Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 8
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Lately, there has been increased interest in hybrid excitation electrical machines. Hybrid excitation is a construction that combines permanent magnet excitation with wound field excitation. Within the general classification, these machines can be classified as modified synchronous machines or inductor machines. These machines may be applied as motors and generators. The complexity of electromagnetic phenomena which occur as a result of coupling of magnetic fluxes of separate excitation systems with perpendicular magnetic axis is a motivation to formulate various mathematical models of these machines. The presented paper discusses the construction of a unipolar hybrid excitation synchronous machine. The magnetic equivalent circuit model including nonlinear magnetization curves is presented. Based on this model, it is possible to determine the multi-parameter relationships between the induced voltage and magnetomotive force in the excitation winding. Particular attention has been paid to the analysis of the impact of additional stator and rotor yokes on above relationship. Induced voltage determines the remaining operating parameters of the machine, both in the motor and generator mode of operation. The analysis of chosen correlations results in an identification of the effective control range of electromotive force of the machine.

Go to article

Authors and Affiliations

Emil Kupiec
Włodzimierz Przyborowski
Download PDF Download RIS Download Bibtex

Abstract

Renewable energy sources are connected to the grid through inverters, resulting in reduced grid inertia and poor stability. Traditional grid-connected inverters do not have the function of voltage and frequency regulation and can no longer adapt to the new development. The virtual synchronous generator (VSG) has the function of voltage and frequency regulation and has more outstanding advantages than the traditional inverter. Based on the principle of the VSG, the relationship between energy storage capacity, frequency response and output power of the VSG is derived, and the relationship between the virtual inertia coefficient, damping coefficient and frequency characteristics of the VSG and output power is revealed. The mathematical model is established and modeled using the Matlab/Simulink simulation software, and the simulation results verify the relationship between energy storage capacity and frequency response and the output power of the VSG.
Go to article

Authors and Affiliations

Baoge Zhang
1
ORCID: ORCID
Shanyan Ping
1
Yi Long
1
Yuemin Jiao
1
Boxiang Wu
1

  1. School of Automation and Electrical Engineering, Lanzhou Jiaotong University, China
Download PDF Download RIS Download Bibtex

Abstract

This paper proposes an electromechanical transient method to build a battery energy storage system-based virtual synchronous generator model, suitable for a large-scale grid. This model consists of virtual synchronous generator control, system limitation and the model interface. The equations of a second-order synchronous machine, the characteristics of charging/discharging power, state of charge, operating efficiency, dead band and inverter limits are also considered. By equipping the energy storage converter into an approximate synchronous voltage source with an excitation system and speed regulation system, the necessary inertia and damping characteristics are provided for the renewable energy power system with low inertia and weak damping. Based on the node current injection method by the power system analysis software package (PSASP), the control model is built to study the influence of different energy storage systems. A study on the impact of renewable energy unit fluctuation on frequency and the active power of the IEEE 4-machine 2-area system is selected for simulation verification. Through reasonable control and flexible allocation of energy storage plants, a stable and friendly frequency environment can be created for power systems with high-penetration renewable energy.
Go to article

Authors and Affiliations

Juntao Cui
1
Zhao Li
2
ORCID: ORCID
Ping He
2
ORCID: ORCID
Zhijie Gong
2
Jie Dong
2
ORCID: ORCID

  1. Lanzhou Resources and Environment Voc-Tech University, China
  2. Zhengzhou University of Light Industry, China
Download PDF Download RIS Download Bibtex

Abstract

The purpose of this paper is to develop a dynamic thermal model of a permanent magnet excited synchronous motor (PMSM). The model estimates the temperature at specific points of the machine during operation. The model is implemented using thermal network theory, whose parameters are determined by means of analytical approaches. Usually thermal models are initialized and referenced to room temperature. However, this can lead to incorrect results, if the simulations are performed when the electrical machine operates under “warm” conditions. An approach is developed and discussed in this paper, which captures the model in critical states of the machine. The model gives feedback by online measured quantities to estimate the initial temperature. The paper provides an extended dynamic thermal model, which leads to a more accurate and more efficient thermal estimation.

