reservoir and on the river downstream of the dam, respectively. At these points, the concentrations of suspended sediments in the water and their organic matter content were recorded. The obtained results of the study and multivariate analysis of the data showed that morphometric parameters (including water retention time) of reservoirs and the method of water discharge influence water quality in downstream rivers. It was found that by using lower discharge and ensuring a sufficiently long retention time of water in the reservoir, it is possible to effectively limit the negative aspects of hydrotechnical structures’ impact on the natural environment.
In practice, the observed relationships may constitute an important and missing link in the aspect of minimising undesirable side effects of this type of hydrotechnical objects.
Go to article

Authors and Affiliations

Maksymilian Cieśla
1
ORCID: ORCID
Renata Gruca-Rokosz
1
ORCID: ORCID

  1. Rzeszow University of Technology, Faculty of Civil and Environmental Engineering and Architecture, Department of Environmental and Chemistry Engineering, al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland

This page uses 'cookies'. Learn more