Go to article

Authors and Affiliations

Christelle Piantsop Mbo’O
Kay Hameyer
Download PDF Download RIS Download Bibtex

Abstract

The development in industrial systems leads to the augmentation in the consumption of the power. Therefore, this development makes use of multiphase machines. The use of multiphase machines caused several problems and defects. Electrical energy is mainly distributed in a three-phase system to provide the electrical power necessary for the electrical engineering equipment and materials. The sinusoidal aspect of the required original voltage primarily preserves its essential qualities for transmitting useful power to terminal equipment. When the voltage waveform is no longer sinusoidal, perturbations are encountered, which generate malfunctions and overheating of the receivers and the equipment connected to the same electrical supply network. The main disturbing phenomena are harmonics, voltage fluctuations, voltage unbalances, electromagnetic fields, and electrostatic discharges. This present work aims to study the effects of harmonic pollution and voltage unbalance on the five-phase permanent magnet synchronous machine using spectrum current analysis and wavelet transform.
Go to article

Authors and Affiliations

Ahmed Amine Kebir
1
ORCID: ORCID
Mouloud Ayad
1
ORCID: ORCID
Saoudi Kamel
1
ORCID: ORCID

  1. LPM3E Laboratory, Faculty of Sciences and Applied Sciences, University of Bouira, Algeria
Download PDF Download RIS Download Bibtex

Abstract

Large synchronous generators are of high importance for the stability of power systems. They generate the frequency of the system and stabilize it in case of severe grid faults like trips of large in-feeders or loads. In distributed energy systems, in-feed via inverters will replace this generation in large parts. Modern inverters are capable of supporting grid frequency during severe faults by different means on the one hand. On the other hand, higher Rates of Change of Frequency (RoCoF) after incidents need to be accustomed by future systems. To be able to analyse the RoCoF withstand capability of synchronous or induction generators, suitable models need to be developed. Especially the control and excitation system model need enhancements compared to models proposed in standards like IEEE Std 421.5. This paper elaborates on the necessary modelling depth and validates the approach with example results.
Go to article

Authors and Affiliations

Alf Assenkamp
1

  1. Bureau Veritas CPS Germany GmbH, Germany
Download PDF Download RIS Download Bibtex

Abstract

Three synchronous machine models representing three precision levels (complete, reduced and static), implemented in a virtual synchronous generator (VSG)-based industrial inverter, are compared and discussed to propose a set of tests for a possible standardization of VSG-based inverters and to ensure their “grid-friendly” operation in the context of isolated microgrids. The models and their implementation in the microcontroller of an industrial inverter (with the local control) are discussed, including the usability of the implementation with large-scale developments constraints in mind. The comparison is conducted based on existing standards (for synchronous machines and diesel generators) in order to determine their needed evolution, to define the requirements for future grid-friendly inverter-based generators, notably implementing a VSG solution.

Go to article

Authors and Affiliations

V. Moulichon
V. Debusschere
L. Garbuio
M.A. Rahmani
M. Alamir
N. Hadjsaid
Download PDF Download RIS Download Bibtex

Abstract

Fractional-slot concentrated-winding permanent magnet synchronous machines (FSCW-PMSMs) have a good prospect of application in the drive system of electric and hybrid electric vehicles. However, the armature magnetomotive force (MMF) of FSCWPMSM contains a large number of space harmonics, which induce large magnet eddycurrent loss (ECL). To solve this problem, a dual three-phase 10-pole and 24-slot winding layout is proposed.MMFharmonic analysis shows that the 1st, 7th and 17th space-harmonic winding factors of the proposed winding can be reduced by 100%, 87% and 87% respectively, compared with a dual three-phase 10-pole and 12-slot winding. Electromagnetic performances of the proposed machine under rated sinusoidal current supply and space vector pulse-width-modulated (SVPWM) voltage supply are investigated based on 2D finite-element analysis. It is shown that the proposed machine can meet the requirement of torque and efficiency in the full speed range. Especially, magnet ECL can be reduced greatly due to the reduction of the 7th and 17th space harmonics.
Go to article

Authors and Affiliations

Zhenfei Chen
1
Ning Xing
2
Hongzhong Ma
1
Zhixin Li
3
Jiayu Li
1
Chenyang Fan
1

  1. College of Energy and Electrical Engineering, Hohai University Jiangsu, China
  2. School of Electrical and Information Engineering, Tianjin University Tianjin, China
  3. Electric Power Science Research Institute, Jiangsu Electric Power Company, Jiangsu, China

This page uses 'cookies'. Learn more